4 Theorem tables and the Evaluation Rule can be replaced by some new axioms and antiaxioms. For example, one theorem table entry becomes the axiom $\forall v \forall$ and another becomes the axiom $\forall v \perp$. These two axioms can be reduced to one axiom by the introduction of a variable, giving $\forall vx$. Write the theorem tables as axioms and antiaxioms as succinctly as possible.

After trying the question, scroll down to the solution.

Solutions

- §
- Writing the theorem tables as axioms and antiaxioms is easy: one axiom for each \top entry, and one antiaxiom for each \bot entry. However, in preparation for the next step, I'll use the Consistency Rule to write the antiaxioms as axioms by starting with a \neg sign. Here they are in order of their appearance on pages 3 and 4.

$\neg \bot$ $\bot \Rightarrow \bot$ $\neg (\bot = \bot)$ $\top \land \top$ $\top \leftarrow \top$ $\mathbf{if} \top \mathbf{then} \top \mathbf{else} \top \mathbf{fi}$ $\neg (\top \land \bot)$ $\top \leftarrow \bot$ $\mathbf{if} \top \mathbf{then} \top \mathbf{else} \bot \mathbf{fi}$ $\neg (\bot \land \top)$ $\neg (\bot \leftarrow \top)$ $\neg \mathbf{if} \top \mathbf{then} \bot \mathbf{else} \top$ $\neg (\bot \land \bot)$ $\bot \leftarrow \bot$ $\neg \mathbf{if} \top \mathbf{then} \bot \mathbf{else} \bot$ $\neg (\bot \land \bot)$ $\bot \leftarrow \bot$ $\neg \mathbf{if} \top \mathbf{then} \bot \mathbf{else} \bot \mathbf{fi}$ $\neg \lor \top$ $\top = \bot$ $\neg \mathbf{if} \bot \mathbf{then} \top \mathbf{else} \bot \mathbf{fi}$ $\neg (\bot \lor \bot)$ $\bot = \bot$ $\neg \mathbf{if} \bot \mathbf{then} \bot \mathbf{else} \bot \mathbf{fi}$ $\neg (\bot \lor \bot)$ $\bot = \bot$ $\neg \mathbf{if} \bot \mathbf{then} \bot \mathbf{else} \bot \mathbf{fi}$ $\neg (\bot \lor \bot)$ $\bot = \bot$ $\neg \mathbf{if} \bot \mathbf{then} \bot \mathbf{else} \bot \mathbf{fi}$ $\neg (\top \to \bot)$ $\top = \bot$ $\neg \mathbf{if} \bot \mathbf{then} \bot \mathbf{else} \bot \mathbf{fi}$ $\neg (\top \Rightarrow \bot)$ $\top \mp \bot$ $\neg (\top \mp \top)$ $\neg (\top \mp \top)$ $\neg \mathbf{if} \bot \mathbf{then} \bot \mathbf{else} \bot \mathbf{fi}$ $\neg (\top \mp \bot)$ $\top \mp \pm \bot$	Тсг	⊥⇒⊤	⊥≠⊤
$\top \land \top$ $\top \Leftarrow \top$ if \top then \top else \top if $\neg (\top \land \bot)$ $\top \Leftarrow \bot$ if \top then \top else \bot if $\neg (\bot \land \top)$ $\neg (\bot \leftarrow \top)$ \neg if \top then \bot else \top $\neg (\bot \land \bot)$ $\bot \leftarrow \bot$ \neg if \top then \bot else \bot $\neg \lor \top$ $\top = \top$ if \bot then \top else \top if $\top \lor \bot$ $\neg (\top = \bot)$ \neg if \bot then \bot else \top if $\bot \lor \bot$ $\neg (\bot = \top)$ \neg if \bot then \bot else \top if $\neg (\bot \lor \bot)$ $\bot = \bot$ \neg if \bot then \bot else \bot $\neg (\top \Rightarrow \bot)$ $\top (\top \mp \top)$ $\neg (\top \mp \top)$ $\top \mp \bot$	$\neg \bot$	⊥⇒⊥	$\neg(\pm \pm \bot)$
$\neg(\top \land \bot)$ $\top \Leftarrow \bot$ if \top then \top else \bot if $\neg(\bot \land \top)$ $\neg(\bot \Leftarrow \top)$ \neg if \top then \bot else \top $\neg(\bot \land \bot)$ $\bot \Leftarrow \bot$ \neg if \top then \bot else \bot $\neg(\bot \land \bot)$ $\bot \leftarrow \bot$ \neg if \bot then \top else \bot if $\top \lor \top$ $\top = \top$ \neg if \bot then \top else \bot if $\top \lor \bot$ $\neg(\top = \bot)$ \neg if \bot then \bot else \top if $\bot \lor \top$ $\neg(\bot = \top)$ if \bot then \bot else \bot if $\neg(\bot \lor \bot)$ $\bot = \bot$ \neg if \bot then \bot else \bot $\neg(\top \Rightarrow \bot)$ $\top \mp \bot$ $\neg(\top \mp \top)$ $\neg(\top \Rightarrow \bot)$ $\top \mp \bot$	ТАТ	T ⊂ T	if ⊤ then ⊤ else ⊤ fi
$\neg(\bot \land \top)$ $\neg(\bot \Leftarrow \top)$ \neg if \top then \bot else \top $\neg(\bot \land \bot)$ $\bot \Leftarrow \bot$ \neg if \top then \bot else \bot $\top \lor \top$ $\top = \top$ if \bot then \top else \top f $\top \lor \bot$ $\neg(\top = \bot)$ \neg if \bot then \bot else \top f $\bot \lor \top$ $\neg(\bot = \top)$ if \bot then \bot else \top ff $\neg(\bot \lor \bot)$ $\bot = \bot$ \neg if \bot then \bot else \bot $\top (\top \lor \bot)$ $\bot = \bot$ \neg if \bot then \bot else \bot $\neg(\top \Rightarrow \bot)$ $\top \neq \bot$ \top	$\neg(\top \land \bot)$	⊺⇐⊥	if \top then \top else \bot fi
$\neg(\perp \land \perp)$ $\perp \Leftarrow \perp$ \neg if \top then \perp else \perp $\top \lor \top$ $\top = \top$ if \perp then \top else \top if $\top \lor \perp$ $\neg(\top = \perp)$ \neg if \perp then \top else \perp $\perp \lor \top$ $\neg(\perp = \top)$ if \perp then \perp else \top fit $\neg(\perp \lor \perp)$ $\perp = \perp$ \neg if \perp then \perp else \perp $\neg(\top \Rightarrow \perp)$ $\top \neq \perp$ $\neg(\top \mp \top)$ $\neg(\top \Rightarrow \perp)$ $\top \neq \perp$	$\neg(\bot \land \top)$	¬(⊥⇐⊤)	\neg if \top then \perp else \top fi
$\top \lor \top$ $\top = \top$ if \bot then \top else \top f $\top \lor \bot$ $\neg (\top = \bot)$ \neg if \bot then \top else \bot $\bot \lor \top$ $\neg (\bot = \top)$ if \bot then \bot else \top fi $\neg (\bot \lor \bot)$ $\bot = \bot$ \neg if \bot then \bot else \bot $\top \Rightarrow \top$ $\neg (\top \mp \top)$ $\neg (\top \mp \bot)$ $\neg (\top \Rightarrow \bot)$ $\top \mp \bot$	$\neg(\bot \land \bot)$	⊥⇐⊥	\neg if \top then \perp else \perp fi
$\top \lor \bot$ $\neg (\top = \bot)$ $\neg \text{ if } \bot \text{ then } \top \text{ else } \bot$ $\bot \lor \top$ $\neg (\bot = \top)$ $\text{ if } \bot \text{ then } \bot \text{ else } \top \text{ fi}$ $\neg (\bot \lor \bot)$ $\bot = \bot$ $\neg \text{ if } \bot \text{ then } \bot \text{ else } \bot$ $\neg (\top \lor \top)$ $\neg (\top \mp \top)$ $\neg (\top \Rightarrow \bot)$ $\top \neq \bot$	ТVТ	T=T	if \perp then \top else \top fi
$ \begin{array}{cccc} \bot \lor \top & \neg(\bot = \top) & \text{if } \bot \text{ then } \bot \text{ else } \top \text{ fi} \\ \neg(\bot \lor \bot) & \bot = \bot & \neg \text{ if } \bot \text{ then } \bot \text{ else } \bot \\ \top \Rightarrow \top & \neg(\top \neq \top) & \\ \neg(\top \Rightarrow \bot) & T \neq \bot & \end{array} $	$\top \lor \bot$	$\neg(\top=\perp)$	\neg if \perp then \top else \perp fi
$ \begin{array}{ccc} \neg(\bot \lor \bot) & & \bot = \bot & & \neg \text{ if } \bot \text{ then } \bot \text{ else } \bot \\ \top \Rightarrow \top & & \neg(\top \mp \top) \\ \neg(\top \Rightarrow \bot) & & \top \mp \bot \end{array} $	⊥v⊤	$\neg(\perp=\top)$	if \perp then \perp else \top fi
$T \Rightarrow T \qquad \neg(T \neq T)$ $\neg(T \Rightarrow \bot) \qquad T \neq \bot$	$\neg(\bot \lor \bot)$	⊥=⊥	\neg if \perp then \perp else \perp fi
$\neg(\top \Rightarrow \bot)$ $\top \neq \bot$	T⇒T	$\neg(\top \mp \top)$	
	$\neg(\top \Rightarrow \bot)$	⊤≠⊥	

Now I use the Completion and Instance Rules to pair axioms that differ in only one position. An axiom can participate in more than one pairing.

Т	$x \Rightarrow \top$	$\neg(\perp=\top)$
$\neg \bot$	$\neg(\top \Rightarrow \bot)$	$\neg(x \neq x)$
ТАТ	$\perp \Rightarrow x$	⊤≠⊥
$\neg(x \land \bot)$	$\top \Leftarrow x$	⊥≠⊤
$\neg(\perp \land x)$	¬(⊥⇐⊤)	if \top then \top else x fi
$\top \lor x$	x⇐⊥	\neg if \top then \perp else <i>x</i> fi
$x \vee \top$	x=x	if \perp then x else \top fi
$\neg(\perp \lor \perp)$	¬(⊤=⊥)	\neg if \perp then <i>x</i> else \perp fi

It may seem that we can use symmetry to make the list even shorter. But the symmetry laws are proven from these axioms, so we can't.