401 (bit strings) Let a, b, c: *(0, 1). Define operator \oplus (precedence 4) as follows. $nil \oplus nil = 0$ $a \oplus 0 = a$ $(a; 0) \oplus 1 = a; 1$ $(a; 1) \oplus 1 = a \oplus 1; 0$ $a \oplus b = b \oplus a$ $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ Prove (a) $a \oplus a = a; 0$ $b = a \oplus a \oplus 0$ $(c) a; 1 = a \oplus a \oplus 1$

After trying the question, scroll down to the start of a solution.

(a) $a \oplus a = a; 0$ Since a: *(0, 1) then a is one of *nil* or b;0 or b;1 for some b: *(0, 1). Case a = nil $a \oplus a$ a = nilnil⊕ nil axiom = string identity law 0 = = *nil*; 0 a = nil*a*; 0 = Case a = b; 0 $a \oplus a$ UNFINISHED = = *a*; 0 Case a = b; 1 $a \oplus a$ UNFINISHED = = *a*; 0

§

That was an induction, but it was not fully formal because we don't have the induction axiom for *.

(b)		$a; 0 = a \oplus a \oplus 0$	
		$a \oplus \underline{a \oplus 0}$	axiom
	=	$a \oplus a$	part (a)
	=	<i>a</i> ; 0	
(c)		$a; 1 = a \oplus a \oplus 1$	
		$a \oplus a \oplus 1$	
	=	UNFINISHED	
	=	<i>a</i> ; 1	