402 (decimal-point numbers) Using recursive data definition, define the bunch of all decimalpoint numbers. These are the rationals that can be expressed as a finite string of decimal digits containing a decimal point. Note: you are defining a bunch of numbers, not a bunch of texts.

After trying the question, scroll down to the solution.

If we're just allowed digits and a decimal point, they're non-negative. Let's call it dec. We can define it as

 $dec = nat / 10^{nat}$

but that doesn't use recursive data definition that we were asked to use. The following axioms do.

	nat, dec/10: dec	construction
	$nat, B/10: B \implies dec: B$	induction
or		
	dec = nat, dec/10	fixed-point construction
	$B = nat, B/10 \implies dec: B$	fixed-point induction
But these axioms use <i>nat</i> , which already gives us construction and induction. So maybe		
we should try for a definition that doesn't use <i>nat</i> .		
	0, <i>dec</i> +1, <i>dec</i> /10: <i>dec</i>	construction
	$0, B+1, B/10: B \implies dec: B$	induction

or

dec = 0, dec+1, dec/10 fixe $B = 0, B+1, B/10 \Rightarrow dec: B$ fixe

fixed-point construction fixed-point induction

§