- 411 Let x be an integer variable.
- (a) Using the recursive time measure, add time and then find the strongest implementable specification S that you can find for which

$$S \iff$$
 if $x=0$ then ok
else if $x>0$ then $x:=x-1$. S
else $x' \ge 0$. S fi fi

Assume that $x' \ge 0$ takes no time.

(b) What do we get from recursive construction starting with $t' \ge t$?

After trying the question, scroll down to the solution.

(a) Using the recursive time measure, add time and then find the strongest implementable specification S that you can find for which

```
S \iff if x=0 then ok
else if x>0 then x:=x-1. S
else x' \ge 0. S fi fi
```

Assume that $x' \ge 0$ takes no time.

§ Adding time,

 $S \leftarrow if x=0 then ok$

else if x > 0 **then** x := x - 1. t := t + 1. *S*

else $x' \ge 0 \land t'=t$. t:=t+1. *S* fi fi

the strongest implementable solution for S is

 $x'=0 \land \text{ if } x \ge 0 \text{ then } t' = t+x \text{ else } t' \ge t+1 \text{ fi}$

If we replace $x' \ge 0 \land t'=t$ by x:=c where c is an arbitrary natural number, then we can prove

 $x'=0 \land \mathbf{if} x \ge 0 \mathbf{then} t' = t+x \mathbf{else} t' = t+1+c \mathbf{fi}$

(b) What do we get from recursive construction starting with $t' \ge t$?

§

 $S_n = 0 \le x < n \land x' = 0 \land t' = t + x$ $\lor \neg 0 \le x < n \land t' \ge t + n$ $\lor x < 0 \land x' = 0 \land t + 1 \le t' < t + n$ $S_{\infty} = 0 \le x \land x' = 0 \land t' = t + x$ $\lor x < 0 \land t' = \infty$ $\lor x < 0 \land x' = 0 \land t + 1 \le t' < \infty$

 S_{∞} is a solution to the given implication, but not as strong as the solution shown in part (a). It is interesting to note that if the given implication were an equation, then S_{∞} would not be a solution (fixed-point), but the solution of part (a) would still be a solution. $\mathfrak{P}n \cdot S_n$ is the same as S_{∞} .