- 418 In real variable x, consider the equation P = P. $x := x^2$
- (a) Find 7 distinct solutions for P.
- (b) Which solution does recursive construction give starting from \top ? Is it the weakest solution?
- (c) If we add a time variable, which solution does recursive construction give starting from $t' \ge t$? Is it a strongest implementable solution?
- (d) Now let x be an integer variable, and redo the question.

After trying the question, scroll down to the solution.

- (a) Find 7 distinct solutions for P.
- S Here are 6 solutions: x'=0; x'>0; 0 < x' < 1; x'=1; x'>1; \bot . The disjunction of any two solutions is also a solution. For any binary expression b and solutions A and B, **if** b **then** A **else** B **fi** is also a solution.
- (b) Which solution does recursive construction give starting from \top ? Is it the weakest solution?

§
$$P_0 \equiv \top$$

 $P_1 \equiv P_0. \quad x \coloneqq x^2$ $\equiv \top . \quad x' \equiv x^2$ $\equiv \exists x'' \cdot \top \land x' \equiv x''^2$ $\equiv \exists x'' \cdot x' \equiv x''^2$

I don't have a law to quote here, but here's my reasoning. If x'' is any real value, its square is nonnegative.

 $= x' \ge 0$ It gives $x' \ge 0$, which is the weakest solution.

- (c) If we add a time variable, which solution does recursive construction give starting from $t' \ge t$? Is it a strongest implementable solution?
- § It gives $t'=\infty \land x' \ge 0$, which is not a strongest implementable solution because $t'=\infty \land x'=0$ is a stronger implementable solution.
- (d) Now let x be an integer variable, and redo the question.
- § The solutions are: x'=0; x'=1; \perp ; the disjunction of any two solutions is also a solution; for any binary expression b and solutions A and B, **if** b **then** A **else** B **fi** is also a solution. Starting from \top we get $x'=0 \lor x'=1$ which is the weakest solution. Starting from $t' \ge t$ we get $t'=\infty \land (x'=0 \lor x'=1)$ which is not a strongest implementable solution because $t'=\infty \land x'=0$ is a stronger implementable solution.