
439 (limited-queue)  A queue, according to our axioms, has an unlimited capacity to have 
items joined onto it.  A limited-queue is a similar data structure but with a limited 
capacity to have items joined onto it.

(a) Design axioms for a limited-data-queue. 
(b) Design axioms for a limited-program-queue.
(c) Can the limit be  0 ?



(a) Design axioms for a limited-data-queue.
§ I'm introducing new name  full , which tells whether a queue is full (of course).  This 

allows an implementation in which  full  might say  ⊤  for a queue with  3  long items, 
and  ⊥  for another queue with  3  short items in it.  It also allows an implementation to 
allocate more space at any time, and deallocate unused space at any time.  I also think it's 
the easiest solution.

emptyq: queue
full: queue→bin
¬ full q  ⇒  join q x: queue
¬ full q  ⇒  join q x ⧧ emptyq
¬ full q ∧ ¬ full r  ⇒  (join q x = join r y   =   q=r ∧ x=y)
q⧧emptyq   ⇒   leave q: queue
q⧧emptyq   ⇒   front q: X
¬ full emptyq   ⇒   leave (join emptyq x)  =  emptyq
q⧧emptyq ∧ ¬ full q   ⇒   leave (join q x) = join (leave q) x
¬ full emptyq  ⇒  front (join emptyq x)  =  x
q⧧emptyq ∧ ¬ full q   ⇒   front (join q x) = front  q

(b) Design axioms for a limited-program-queue.
§ mkemptyq ⇒ isemptyqʹ

isemptyq ∧ ¬isfullq ∧ join x  ⇒  frontʹ=x ∧ ¬isemptyqʹ
¬isemptyq ∧ leave  ⇒  ¬isfullqʹ
¬isemptyq ∧ ¬isfullq ∧ join x  ⇒  frontʹ=front ∧ ¬isemptyqʹ
isemptyq ∧ ¬isfullq  ⇒  (join x.  leave   =   mkemptyq)
¬isemptyq ∧ ¬isfullq  ⇒  (join x.  leave   =   leave.  join x)

(c) Can the limit be  0 ?
§ The limit can be  0 .  That happens in (a) when  full  is the constant  ⊤  function;  even  

full emptyq  is  ⊤ .  In (b) it happens when  isfullq  is identically  ⊤ .


