
439 (limited-queue) A queue, according to our axioms, has an unlimited capacity to have
items joined onto it. A limited-queue is a similar data structure but with a limited
capacity to have items joined onto it.

(a) Design axioms for a limited-data-queue.
(b) Design axioms for a limited-program-queue.
(c) Can the limit be 0 ?

(a) Design axioms for a limited-data-queue.
§ I'm introducing new name full , which tells whether a queue is full (of course). This

allows an implementation in which full might say ⊤ for a queue with 3 long items,
and ⊥ for another queue with 3 short items in it. It also allows an implementation to
allocate more space at any time, and deallocate unused space at any time. I also think it's
the easiest solution.

emptyq: queue
full: queue→bin
¬ full q ⇒ join q x: queue
¬ full q ⇒ join q x ⧧ emptyq
¬ full q ∧ ¬ full r ⇒ (join q x = join r y = q=r ∧ x=y)
q⧧emptyq ⇒ leave q: queue
q⧧emptyq ⇒ front q: X
¬ full emptyq ⇒ leave (join emptyq x) = emptyq
q⧧emptyq ∧ ¬ full q ⇒ leave (join q x) = join (leave q) x
¬ full emptyq ⇒ front (join emptyq x) = x
q⧧emptyq ∧ ¬ full q ⇒ front (join q x) = front q

(b) Design axioms for a limited-program-queue.
§ mkemptyq ⇒ isemptyqʹ

isemptyq ∧ ¬isfullq ∧ join x ⇒ frontʹ=x ∧ ¬isemptyqʹ
¬isemptyq ∧ leave ⇒ ¬isfullqʹ
¬isemptyq ∧ ¬isfullq ∧ join x ⇒ frontʹ=front ∧ ¬isemptyqʹ
isemptyq ∧ ¬isfullq ⇒ (join x. leave = mkemptyq)
¬isemptyq ∧ ¬isfullq ⇒ (join x. leave = leave. join x)

(c) Can the limit be 0 ?
§ The limit can be 0 . That happens in (a) when full is the constant ⊤ function; even

full emptyq is ⊤ . In (b) it happens when isfullq is identically ⊤ .

