439  (limited-queue) A queue, according to our axioms, has an unlimited capacity to have
items joined onto it. A limited-queue is a similar data structure but with a limited
capacity to have items joined onto it.

(a) Design axioms for a limited-data-queue.

(b) Design axioms for a limited-program-queue.

(©) Can the limit be 0 ?



(a) Design axioms for a limited-data-queue.
$ I'm introducing new name full , which tells whether a queue is full (of course). This
allows an implementation in which full might say T for a queue with 3 long items,
and L for another queue with 3 short items in it. It also allows an implementation to
allocate more space at any time, and deallocate unused space at any time. I also think it's
the easiest solution.
emptyq: queue
full: queue—bin
= full g = join g x: queue
= full g = join g x ¥ emptyq
s fullg n = fullr = (joingx=joinry = gqg=r A Xx=y)
q*emptyq = leave q: queue
qFemptyqg = front q: X
= full emptyqg = leave (join emptyq x) = emptyq
qFemptyg A = full g = leave (join g x) = join (leave q) x
= full emptyq = front (join emptyq x) = x
qgFemptyq A - fullq = front (join q x) = front q

(b) Design axioms for a limited-program-queue.

§ mkemptyq = isemptyq'
isemptyq A —isfullg A join x = front'=x A —isemptyq'
—isemptyq A leave = =isfullg’
—isemptyq A —isfullg A join x = front'=front A —~isemptyq'

isemptyq A —isfully = (join x. leave = mkemptyq)
—isemptyq A —isfully = (join x. leave = leave. join x)

(©) Can the limit be 0 ?
§ The limit can be 0 . That happens in (a) when full is the constant T function; even
full emptyq is T . In (b) it happens when isfullg is identically T .



