
492 (simultaneous equations) We are given string variable X whose n items are rational,
and a string of n functions fi , each of which takes n rational arguments and produces a
rational result. Assign to X a value satisfying

∀i: 0,..n· Xi = fi@X
or, spreading it out,

X0 = f0 X0 X1 ··· Xn–1
X1 = f1 X0 X1 ··· Xn–1

 ⋮
Xn–1 = fn–1 X0 X1 ··· Xn–1

In other words, find n simultaneous fixed-points. Assume that a repetition of
assignments of the form Xi:= fi X0 X1 ··· Xn–1 will result in an improving sequence of
approximations until the value of X is “close enough”, within some tolerance. Function
evaluation is the time-consuming part of the computation, so as much as possible,
function evaluations should be done concurrently.

After trying the question, scroll down to the solution.

§ Let X be a string-valued interaction variable. The usual solution is to create one process
for each function, which performs its assignment repeatedly. Consider the single
assignment

X0:= f0 X0 X1 ··· Xn–1
notice that it may not even satisfy equation 0, since it may change the value of X0 and
hence f0 X0 X1 ··· Xn–1 . Worse than that, it may cause some other equation which was
satisfied to become unsatisfied. So we now have the difficult problem of distributed
termination detection. And these assignments cannot be placed in parallel anyway
because they each change a variable or string item that the other assignments use.

Here is a solution without those problems. Let solve be the problem of solving all the
equations.

solve = ∀i: 0,..n· Xʹi = fi@Xʹ
Here and throughout this exercise, we use the equality comparator between rationals to
mean “close enough”, and we assume that the system of equations is “close enough” to
being solved just when each equation is “close enough”. Let Y be a string variable to
remember the result of the function evaluations, and let j be a natural variable for
indexing.

new Y: n*rat· new i: nat·
Define solverest to solve the equations from j onwards.

solverest = ∀i: j,..n· Xʹi = fi@Xʹ
Now we refine solve as follows.

solve ⇐ j:= 0. solverest. j:= 0. check
solverest ⇐ if j=n then ok else Yj:= fj@X || (j:= j+1. solverest) fi
check ⇐ if j=n then ok else if Xj = Yj then j:= j+1. check else X:= Y. solve fi fi

We are evaluating the functions concurrently, as required. Then we check, one by one, if
the equations are close enough. If we find one that isn't, we update all the X values, and
restart.

If we had a concurrent for-loop, we could refine as follows (note the use of a bunch,
rather than a string, for the for-parameter, to indicate concurrency):

solve ⇐ for j:= 0,..n do Yj:= fj@X od. j:= 0. check

Here is a more interesting solution, again using a parallel for.
solve ⇐ for i:= 0,..n do new y:= fi@X. if Xi = y then ok else Xi:= y. solve fi od

For each equation concurrently, evaluate the function, and see if that equation is satisfied.
If it is, do nothing; if not, make one assignment, and then restart the entire program. NO
GOOD: WE CAN'T PARTITION THE VARIABLES BECAUSE EACH PROCESS
CALLS solve . PRESSING ONWARD ANYWAY For the function evaluation fi@X ,
there is no need for the items of X to be read all at the same time. There is an explosion
of calls to solve : the body of the concurrent for is n processes, and each process may
call solve resulting in n2 processes, each of which may call solve resulting in n3
processes, and so on. Soon the number of processes will exceed the number of
processors available to execute them. The implementation of our programming language
requires a scheduler that keeps track of waiting processes, and assigns them to processors
when they become available. The explosion can be eliminated as follows.

Specification S is called idempotent if (S.S = S) . In words, S is idempotent if
executing it twice in sequence has the same effect as executing it once. For example,
sorting is idempotent. For each idempotent process P , the scheduler maintains a binary
variable w with the informal meaning “ P is awaiting a processor for execution”; its
initial value is ⊥ . When P is called, it may already be awaiting execution from a

previous call; if so, there is no point in calling it again because it is idempotent; if not, it
must be called, so the scheduler indicates that it is now awaiting execution. When P is
called, the scheduler executes

if w then ok else w:= ⊤. place P in the queue of waiting processes fi
When P reaches the front of the queue and a processor becomes available, the scheduler
executes w:= ⊥ to indicate that P is no longer waiting, and gives it to the free
processor.

In this example, solve is idempotent, as is the body of the concurrent for , which we
now name process i for reference.

solve ⇐ for i:= 0,..n do process i od
process i = new y:= fi@X. if Xi = y then ok else Xi:= y. solve fi

If there are n processors, and the scheduler always assigns process i to processor i ,
then there are never two copies of process i running at once. This implementation
prevents an explosion of waiting processes, and is an efficient solution to the problem of
solving simultaneous equations. THE SOLUTION WORKS IN PRACTICE EVEN
THOUGH IT DOES NOT WORK IN THEORY.

