- 80 (whodunit) Here are ten statements.
 - (i) Some criminal robbed the Russell mansion.
 - (ii) Whoever robbed the Russell mansion either had an accomplice among the servants or had to break in.
 - (iii) To break in one would have to either smash the door or pick the lock.
 - (iv) Only an expert locksmith could pick the lock.
 - (v) Anyone smashing the door would have been heard.
 - (vi) Nobody was heard.
 - (vii) No one could rob the Russell mansion without fooling the guard.
 - (viii) To fool the guard one must be a convincing actor.
 - (ix) No criminal could be both an expert locksmith and a convincing actor. Therefore
 - (x) Some criminal had an accomplice among the servants.
- (a) Choosing good abbreviations, translate each of these statements into formal logic.
- (b) Taking the first nine statements as axioms, prove the last statement.

After trying the question, scroll down to the solution.

- (a) Choosing good abbreviations, translate each of these statements into formal logic.
- § Here are some abbreviations.

C x = (x is a criminal)

R x = (x robbed the Russell mansion)

S x = (x had an accomplice among the servants)

B x = (x broke in)

D x = (x smashed the door)

- P x = (x picked the lock)
- Lx = (x is an expert locksmith)
- Hx = (x was heard)

F x = (x fooled the guard)

A x = (x is a convincing actor)

Now the statements are formalized as follows.

- (i) $\exists x \cdot C x \wedge R x$
- (ii) $\forall x \cdot R x \Rightarrow S x \lor B x$
- (iii) $\forall x \colon B \ x \Rightarrow D \ x \lor P \ x$
- (iv) $\forall x \cdot L x \leftarrow P x$
- (v) $\forall x \cdot D x \Rightarrow H x$
- (vi) $\neg \exists x \cdot H x$
- (vii) $\neg \exists x \cdot R \ x \land \neg F \ x$
- (viii) $\forall x \cdot F x \Rightarrow A x$
- (ix) $\neg \exists x \cdot C x \land L x \land A x$
- Therefore

(x) $\exists x \cdot C x \wedge S x$

(b) Taking the first nine statements as axioms, prove the last statement.

§ Lemma:

	Т	(vii)
=	$\neg \exists x \cdot R \ x \land \neg F \ x$	duality (deMorgan)
=	$\forall x \cdot \neg (R \ x \land \neg F \ x)$	duality (deMorgan)
=	$\forall x \cdot \neg R \ x \lor \neg \neg F \ x$	double negation
=	$\forall x \cdot \neg R \ x \lor F \ x$	material implication
=	$\forall x \colon R \; x \Longrightarrow F \; x$	
Now	the main proof:	
	Т	(i)
=	$\exists x \cdot C \ x \land R \ x$	idempotence
=	$\exists x \cdot C \ x \land R \ x \land R \ x$	lemma and (ii)
\Rightarrow	$\exists x \cdot C \ x \land F \ x \land (S \ x \lor B \ x)$	(viii) and (iii)
\Rightarrow	$\exists x \cdot C \ x \land A \ x \land (S \ x \lor D \ x \lor P \ x)$	(v) and (iv)
\Rightarrow	$\exists x \cdot C \ x \land A \ x \land (S \ x \lor H \ x \lor L \ x)$	distribute
=	$\exists x \cdot C x \wedge A x \wedge S x \vee C x \wedge A x \wedge H x \vee C x \wedge A x \wedge L x$	(vi) and (ix)
=	$\exists x \cdot C \ x \land A \ x \land S \ x$	specialize
\Rightarrow	$\exists x \cdot C x \wedge S x$	-