
2020-8-5 0

the Halting Program

Eric C.R. Hehner

Department of Computer Science, University of Toronto
hehner@cs.utoronto.ca

The Halting Problem is this: write a Pascal function to determine whether the execution of any
Pascal procedure terminates. The choice of programming language was arbitrary; it could have
been any other language. Without loss of generality and without changing the character of the
problem, I consider halting for procedures with no parameters; input to a procedure can always
be replaced by a definition of a sequence of values, call it input , within the procedure. The
function to determine halting, let's call it halts , has one text parameter to say what procedure
we are applying it to. We could pass the whole procedure as text, but it is simpler to pass just
the procedure name as text, and to provide a dictionary of function and procedure definitions
that is accessible to halts , so that the call halts ('p') allows halts to look up 'p' in the
dictionary, and retrieve its text for analysis. The dictionary also allows halts to look up the
texts of all functions and procedures that p calls, and so on, transitively.

Here is the function header of halts , but its body is missing; in place of the body there is a
comment to specify the desired computation. Then there are three procedures, stop , go , and
twist , for halts to apply to. And finally there is a main block that applies halts to the twist
procedure.

function halts (p: string): boolean;
{ return true if p represents a parameterless Pascal procedure whose execution terminates; }
{ return false otherwise }

procedure stop; begin end;

procedure go; begin go end;

procedure twist; begin if halts ('twist') then go else stop end;

begin if halts ('twist') then twist end.

The execution of procedure stop terminates immediately, so according to the specification of
halts , the result of halts ('stop') should be true . The execution of procedure go never
terminates, so according to the specification of halts , the result of halts ('go') should be
false . If the result of halts ('twist') is true , then twist calls go , whose execution does not
terminate, so the result of halts ('twist') should be false . If the result of halts ('twist') is
false , then twist calls stop , whose execution terminates, so the result of halts ('twist') should
be true . This is an inconsistency in the specification of halts . Therefore halts cannot be
programmed according to its specification.

The preceding argument is one of the standard arguments that halting is incomputable.
Elsewhere [0] I have argued that halting for all Pascal procedures might be computed in some
other language that is not callable from Pascal. In this paper, I show how halting for a lower-
level language might be computed in that same language.

There are infinitely many Pascal procedures and functions, so the dictionary of procedure and
function definitions is infinite. But let me suppose that we want halts to apply to only the

http://www.cs.utoronto.ca/~hehner
mailto:hehner@cs.utoronto.ca

the Halting Program 2020-8-51

three procedures defined above, so the above definitions (including halts , when it is written)
are a sufficient amount of the dictionary. This is obviously a limitation, but at least it includes
an example of termination, an example of nontermination, and the twist example that is used to
prove the impossibility of programming halts .

Here is a start at programming halts .

function halts (p: string): boolean;
begin if p='stop' then halts:= true
 else if p='go' then halts:= false
 else if p='twist' then if (I am called from outside twist) then halts:= true
 else halts:= false end

Or, more succinctly and less perspicuously,

function halts (p: string): boolean;
begin halts:= (p='stop') or ((p='twist') and (I am called from outside twist)) end

All that's missing is to replace (I am called from outside twist) by some programming that
determines whether the call to halts came from outside or inside twist . Function halts is
supposed to apply to all procedures, not just these three, so the halts programmer cannot
analyze all of them and simply list the answers, as I have done for these three procedures. So
the halts program must do the analysis, and I leave the hard work of programming that
analysis to someone else. My purpose is to show how halts ('twist') can overcome the
apparent inconsistency in its specification.

Before programming that missing piece, let's see how halts will work. The main block calls
halts ('twist') . In halts , p='twist' , and then (I am called from outside twist) is somehow
determined to be true , and so the result of halts ('twist') is true . Returning to the main
block, twist is executed. The execution of twist calls halts ('twist') . Once again in halts ,
p='twist' , and this time (I am called from outside twist) is somehow determined to be false ,
so the result of halts ('twist') is false . Returning to twist , stop is executed, and the
execution of twist terminates, and the execution of the main block also terminates.

In the main block, halts said that the execution of twist terminates, and then, true to its word,
the execution of twist terminated. If I may indulge in anthropomorphism, twist tried to trick
halts , but halts tricked twist , and thus preserved its own integrity. Or maybe halts
sacrificed its integrity when tricking twist : it is supposed to tell the truth all the time, but it
lied to twist . In this paper, I require halts to tell the truth only when asked from the main
block, outside all procedures.

I do not know how to determine where a call came from in Pascal; perhaps it is impossible.
Pascal must be compiled (translated) to machine language for execution, and it is easy to
determine where a call came from in machine language. I will take a step in the direction of
machine language, but remain in Pascal: I remove functions and procedures and calls from
Pascal. The remaining language is still Turing Machine equivalent; there is no call instruction
in the Turing Machine language. Where a modern programming language uses a call, Turing
used an interpreter, named the Universal Machine. Machine instructions for call and return
require a stack for return addresses; I have put the stack size at ∞ , which is not in Pascal,
because Turing Machines have an infinite memory; in this example program, stack size 2 is
sufficient. If halts were recursive, then the parameter values and result values would also need
a stack, but in our example, halts is not recursive, so a parameter variable and result variable
are sufficient. Some of the calls are last action calls; a good compiler will compile them as
simple branch instructions; I replace them with gotos. Execution begins at main , which is

2020-8-5 the Halting Program 2

label 0, and ends at the end of main , which is label 7.

var return: array [0..∞] of integer; {return address stack}
var top: integer; {the number of filled items and first free index in return }
var p: string; {in place of the parameter for halts }
var result: boolean; {in place of the result returned by halts }

{halts} 1: begin result:= (p='stop') or ((p='twist') and (return[top–1] = 6));
 top:= top–1; goto return[top] end;

{stop} 2: begin top:= top–1; goto return[top] end;

{go} 3: begin goto 3 end;

{twist} 4: begin p:= 'twist'; return[top]:= 5; top:= top+1; goto 1;
 5: if result then goto 3 else goto 2 end;

{main} 0: begin return[0]:= 7; top:= 1; {return address stack initialization}
 p:= 'twist'; return[top]:= 6; top:= top+1; goto 1;
 6: if result then goto 4; 7: end.

Obviously, this halts function is a long way from fulfilling the original specification. Its one
merit is to show that in a low-level language, such as Pascal without functions and procedures
and call, or any assembly language, or any machine language, including Turing Machine
language, we can “compute halting” for that language. By “compute halting”, I mean compute,
within the main block of code, whether execution of any other block of code terminates. But
we cannot compute, within a block of code, whether execution of that same block of code
terminates. To fulfill the original specification, halts should compute halting for any block of
code, and that is impossible.

Acknowledgement

I acknowledge that Bill Stoddart published this same idea, and a lot more, in a brilliant paper
[1] in 2017. I also acknowledge that in 2018 Song Zhou had a closely related idea.

Reference

[0] E.C.R.Hehner: Epimenides, Gödel, Turing: an Eternal Gölden Twist
[1] W.Stoddart: Halting Misconceived. EuroForth 2017,

http://www.complang.tuwien.ac.at/anton/euroforth/ef17/papers/stoddart.pdf

other papers on halting

http://www.cs.utoronto.ca/~hehner/EGT.pdf
http://www.complang.tuwien.ac.at/anton/euroforth/ef17/papers/stoddart.pdf
http://www.cs.utoronto.ca/~hehner/halting.html

