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Fig. 1. Solving an interpolation problem on an airplane. Using the Laplacian energy with zero Neumann boundary conditions (left) distorts the result near

the windows and the cockpit of the plane: the isolines bend so they can be perpendicular to the boundary. The planar Hessian energy of Stein et al. [2018]

(center) is unaffected by the holes, but does not account for curvature correctly, leading to unnatural spacing of isolines at the front and back of the fuselage.

Our Hessian energy (right) produces a natural-looking result with more regularly spread isolines, unaffected by the boundary.

Current quadratic smoothness energies for curved surfaces either exhibit
distortions near the boundary due to zero Neumann boundary conditions
or they do not correctly account for intrinsic curvature, which leads to
unnatural-looking behavior away from the boundary. This leads to an un-
fortunate trade-off: One can either have natural behavior in the interior
or a distortion-free result at the boundary, but not both. We introduce a
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generalized Hessian energy for curved surfaces, expressed in terms of the
covariant one-form Dirichlet energy, the Gaussian curvature, and the exte-
rior derivative. Energy minimizers solve the Laplace-Beltrami biharmonic
equation, correctly accounting for intrinsic curvature, leading to natural-
looking isolines. On the boundary, minimizers are as-linear-as-possible,
which reduces the distortion of isolines at the boundary. We discretize
the covariant one-form Dirichlet energy using Crouzeix-Raviart finite ele-
ments, arriving at a discrete formulation of the Hessian energy for appli-
cations on curved surfaces. We observe convergence of the discretization
in our experiments.
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1 INTRODUCTION

Smoothness energies are used as objective functions for optimiza-
tion in geometry processing. A wide variety of applications exists:
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Smoothness energies can be used to smooth data on surfaces, to
denoise data, for scattered data interpolation, character animation,
and much more. We are interested in quadratic smoothness ener-
gies formulated on triangle meshes.

It is desirable for a smoothing energy to have minimizers with
isolines whose spacing does not vary much across the surface—the
gradient of the function is sufficiently constant. When the gradient
of the function is sufficiently constant, the function only changes
very gradually, resulting in a smooth function. In the same vein,
a good smoothing energy should have minimizers whose isolines
are not distorted anywhere: Their spacing is not influenced (on the
interior) by the surface’s curvature, and they are not biased by the
boundary of the surface—they behave locally as if the boundary
were absent. Such behavior is relevant for applications where the
boundary is not directly related to the actual problem that is be-
ing solved, e.g., when the boundary is an artificial result of faulty
surface reconstruction resulting in a shape with many extraneous
holes. One class of energies with the desired behavior in the inte-
rior are energies whose minimizers solve the biharmonic equation,
the prototypical elliptic equation of order four [Gazzola et al. 2010,
viii]. Such energies are pertinent as smoothness energies in com-
puter graphics applications [Jacobson et al. 2010].

One such energy is the squared Laplacian energy—the squared
Laplacian of a function integrated over the surface. We henceforth
refer to the energy as simply the Laplacian energy. Its minimizers
solve the biharmonic equation; as a result, they are very smooth,
and their isolines behave well on curved surfaces if the surfaces are
closed. The energy’s most popular discretization, however, comes
with zero Neumann boundary conditions. Thus, if a surface has
boundaries, the minimizers are distorted near the boundary (see
Figure 1), since at the boundary they are as-constant-as-possible.

The issue of boundary distortion is addressed by the Hessian en-

ergy of Stein et al. [2018]. For planar domains, they provide an en-
ergy whose minimizers solve the biharmonic equation and are as-

linear-as-possible at the boundary. These boundary conditions lead
to decreased distortion. The Hessian energy of Stein et al. [2018],
however, is only defined for subsets of the plane R2. Stein et al.
[2018] offer a way to compute an energy for curved surfaces, but, as
they point out, their approach does not account for the curvature
of the surface correctly. The approach of Stein et al. [2018] does
not solve the biharmonic equation on curved surfaces; this leads
to global distortions in the isolines of the solution (see Figure 1).

Contributions

(1) Generalized Hessian energy. We generalize the Hessian energy
to accommodate curved surfaces. Our new Hessian energy is

E (u) :=
1

2

∫
Ω

(∇du) : (∇du) + κ |du |2 dx , (1)

where ∇ is the covariant derivative of differential forms, d is the
exterior derivative, κ is the Gaussian curvature, and : denotes the
contraction of two operators in all indices that corresponds to A :
B = tr(AᵀB) (where the transpose ᵀ takes the metric into account).
This energy

• corresponds to the Laplacian energy in the case of a domain
without boundaries;

• corresponds to the Hessian energy of Stein et al. [2018]

for surfaces in R2, 1
2

∫
Ω
‖Hu ‖

2
F dx , where Hu is the 2 × 2

Hessian matrix of u, and ‖A‖F is the Frobenius norm of A;
• has the as-linear-as-possible natural boundary conditions of

the Hessian energy of Stein et al. [2018] for flat domains in
R2. These boundary conditions lead to decreased distortion
at the boundary.

Figure 1 shows how our Hessian energy manages to achieve the
best of both worlds.

(2) Discretization. We also introduce a discretization of this
curved Hessian energy that uses Crouzeix-Raviart finite elements
“under the hood,” but, after the energy matrix has been assem-
bled, relies solely on piecewise linear hat functions. We observe
convergence of the discretization for a wide variety of numerical
experiments, given certain regularity conditions, and apply it to
various smoothing and interpolation problems.

2 RELATED WORK

This work extends Stein et al. [2018]. They introduce a smoothness
energy with higher-order boundary conditions whose minimizers
are biased less by the shape of the boundary than energies using
low-order boundary conditions such as zero Neumann. Our goal is
to extend their approach to curved surfaces. Section 5.3.1 mentions
that their work does not correctly account for curved surfaces, and
this shortcoming is addressed in this work.

2.1 Smoothing Energies

Smoothing energies are used for many applications in com-
puter graphics, image processing, machine learning, and more.
Quadratic smoothing energies are particularly interesting, since
they are easy to work with and fast to optimize [Nocedal and
Wright 2006]. The Laplacian energy is used for surface fairing
and surface editing [Botsch and Kobbelt 2004; Crane et al. 2013a;
Desbrun et al. 1999; Sorkine et al. 2004], for geodesic distance
computation [Lipman et al. 2010], for creating weight functions
used as coordinates in character animation [Jacobson et al. 2011;
Weber et al. 2012], data smoothing [Weinkauf et al. 2010], image
processing [Georgiev 2004], and other applications [Jacobson
et al. 2010; Sýkora et al. 2014].

Geometric energies that share some of the properties of our
Hessian energy have been studied in the past: In image processing,
Hessian-like energies are popular for their boundary behavior,
but their formulations in general do not extend to curved sur-
faces [Didas et al. 2009; Lefkimmiatis et al. 2011; Lysaker et al.
2003]. Similar energies are also used for data processing and
machine learning but are not discretized for polyhedral meshes
there [Donoho and Grimes 2003; Kim et al. 2009]. Wang et al.
[2015, 2017] explicitly enforce boundary conditions on a discrete

quadratic fourth-order energy to make minimizers of the energy
less dependent on the boundary shape but do not discuss any
continuous model corresponding to their method or which
equations their minimizers satisfy.

Stein et al. [2018] present a Hessian energy for triangle meshes;
however, minimizers of their discretization extended to R3 do
not fulfill the biharmonic equation, leading to artifacts that are
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discussed in detail in Section 7. Liu et al. [2015] explicitly en-
force higher-order boundary conditions on a smoothness energy
based on a fourth-order PDE. Their energy, however, is in general
not quadratic, and the boundary conditions are different than the
ones presented in this article, as they are missing the as-linear-as-
possible property.

A special case of a quadratic smoothness energy is the Dirichlet
energy, which solves the harmonic equation −Δu = 0, a simpler
version of our biharmonic equation Δ2u = 0. The Dirichlet energy
can be used, for example, to create smooth character deformations
[Baran and Popovic 2007; Joshi et al. 2007; Weber et al. 2007] and
for image processing [Levin et al. 2004]. While the Dirichlet en-
ergy has advantages, such as a discrete maximum principle, which
is preserved in some discretizations [Wardetzky et al. 2007], there
are disadvantages due to the energy being first-order: Because of
reduced freedom around constraints, minimizers fail to be smooth,
which can lead to artifacts when applied to shape deformation
[Jacobson et al. 2011, Figure 9] or worse results in image process-
ing [Peter et al. 2016]. Higher-order smoothness energies, such as
the ones derived from the biharmonic equation, are better at fit-
ting to existing data and tend to distort results less [Georgiev 2004;
Jacobson et al. 2011, 2012; Weber et al. 2012]. Additionally, the
Dirichlet energy does not admit higher-order boundary conditions
(unlike biharmonic energies), which makes it more difficult to use
as a smoothing energy without boundary bias.

2.2 Generalizing the Hessian Energy to Curved Surfaces

A main theme in our work is the difficulty of generalizing expres-
sions formulated on flat domains to curved surfaces. The presence
of curvature will result in an additional term in the definition of our
energy, which is absent in the planar Hessian energy of Stein et al.
[2018]. This mirrors many other areas of geometry where, with
the introduction of curvature, properties of flat domains cease to
apply.

One such example of curvature making calculations more elab-
orate is parallel transport. While parallel transport of vectors is
trivial on flat surfaces, this is no longer true for curved surfaces. In
the presence of curvature, the parallel transport of a vector along
a closed curve might result in a different vector than the initial
one [Petersen 2006, pp. 156–157]. The difficulties that this phe-
nomenon introduces to applications are discussed, for example,
by Bergou et al. [2008]; Crane et al. [2010]; Polthier and Schmies
[1998]; Ray et al. [2009]. Our discretization method simplifies the
treatment of parallel transport by employing linear finite element
basis functions that are only supported on two adjacent trian-
gles. Since this necessitates discontinuous basis functions, this ap-
proach is less common.

Another instance of difficulties arising from the curved setting
occurs in the numerical analysis of finite element methods. To ap-
ply standard finite element methods to curved surfaces, the dis-
cretization has to account for the curvature of the surface. For
the case of the Poisson equation, for example, this can be either
achieved by inscribing all the vertices on the limit surface while
imposing triangle regularity conditions [Dziuk 1988] or by de-
manding a certain kind of convergence of the vertices as well
as the normals of the mesh [Hildebrandt et al. 2006; Wardetzky

2006] together with specific triangle regularity conditions. Simi-
larly, in some of our own numerical experiments, we require ver-
tex inscription and the triangle regularity condition to achieve
convergence.

2.3 Discretization of the Vector Dirichlet Energy

An important part of the discretization of our curved Hessian en-
ergy is the discretization of the vector Dirichlet energy 1

2

∫
Ω
∇v :

∇v dx , where ∇ is the covariant derivative. The problem of dis-
cretizing the covariant derivative for surfaces in general, and the
vector Dirichlet energy on surfaces in particular, are active areas of
research. Knöppel et al. [2013] provide a finite element discretiza-
tion of the vector Dirichlet energy that places the degrees of free-
dom on mesh vertices. This discretization is used to design direc-
tion fields. A different discretization, reminiscent of finite differ-
ences, can be found in the work of Knöppel et al. [2015], where
it is used to compute stripe patterns on surfaces. The same dis-
cretization is also used by Sharp et al. [2018] to compute the par-
allel transport of vectors. The work of Sharp et al. [2018] also fea-
tures the Weitzenböck identity that we use to derive the natural
boundary conditions of our Hessian energy: They use it to con-
struct a Dirichlet energy on the covector bundle. Liu et al. [2016]
discretize the covariant derivative using the notion of discrete con-
nections. They use it to improve the quality of the vector fields pro-
duced by Knöppel et al. [2013] and provide some evidence of con-
vergence. Other examples of discretizations of the covariant deriv-
ative include Azencot et al. [2015], who compute the directional
derivatives of each of the vector field’s component functions, and
Corman and Ovsjanikov [2019], who leverage a functional repre-
sentation to compute covariant derivatives.

To simplify computation, we propose an alternative discretiza-
tion of the vector Dirichlet energy. We use the scalar Crouzeix-
Raviart finite element, the “simplest nonconforming element for
the discretization of second order elliptic boundary-value prob-
lems” [Braess 2007, p. 109]. It was first introduced by Crouzeix and
Raviart [1973] and has become a very popular finite element for
the nonconforming discontinuous Galerkin method. It is known
to converge for the scalar Poisson equation in R2. Unlike the dis-
cretizations mentioned above, the degrees of freedom are placed on
the mesh edges. The Crouzeix-Raviart finite element has been pop-
ular in computer graphics applications such as the works of Bergou
et al. [2006]; Brandt et al. [2018]; English and Bridson [2008];
Vaxman et al. [2016, Section 4.2].

Crouzeix-Raviart elements are simpler than the finite elements
of Knöppel et al. [2013], but they come at a cost: The basis func-
tions are discontinuous, and the method cannot be used for ap-
plications where the vectors have to live on vertices. In our ap-
plication, the vector-valued functions are only intermediates, so
we have more freedom in choosing their discretization and to put
vectors on edges.

The discretization of one-forms using the Crouzeix-Raviart fi-
nite element presented in this work is closely related to other
generalizations of the Crouzeix-Raviart element to vector- and
differential-form-like quantities such as those present in the work
of Wardetzky [2006] and those discussed in the survey of Brenner
[2015].
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3 SMOOTHNESS ENERGIES

A classical smoothness energy for a surface Ω ⊆ R3 is the Lapla-

cian energy with zero Neumann boundary conditions. When using
this method, one solves the optimization problem

argmin
u

1

2

∫
Ω
|Δu |2 dx

∂u

∂n

����∂Ω
= 0

︸�����������������������������������︷︷�����������������������������������︸
EΔ2 (u )

,
(2)

where Δ is the Laplace-Beltrami operator, and ∂u
∂n
|∂Ω is the nor-

mal derivative at the boundary. ∂u
∂n
|∂Ω = 0 is the zero Neumann

boundary condition. In practice, when minimizing this energy by
directly discretizing it and then optimizing the resulting quadratic
form, the boundary conditions manifest as an implicit penalty on
the gradient of the function at the boundary during optimiza-
tion. We will refer to the whole optimization problem with zero
Neumann boundary conditions by EΔ2 . Minimizers of the Lapla-
cian energy solve the biharmonic equation Δ2u = 0. This leads to
natural-looking, smooth results on the interior.1 The energy is easy
to discretize even for meshes that are non-planar using methods
such as the mixed finite element method (FEM) [Jacobson et al.
2010]. Using this method, the zero Neumann boundary condition
does not need to be imposed on top of the discretization; it is sim-
ply “baked in” by squaring the classical cotan Laplacian. The cotan
Laplacian is also known as the Lagrangian linear FEM for the Pois-
son equation (it goes back to Duffin [1959] and MacNeal [1949],
and its convergence for the Poisson equation was shown by Dziuk
[1988]).

The minimizers of EΔ2 , however, are biased by the shape of
the boundary. Their isolines are significantly distorted near the
domain boundary: They are perpendicular to it, as they have
to fulfill the zero Neumann boundary conditions (as-constant-as-

possible). Simply removing the zero Neumann boundary condi-
tions and minimizing the Laplacian energy without any bound-
ary conditions is not a good alternative. Minimizations without
explicit boundary conditions lead to natural boundary conditions.
The natural boundary conditions of the Laplacian energy are too

permissive [Stein et al. 2018, Figure 3]. This behavior is one of the
motivations for the Hessian energy of Stein et al. [2018]. It is formu-
lated as the following minimization problem. For a surfaceU ⊆ R2,

argmin
u

1

2

∫
U

Hu : Hu dx

︸����������������︷︷����������������︸
E

H
2 (u )

, (3)

where Hu is the 2 × 2 Hessian matrix of u, and A : B = tr (Aᵀ
B).

Minimizers of this energy solve the biharmonic equation in R2. Its
natural boundary conditions lead to as-linear-as-possible behavior
on the boundary. This makes minimizers less biased than the zero
Neumann boundary condition.

Stein et al. [2018] demonstrate the benefits of the natural bound-
ary conditions of the Hessian energy with applications for curved

1Of course, simply minimizing Equation (2) results in the zero function. However,
when combined with additional Dirichlet boundary conditions, this gives a nontriv-
ial result for the biharmonic equation Δ2u = 0, and, when combined with the addi-
tional energy term

∫
Ω

uf dx it gives a result for the biharmonic Poisson-type equa-

tion Δ2u = f .

Fig. 2. Smoothing a step function (left) on a surface using the method of

Stein et al. [2018] (middle) does not correctly account for the curvature

of the surface, leading to crooked isolines. Our curved Hessian energy

E (right) correctly accounts for curvature and does not suffer from such

problems.

surfaces in R3 as well. Their discretization of the planar Hessian
energy for curved surfaces is achieved by extending every opera-
tor involved in the R2 discretization to three dimensions. This ap-
proach (the discretization, as well as the smooth formulation) does
not account for the curvature of surfaces correctly, and its mini-
mizers do not solve the biharmonic equation on curved surfaces
[Stein et al. 2018, Section 5.3.1]. We refer to this generalization as
the planar Hessian energy E

H
2 when talking about it in the con-

text of curved surfaces. This planar Hessian energy is suitable for
some applications but leads to global deviations from the natural-
looking isolines produced by EΔ2 (u) (see Figure 1) or an implemen-
tation of the Hessian energy that does account for curvature (see
Figure 2) in others.

4 WARM-UP: THE DIRICHLET ENERGY ON CURVED

SURFACES

As a warm-up, we consider the simple and well-known Dirichlet
energy: It is easy to generalize to curved surfaces. We will perform
the calculation for this generalization here. The calculation is well-
known, and this didactic exercise will inform our generalization of
the planar Hessian energy to curved surfaces later.

4.1 From the Energy to the PDE

Let Hk denote the Sobolev space of real-valued functions with k
weak derivatives in L2. The Dirichlet energy for domains U ⊆ R2

is defined, for u ∈ H2 (U ), as2

E
∇2 (u) :=

1

2

∫
Ω
∇u · ∇u dx , (4)

2We choose to formulate this energy for u ∈ H 2 (U ), although it is well-defined for
u ∈ H 1 (U ), since we will continue our calculations with the same u right away, and
we will need additional smoothness.
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where ∇ is the vector of partial derivatives of u, ∇u =
(∂xu ∂yu)ᵀ, the normal two-dimensional gradient in R2.

Minimizers of the Dirichlet energy solve the Laplace equation
[Evans 2010]. Indeed, consider the variation

u → u + hv u,v ∈ H2 (U ) (5)

for some h > 0. Since our functions are in the Sobolev function
space H2, we can differentiate them at least twice. Plugging the
variation into E

∇2 (u), differentiating with respect to h, and then

setting h = 0, we can see that a minimizer u must fulfill the equa-
tion ∫

U
(∂iu) (∂iv ) dx = 0 ∀v ∈ H2 (U ),

where ∂∗ is a partial derivative, and summation over repeated in-
dices is implied. This is a standard technique of variational calcu-
lus. Using integration by parts (where n is the boundary normal)

0 =

∫
U

(∂iu) (∂iv ) dx

=

∫
∂U

(∂iu)v ni dx −
∫

U
(∂i∂iu)v dx .

(6)

Here, a boundary term appeared as a result of integration by parts.
The second term of the second line corresponds to the standard
two-dimensional planar Laplacian Δ = ∇ · ∇, and so we conclude
that minimizers of the energy E

∇2 (u) fulfill the two-dimensional

planar Laplace equation −Δu = 0. The additional boundary term,
the first term of the second line in Equation (6), determines the nat-

ural boundary conditions of the Dirichlet energy. They are called
natural boundary conditions, because they naturally emerge from
solving the variational problem over the set of all functions with-
out explicitly enforcing additional boundary conditions. In this
case, we can see that the natural boundary conditions are zero-
Neumann boundary conditions:

∂iu ni = ∇u · n = 0 on ∂U . (7)

4.2 From the PDE to a New Energy

We now generalize the Dirichlet energy to curved surfaces. This
means we are looking for an energy whose minimizers solve a
curved version of the Laplace equation and fulfill a curved version
of the natural boundary conditions (7). While we were able to write
the calculations in terms of coordinates in the flat setting, this is
much harder to do in the curved setting. This is why we perform
calculations in the curved setting in a coordinate-free fashion.

The curved analog of the planar Laplace equation is Δu = 0,
where Δ is the Laplace-Beltrami operator [Jost 2011, Chapter 3].
It holds for a function u ∈ H2 (Ω) (where Ω is a compact surface
immersed in R3) that

Δu = δdu, (8)

where d is the exterior derivative and δ is the codifferential, the
(formal) dual of the exterior derivative under integration by parts.
For planar surfaces, the Laplace-Beltrami operator Δ corresponds
to −Δ.

We start with an integral formulation of the Laplace equation
and then use integration by parts. For all v ∈ H2 (Ω) it must hold

that

0 =

∫
Ω

(Δu)v dx =

∫
Ω

(δdu)v dx

= −
∫
∂Ω
〈du,n〉 v dx +

∫
Ω

(du) · (dv ) dx ,

where the natural (metric-independent) pairing of one-forms and
vectors is indicated using the angle bracket, and · is the dot product
of one-forms.

Using the definition of the gradient ∇ on curved surfaces,
∇u ·w := 〈du,w〉 for a vector w (where · is the dot product of vec-
tors and the angle bracket 〈·, ·〉 denotes the pairing of a one-form
with a vector) [Jost 2011, (3.1.16)], we can write

0 = −
∫
∂Ω
∇u · n v dx +

∫
Ω
∇u · ∇v dx . (9)

Walking back through the variation from Equation (5), this now
motivates the definition of a curved Dirichlet energy

E∇2 (u) :=
1

2

∫
Ω
∇u · ∇u dx . (10)

We have shown that minimizers of this energy solve the curved
Laplace equation, and by the boundary term in Equation (9) it is
also clear that minimizers fulfill a curved zero Neumann boundary
condition:

∇u · n = 0 on ∂U . (11)

Thus, we have successfully generalized the Dirichlet energy to
curved surfaces. Even though we went through the work of us-
ing differential geometric operators, we ended up with something
quite similar to what we started with, but with ∇ replaced by ∇.
For more complicated energies this will no longer be the case.

5 THE HESSIAN ENERGY ON CURVED SURFACES

We now seek to derive a smooth Hessian energy on surfaces that
generalize the Hessian energy in R2 while ensuring that minimiz-
ers of the energy solve the biharmonic equation. This will follow
the approach we used in Section 4 to generalize the planar Dirich-
let energy to curved surfaces.

5.1 From the Energy to the PDE

For the planar Hessian energy E
H

2 it is a straightforward calcula-

tion to prove that minimizers fulfill the biharmonic equation. This
calculation is mentioned, for example, in Stein et al. [2018, Sec-
tion 4], and we will repeat it here for convenience. Our setting is
a compact planar domainU ⊆ R2. The linear equation fulfilled by
minimizers of Equation (3) derived with standard variational cal-
culus is: find u ∈ H4 (U ) such that

∫
U

(∂i∂ju) (∂i∂jv ) dx = 0 ∀v ∈ H4 (U ), (12)

where, as before, ∂∗ is a partial derivative, and summation over
repeated indices is implied. Using integration by parts (where n is
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the boundary normal), we know that

0 =

∫
U

(∂i∂ju) (∂i∂jv ) dx

=

∫
∂U

(∂i∂ju) (∂jv )ni dx −
∫

U
(∂i∂i∂ju) (∂jv ) dx

=

∫
∂U

(∂i∂ju) (∂jv )ni − (∂i∂i∂ju)vnj dx

+

∫
U

(∂j∂i∂i∂ju)v dx .

(13)

Since all partial derivatives commute in the plane, in the very

last term, we can write ∂j∂i∂i∂ju = ∂i∂i∂j∂ju = Δ
2
u. As a result,

we can conclude that minimizers of the Hessian energy satisfy the
biharmonic equation with some additional boundary terms. This
commutation will not be that easy for curved surfaces.

After some rearranging, these boundary terms can be seen to
imply the natural boundary conditions

n
ᵀ

Hu n = 0 on ∂U

∇Δu · n + ∇ t
ᵀ

Hu n · t = 0 on ∂U ,
(14)

where n is the normal vector at the boundary, and t is the tangen-
tial vector of the (oriented) boundary. A derivation of Equation (14)
can be found in the work of Stein et al. [2018, Section 4.3].

A naive approach to a Hessian energy for curved surfaces.

Since our goal is to generalize the Hessian energy for surfaces, it
seems natural to simply replace the planar Hessian Hu with an
analog for curved surfaces and minimize this generalization of the
Hessian energy. Unfortunately, this will not work: The resulting
minimizers of such an energy will not solve the biharmonic
equation.

Consider a compact surface Ω immersed in R3. We define the
Hessian of a function on a curved surface [Lee 1997, p. 54]

Hu := ∇du, (15)

where ∇ applied to one-forms is the covariant derivative of differ-
ential forms and d is the exterior derivative. It might seem reason-
able to define a generalized Hessian energy as

EH2 (u) :=
1

2

∫
Ω

Hu : Hu dx , (16)

where : now denotes the contraction of all indices. The associated
variational equation at a stationary point is∫

Ω
(∇du) : (∇dv ) dx = 0 ∀v ∈ H4 (Ω).

We can already see that we will not be able to repeat our approach
from Equation (13): There is no way to easily commute ∇ and d, as
it was possible in the flat setting with coordinate-wise calculation,
and thus, we ca not perform the same simple calculation to show
that minimizers of EH2 solve the biharmonic equation.

5.2 From the PDE to a New Energy

Instead, echoing Section 4.2, we derive an energy whose minimiz-
ers fulfill the boundary conditions (14) and also solve the bihar-
monic equation. We start with the integrated biharmonic equation
using the Hodge Laplacian operator Δ = dδ + δd for forms on sur-
faces, which degenerates to the Laplace-Beltrami operator δd for

Fig. 3. We solve the Poisson-like problem Δ2u = f using the Hessian en-

ergy with (right, E) and without (center, E
H2 ) curvature term. The solution

for EΔ2 is provided as a reference solution (left). We see that the solution

for E corresponds to the reference solution, since its minimizers solve the

biharmonic equation, while the solution for E
H2 does not.

zero-forms (scalar functions) and which corresponds to the stan-
dard Laplacian for functions in the plane. It holds that

0 =

∫
Ω

(ΔΔu)v dx =

∫
Ω

(δdδdu)v dx

= −
∫
∂Ω
〈dδdu,n〉 v dx +

∫
Ω

(dδdu) · (dv ) dx ,
(17)

where n is the boundary normal vector, and we used the fact that
the exterior derivative d is dual to the codifferential δ .

Now, we utilize the Weitzenböck identity. It relates the Hodge-
Laplacian Δ = dδ + δd and the Bochner Laplacian ΔB = ∇∗∇,
where ∇∗ is the (formal) dual covariant derivative. The formal
dual is defined via integration by parts on a closed manifold M ,∫

M
X : ∇ω dx =

∫
M
∇∗X · ω dx . It holds that

Δ = ∇∗∇ + Ric, (18)

where Ric is the Ricci curvature tensor [Petersen 2006, Chapter
7]. This formula dates back to Bochner [1946] and Weitzenböck
[1885]. It is used, together with the fact that d2 = 0, to continue
our calculation from Equation (17).∫

Ω
(dδdu) · (dv ) dx =

∫
Ω

((dδ + δd)du) · (dv ) dx

=

∫
Ω
∇∗∇du

) · (dv ) + Ric(du, dv ) dx

= −
∫
∂Ω

n
i (∇du)i j · (dv ) j dx

+

∫
Ω

(∇du) : (∇dv ) + Ric(du, dv ) dx ,

(19)

where indices have been added to make clear which contraction
happens in which index.

The term involving the Ricci curvature tensor Ric can be further
simplified. For the case of two-dimensional manifolds, we know
that we can write the Ricci curvature tensor as simply

Ric = κд, (20)

where κ is the Gaussian curvature, i.e., half the scalar curvature
[Petersen 2006, pp. 38–41].
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Putting Equations (17), (19), and (20) together then gives

0 = −
∫
∂Ω
〈dδdu,n〉 v + n

i (∇du)i j · (dv ) j dx

+

∫
Ω

(∇du) : (∇dv ) + κ du · dv dx .

(21)

This is, in the case of a planar surface (for which it holds κ = 0),
exactly the term from our earlier calculation with the planar Hes-
sian energy from Equation (13). Here, we also see why minimiz-
ers of the naive Hessian energy EH2 do not solve the biharmonic
equation on curved surfaces: The energy EH2 lacks the curvature
correction term involving κ (see Figure 3).

The result from Equation (21) motivates the definition of the
following curved Hessian energy:

E (u) :=
1

2

∫
Ω

(∇du) : (∇du) + κ |du |2 dx . (22)

Minimizers of the energy E solve the biharmonic equation on a
surface in R3, unlike minimizers of EH2 .

It remains to check what the natural boundary conditions of E
are. We can find them by checking which biharmonic functions u
fulfill the boundary terms

0 =

∫
∂Ω
〈dδdu,n〉 v + n

i (∇du)i j · (dv ) j dx ∀v ∈ H4 (Ω).

We use the same strategy as Stein et al. [2018, Section 4.3]: test-
ing with specific subsets of all valid test functions. These subsets
are purpose-built to expose the natural boundary conditions of the
energy. First, we test with all functionsv that vanish on the bound-
ary, and thus only have nonzero differential in the normal direction
(v = 0, 〈dv,w〉 = дn ·w for some smooth д). It follows that

n
i (∇du)i j n

j = 0 on ∂Ω, (23)

i.e., the (curved) Hessian of the solution is linear across the bound-
ary; the second derivative of the function across the boundary is
zero. This mirrors the “as-linear-as-possible” condition of Stein
et al. [2018, (17)].

Using the same strategy of testing the expression with a specific
subset of functions to expose boundary behavior, if we plug in all
functions that have zero differential in the normal direction at the
boundary (〈dv,n〉 = 0), we get

〈dδdu,n〉 + δ∂Ω, jı∂Ω n
i (∇du)i j = 0 on ∂Ω, (24)

where ı∂Ω is the natural projection of one-forms on the surface to
one forms on the boundary, and the subscript on the codifferential
implies that this is the codifferential of the boundary manifold in
the index j. This mirrors the condition from Stein et al. [2018, (18)].
In fact, the two natural boundary conditions (23) and (24) of the
Hessian energy are exactly the ones of the planar Hessian energy
if the domain is a planar surface.

The Hessian energy natural boundary conditions. Like the natu-
ral boundary conditions of E

H
2 from Stein et al. [2018, Section 4.3],

the natural boundary conditions (23) and (24) of the Hessian en-
ergy E guarantee that its minimizers

• continue linearly across the boundary in the normal direction
(ni (∇du)i j n

j = 0), and

Fig. 4. Using the Laplacian energy EΔ2 (top) for scattered data interpola-

tion gives a result that is influenced by the boundary: Adding holes makes

the isolines near them bend towards the holes. Our Hessian energy E (bot-

tom) is less distorted at the holes and produces a very similar result without

and with holes.

• have limited variation along the boundary
(〈dδdu,n〉 + δ∂Ω, jı∂Ω (ni (∇du)i j ) = 0),

as discussed by Stein et al. [2018, Section 4.3]. Both boundary con-
ditions are fulfilled by minimizers of E in the absence of explicitly
enforced boundary conditions.

On planar surfaces, these boundary conditions mean that the
null space of the energy contains all linear functions, in contrast
to the Laplacian energy with zero Neumann boundary conditions
EΔ2 , whose null space only contains constant functions. On closed
surfaces, the null space of E and EΔ2 is the same: all constant
functions.

The natural boundary conditions of the Hessian energy have
a physical interpretation. Consider a deforming flat thin plate
where displacement is modeled by the function u. The plate is not
clamped or supported at the boundary in any way: It is a free plate.
Then the conditions (24) are the boundary conditions fulfilled by
u [Courant and Hilbert 1924, pp. 206–207]. These boundary condi-
tions go back at least as far as Rayleigh [1894, p. 355].

Its natural boundary conditions make the Hessian energy a good
choice for ignoring the boundary as much as possible while main-
taining biharmonic behavior everywhere away from the bound-
ary (see Figure 4, where they are contrasted with zero Neumann
boundary conditions).

6 DISCRETIZATION

We offer a discretization for the curved Hessian energy E derived
in Section 5. The approach presented here is a simple method using
only linear finite elements, intended to make the Hessian energy
easily accessible. There are, however, other conceivable ways to
discretize this energy, such as, for example, higher-order conform-
ing finite elements [Braess 2007, II.5].

6.1 Computing the Hessian Energy

Discretizing the Hessian energy E (22) as written would require
us to discretize functions that can be differentiated twice. To avoid
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Fig. 5. A scalar Crouzeix-Raviart basis function for the edge e (top left).

The parallel and perpendicular one-forms for the edge e , represented by

their dual vectors (top right). Crouzeix-Raviart functions and their sums

are, in general, discontinuous. Continuity is only guaranteed at edge mid-

points (bottom).

this complication, we use the mixed finite element method [Boffi
et al. 2013] by introducing an intermediate variable w = du and
formulate the problem of minimizing E as

argmin
u

1

2

∫
Ω

(∇w ) : (∇w ) + κ |w |2 dx , w = du . (25)

Using Lagrange multipliers to enforce the constraint w = du, we
can write the optimization problem as the saddle problem (where
our goal is finding a stationary point)

saddle
u,w,λ

1

2

∫
Ω

(∇w ) : (∇w ) + κ |w |2 dx

−
∫

Ω
λ · (w − du) dx .

(26)

We discretize the space of scalar functions (containing u) using
standard continuous, piecewise linear functions, which are a very
commonly used finite element. Definitions are found, for example,
in Braess [2007, II.5]. The basis of this discrete space consists of the
φi , i = 1, . . .n, sometimes called “hat functions” (see inset).

We write u = i uiφi , and we have the vector u =

(u1, . . . ,un )ᵀ.
The space of one-forms (containing

w) is discretized using Crouzeix-Raviart
one-forms (CROFs), which are described
in Section 6.2. The basis of this discrete
space are the functions ηi , i = 1, . . .m.
We write w =

∑
i wiηi , and we have the

vector w = (w1, . . . ,wm )ᵀ.
Using these discretizations, we can construct the one-form

Dirichlet matrix

Li j =

∫
Ω

(∇ηi ) : (∇ηj ) dx ,

Fig. 6. For the boundary of a continuous, piecewise linear surface (top)

there is no way to uniquely assign curvature at the boundary. The surface

can be extended in many different ways that yield different curvatures at

the boundary, examples leading to positive (bottom left), no (bottom center),

and negative (bottom right) curvature are shown.

the differential matrix

Di j =

∫
Ω
ηi · dφ j dx ,

the mass matrix

Mi j =

∫
Ω
ηi · ηj dx ,

and the curvature matrix

Ki j =

∫
Ω
κηi · ηj dx .

The matrix entries are provided in Appendix A.
Using these matrices, we write the discrete version of Equation

(26) as seeking a critical point of the expression

1

2
w
ᵀ (L + K ) w − λᵀ (Mw − Du) ,

for u ∈ Rn , w, λ ∈ Rm . Differentiating with respect to λ gives
Mw = Du. As M is invertible, we get the system

argmin
u

u
ᵀDᵀM−1 (L + K )M−1Du . (27)

This optimization problem can now be solved with a variety of
constraints or mixed with other energy terms, depending on the
application.

6.2 Crouzeix-Raviart One-forms

While there are multiple approaches to discretizing tangent one-
forms for triangle meshes, we choose to base our approach on
Crouzeix-Raviart finite elements (see Section 2 for a discussion).
The advantage of this approach is its simplicity. Crouzeix-Raviart
basis functions are only ever nonzero on two adjacent triangles,
so every basis function lives on an intrinsically flat domain: The
two triangles can be unfolded without distortion. This means that
our discretization will account for curvature correctly in the end,
without having to explicitly address issues like parallel transport
during construction.
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6.2.1 Introduction to Crouzeix-Raviart. The scalar Crouzeix-
Raviart basis function for the edge ei j is defined to be 1 on the
edge itself, −1 on the two vertices k, l opposite the edge, and linear
on the two triangles Ti jk ,Tjil [Braess 2007, p. 109]. For boundary
edges, only one triangle needs to be considered. As a result, it is
0 on the midpoints of the edges ejk , eki , eil , el j (see Figure 5, left).
The scalar Crouzeix-Raviart element is not continuous, except at
the midpoints of edges. This makes it a non-conforming element,
and if it is used in a Galerkin method, one speaks of the discontinu-
ous Galerkin method. Despite being nonconforming, it is known to
converge for certain problems, most notably the Poisson equation
in R2 [Braess 2007, III, Theorem 1.5].

6.2.2 One-forms. The scalar Crouzeix-Raviart element can be
used to define a finite element space for one-forms. At the midpoint
of every edge e of a flat triangle pair, the space of one-forms is

spanned by the two forms ω ‖e ,ω
⊥
e , such that

〈ω ‖e , te 〉 = 1, 〈ω ‖e ,ne 〉 = 0,

〈ω⊥e , te 〉 = 0, 〈ω⊥e ,ne 〉 = 1,
(28)

where ne is the (oriented) perpendicular vector of the edge e in
each triangle, te is the (oriented) tangent of the edge e , and the
angle bracket 〈·, ·〉 denotes the pairing of a form with a vector. See
Figure 5 (right) for an illustration. The definition ofω⊥e depends on
which triangle one is in, but only in an extrinsic way: In the intrin-
sic geometry of the triangle pair, the edge is completely flat, thus
the two covectors ω⊥e defined in each triangle are the same cov-

ector intrinsically. Because of this, both ω ‖e and ω⊥e can be easily
extended to the triangles adjacent to e : Since the triangle pair (or
the one triangle) is intrinsically flat, parallel transport along the
triangles is trivial, and we can easily extend the definition of ω⊥e
and ω ‖e to the interior of the triangles adjacent to e .

If be is the Crouzeix-Raviart basis function for the edge e , then
we define its two CROF basis function as

b ‖e := ω ‖ebe ,

b⊥e := ω⊥e be .
(29)

Fig. 7. The first nonzero eigenvector of the Laplacian energy EΔ2 (left),

the Hessian of Stein et al. [2018] (center), and the curved Hessian energy

E (right). The eigenvectors of EΔ2 and E look similar, since they both dis-

cretize the biharmonic energy. The method of Stein et al. [2018] visibly

disagrees.

Defined this way, CROFs have the correct notion of parallel
transport without having to explicitly account for it. Consider a
path γ through all edge midpoints of edges emanating from a ver-
tex v in a counterclockwise direction (see inset). We start with a
single tangent vector on the midpoint of one edge, corresponding
to a combination of two basis functions, and see what angle we
pick up when going around the vertexv using our basis functions.
We now go along the path γ , moving from
edge-to-edge by choosing successive basis
functions so the sum of the basis functions
from two adjacent edges is constant on the
shared triangle. Doing that corresponds ex-
actly to parallel transport on a cone mani-
fold: The tangential part of the vector at each edge does not change
extrinsically at all when crossing the edge along γ . The perpendic-
ular basis function jumps extrinsically: The angle between normal
vectors on each side of the edge is π minus the dihedral angle of
the edge. At the end of our journey along γ , when we are back at
our original edge, our starting vector picked up angle defect cor-
responding to the discrete curvature of the mesh. The CROF basis
functions have accounted for the discrete curvature of the mesh in
the sense of curvature on cone manifolds [Wardetzky 2006] with-
out having to explicitly account for parallel transport during the
construction of the basis functions.

Since every basis function is only supported on at most two tri-
angles, the matrices L,M,D,K will be sparse. The matrix M is di-
agonal, which makes it easy to invert. The matrix entries can be
found in Appendix A.

6.2.3 The Curvature Term. Special care needs to be applied
when computing the matrix K . The Gaussian curvature κ of an
intrinsically flat pair of triangles would appear, at first, to be 0.
But actually, the Gaussian curvature of a polyhedron is entirely
concentrated on its vertices (and is zero anywhere else). The

Fig. 8. Computing the fourth eigenvalue of the Hessian energy E on an

ellipse that was distorted in the third dimension (bottom left). Both refine-

ment through Loop subdivision and projection to a given smooth surface,

as well as generating a planar mesh of the desired resolution with regu-

lar triangles at every step and then projecting to a given smooth surface,

show convergence to the highest resolution. For simple mesh generation

without triangle regularity, no convergence is observed.
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integrated Gaussian curvature at a vertex is also known as the
angle defect

κv := 2π −
f ∈N (v )

θ
f
v , (30)

where the sum is over all faces f in the set of faces containing

the vertex v , and θ
f
v is the angle at vertex v in face f [Grinspun

et al. 2006]. The idea of angle defects is very old: It goes back all
the way to at least Descartes, c. 1630, who showed that the sum
of all angle defects of a polyhedron with spherical topology is 4π
[Federico 1982].

We thus interpret the Gaussian curvature of the polyhedron as
a collection of delta functions at every vertex, i.e.,

κ :=
v

κvδv , (31)

where δv is the Dirac delta. This means that the integral of κд,
whereκ is the Gaussian curvature andд is any continuous function
over the triangle Ti jk with vertices i, j,k , can be written as:∫

Ω
κд dx =

v

κvд(v ). (32)

If the function д itself is only continuous in each triangle, then we
need to distribute the contribution of each triangle accordingly. Let
sv,f > 0 for each vertex v and each face f in the neighborhood
of v be coefficients that average the contribution of each face at a
vertex, i.e., the sum of the sv,f over all faces f in the neighborhood
of v is one. Then,∫

Ω
κд dx =

v

κv

f ∈N (v )

sv,f дf (v ),

where дf is the function д in the triangle f and N (v ) is the set
of all faces in the neighborhood of v . We choose to average by
tip angle, which corresponds to an integral along a small circle
around the vertex. We did not explore other reasonable choices,

such as averaging by face area. This formula is used to compute
the entries of K ; they are given in Appendix A.

One remaining issue with the angle defect as Gaussian curva-
ture is that the angle defect is not defined at boundary vertices.
The problem stems from the fact that the notion of curvature at
the boundary of meshes (continuous, piecewise linear surfaces) is
not in and of itself meaningful: By choosing to extend the surface
in different ways at the boundary, we can achieve any arbitrary
Gaussian curvature, as can be seen in Figure 6. We choose to set
the angle defect to 0 for all boundary vertices, thereby choosing the
most developable (intrinsically linear) extension of all possible ex-
tensions. This fits in with our as-linear-as-possible boundary con-
ditions but differs from some conventions of angle defect at the
boundary, which define it as the sum of tip angles subtracted from
π (which is a discretization of geodesic curvature).

6.3 Observed Numerical Convergence

Using our CROF discretization of the Hessian energy to solve a
variety of problems, we observe convergence on the order of the
average edge length h (Figure 9). As can be seen in Figure 8, a
successful strategy for obtaining convergence is making sure that
the vertices are contained in a smooth surface, and then either
refining the mesh through Loop subdivision [Loop 1987] with a
fixed smooth boundary or generating meshes that fulfill the tri-
angle regularity condition: The ratio of circumcircle to incircle of
each triangle (the triangle regularity) is bounded from above and
below independent of refinement level. This condition is standard
for finite elements [Braess 2007, Definition 5.1 (uniform triangula-
tion)]. The order of convergence and the triangle regularity condi-
tion correspond to the discretization of the Laplacian energy with
zero Neumann boundary conditions, EΔ2 , with mixed FEM in the
flat setting [Jacobson et al. 2010; Scholz 1978]. However, we do not
have a proof of convergence for our method to confirm this con-
vergence rate.

Fig. 9. Convergence plots for three different problems, all errors are L2 errors. Boundary value problem with known exact solution on a flat annulus mesh

refined by loop subdivision with fixed smooth boundary; both our Hessian E and the planar Hessian E
H

2 of Stein et al. [2018] are shown (even though, for

planar domains, the smooth curved and planar Hessian energies coincide, the different discretizations result in a different error) (left). Error in calculating

the lowest eigenvalues of the operator associated with E on the sphere with icosahedral meshing, with vertices of the mesh inscribed in the smooth limit

sphere (center). Solving an interpolation problem and computing the error with respect to the highest-resolution solution, refined by loop subdivision with

fixed z-coordinate at the boundary (right).
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Fig. 10. The six lowest eigenvalues of the Hessian energy discretized with

CROF on the cheeseman (top). As expected, there are only three zero eigen-

values. The three lowest eigenvectors (bottom) are the linear functions,

which correspond to the smooth Hessian energy.

Our method correctly reproduces the first eigenvector of the
Laplacian energy on closed surfaces in the experiment proposed
by Stein et al. [2018, Section 5.3.1] on a refined mesh (Figure 7).
As mentioned in Stein et al. [2018, Section 4.5], discretizations
can sometimes exhibit spurious modes in the kernel of the energy,
which lead to wrong solutions. We have not proved that this does
not happen for our CROF discretization of the Hessian energy, but
we have not observed it in our experiments (see Figure 10 for the
cheeseman example domain mentioned in Stein et al. [2018, p. 7]).

Further experiments can be found in Appendix B: Figures 15
and 16 feature additional convergence experiments confirming the
order of convergence, Figure 17 examines the dependence of the
result on the mesh further, and Figure 18 compares our implemen-
tation of the Hessian energy with other Hessian energies in the
flat case.

7 APPLICATIONS

We implement the optimization of Equation (27) by constructing
a sparse matrix in C++ using Eigen [Guennebaud et al. 2010] and
then manipulating and optimizing it in MATLAB [2019] with mex.
For linear equality constraints, we use the optimizer of Jacobson
et al. [2019a, min_quad_with_fixed] via the library of Jacobson
[2019]. Using this approach, complicated constraints are also pos-
sible, such as linear and quadratic inequality constraints for more
complicated applications. Since the Hessian energy is a quadratic
energy, optimizers using the interior point method (such as the
solver of Andersen and Andersen [2000]) are appropriate.

7.1 Scattered Data Interpolation

Like any smoothness energy, the Hessian energy can be used for
scattered data interpolation. One solves the following minimiza-
tion problem, for some given interpolation data u (xi ) = fi , i =
1, . . . ,n

argmin
u

E (u) u (xi ) = fi , i = 1, . . . ,n. (33)

As long as at least three interpolation points are provided, this
problem has a solution. This is because the null space of the

Fig. 11. Scattered data interpolation problem solved on a closed surface

(bottom row) and the gradient of the solution (top row). EΔ2 (left) provides

a satisfying result—isolines are relatively evenly spaced, and the gradient

is uniform. Stein et al. [2018] (center) has large variation in isoline distance

(see arrows), and the gradient of the solution is less uniform. E (right) repli-

cates the behavior of EΔ2 .

Hessian energy can have at most all linear functions in it, which
is a three-dimensional space, and the null space of the Laplacian
energy with zero Neumann boundary conditions contains only
constant functions, which is a one-dimensional space [Stein et al.
2018].

The choice of smoothness energy will greatly influence the qual-
ity of the result. The Laplacian energy with zero Neumann bound-
ary conditions, EΔ2 , is a popular method, since it produces smooth,
evenly spaced isolines, which results in natural-looking interpola-
tion and extrapolation. This is because the gradient of the solution
is relatively uniform across the surface. As can be seen in Figure
11, our curved Hessian energy E reproduces the desirable behavior
of the Laplacian energy for surfaces without boundary. The imple-
mentation of the planar Hessian energy E

H
2 for curved surfaces by

Stein et al. [2018] fails to do so: The distance between the isolines
varies greatly, for example on the legs. The isolines also experience
significant bunching at the rump and back of the horse.

However, the Laplacian energy is known to produce bias near
domain boundaries due to its low-order boundary conditions: Iso-
lines of solutions bend so they can be perpendicular to the bound-
ary. This was one of the motivations of Stein et al. [2018], and thus
their planar Hessian energy minimizes the influence of the bound-
ary by employing natural boundary conditions that make the func-
tion as-linear-as-possible. Figure 4 shows that our Hessian energy
E does not show the bias at the boundary that the Laplacian en-
ergy does: this is because it also has as-linear-as-possible natural
boundary conditions.

For this application, our Hessian energy E combines the two
worlds of Laplacian energy and planar Hessian energy to produce
a smoothness energy that is suited for scattered data interpolation
on curved surfaces while unbiased by the presence of boundaries
(Figure 1, Figure 12). This is helpful if the boundaries of the sur-
face do not have any physical meaning: Perhaps they are the result
of a faulty laser scan, or perhaps surface information is simply not
available there. The Hessian energy’s natural boundary conditions
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Fig. 12. Solving an interpolation problem on a Viking helmet. Our goal here is to preserve the dashed line (which is almost a geodesic) connecting three

data points of the same value (far left). Using EΔ2 distorts the line near the boundary, since the zero Neumann boundary conditions make the isolines

perpendicular to the boundary (center left). Using the planar Hessian of Stein et al. [2018] still leads to some distortion due to not accounting for the

surface’s curvature (center right). Our Hessian energy E correctly accounts for the curvature of the surface and does not suffer from bias at the boundary,

interpolating the dashed line as desired (far right).

make a best guess everywhere the data are missing by extrapolat-
ing the function linearly across the boundary.

7.2 Data Smoothing

Another popular application for smoothness energies is the epony-
mous data smoothing. This can be used to simply smooth arbitrary
data, to denoise noisy data, or to smooth the surface itself via sur-
face fairing. One solves the following Helmholtz-like optimization
problem: given an input function f to be smoothed,

u = argmin
u

E (u) + α

∫
Ω

( f − u)2 dx , (34)

where the parameter α > 0 is a trade-off between the input data
and the smoothness of the output data.

Figure 2 shows our Hessian energy E applied to such a smooth-
ing problem. Correctly accounting for curvature by modeling a
curved biharmonic equation using the Laplace-Beltrami operator
is important here: The figure shows that the approach of Stein
et al. [2018] causes distortion in high-curvature regions when
smoothing a step function. In this figure the smoothing parameters
are chosen to give visually similar amounts of smoothing, which
means a slightly larger parameter α for the method of Stein et al.
[2018].

It is natural to ask why the fact that minimizers of E
H

2 do

not solve the biharmonic equation leads to worse results when
smoothing the step function of Figure 2, but not for the smoothing
problems solved by Stein et al. [2018, Figure 1, Figure 11, Figure 13].
These examples all smooth very noisy functions with a lot of vari-
ation everywhere on the surface. The step function is the opposite
of that: the variation is much more sparse. This allows the error
of not accounting for curvature correctly to manifest. In Figure 13
such a denoising problem is solved using the energies EΔ2 (with
zero Neumann boundary conditions), E

H
2 (with the implementa-

tion of Stein et al. [2018]), and E. It can be clearly seen that EΔ2 ,
the Laplacian energy with zero Neumann boundary conditions, is
biased by the boundary, and the isolines near the boundary are
distorted so they can be normal to it. The denoised solution using
the Hessian energy E does not suffer from this, and the isolines
ignore the boundary. In regions far away from the boundary it can

be observed that the result of denoising with the Hessian energy E
matches the Laplacian energy with zero Neumann boundary con-
ditions EΔ2 , while the planar Hessian energy E

H
2 differs.

The smoothing problem can also be used to smooth the geom-
etry of the surface itself if the input data f from Equation (34) is
the vertex positions in each coordinate, and the output data u is
the new vertex positions. If such a smoothing operation is applied
repeatedly, then one has a smoothing flow. Figure 14 shows our
Hessian energy E applied to such a problem. While the method of
Stein et al. [2018] can lead to some artifacts due to not account-
ing for curvature, this does not happen with our curved Hessian
energy E.

8 CONCLUSION

In this work, we have introduced a smoothing energy for curved
surfaces, the Hessian energy. Its minimizers solve the biharmonic
equation, and it exhibits the as-linear-as-possible natural bound-
ary conditions in the curved setting that the planar Hessian energy
of Stein et al. [2018] exhibits in the flat setting. This Hessian en-
ergy can be used in many applications where smoothness energies
are required, these smoothness energies should be unbiased by the
boundary, and it is crucial that the minimizers of the energy solve
the biharmonic equation.

8.1 Limitations

We have no numerical analysis proof for the convergence of our
discretization method. We also do not provide any theoretical anal-
ysis of the spectrum of our discrete operator. Both are needed to
make this discretization reliable and to improve understanding of
the method, where it works, and where it does not.

8.2 Future Work

One interesting avenue for future work is to explore alternate
discretizations. Higher-order versions of Crouzeix-Raviart basis
functions, such as cubic or quintic basis functions, would be an in-
teresting potential improvement. Alternatively, instead of choos-
ing the intermediate variable w = dv for the mixed formulation
as in Equation (25), a discretization where w = ∇dv sounds very
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Fig. 13. Denoising a function (far left) via smoothing. The Hessian energy

E (far right) does not show the bias at the boundary that the Laplacian

energy with zero Neumann boundary conditions EΔ2 (center right) does,

indicated by the orange circle. Away from the boundary, the results for E

and EΔ2 agree, while the method of Stein et al. [2018] (center left) differs,

indicated by the orange arrows.

promising. This would more closely mirror the mixed formulation
of Stein et al. [2018]. The CROF approach can be used to define
a basis for tensors in the same way as is done for vectors in Sec-
tion 6.2, based on the parallel and the perpendicular vector at each
edge. Using other finite elements to discretize the space of one-
forms could also produce new methods. Moreover, future work
could explore discretizations of the smooth energy on other sur-
face representations beyond triangle meshes.

A rich source of future work is the numerical analysis of our
method. We do not have any proof of convergence or a solid math-
ematical analysis of the spectrum of our operator, and while the
experiments in Section 6.3 provide some evidence for problems
that can be solved with our discretization of E, a thorough nu-
merical analysis treatment of our discretization would be valuable
to exactly identify the strengths and weaknesses of our method.
Our Crouzeix-Raviart discretization is a potential candidate for
spurious modes, since the finite element is non-conforming, even
though we have not observed them in practice. The method of
English and Bridson [2008] is an example of a Crouzeix-Raviart
discretization that works for many cases, but where specific tri-
angle configurations exist that lead to spurious modes [Quaglino
2012, Section 4.4.2]. The properties of minimizers of the discrete
energies also warrant further investigation: It is unclear which
properties of smooth minimizers they actually inherit and which
properties only hold in the limit.

Another interesting direction for future work is to consider ad-
ditional applications. Smoothness energies have many uses, and if
such an application has to be unbiased by the boundary even on
heavily curved surfaces, our Hessian energy E is a powerful tool.
Applications could include animation [Jacobson et al. 2011], dis-
tance computation [Crane et al. 2013b], and more.

Moreover, our simple Crouzeix-Raviart discretization of the
one-form Dirichlet energy containing covariant derivatives from
Section 6.2 offers an interesting approach to discretize the vector
Dirichlet energy in a wide variety of applications. Potential appli-
cations include vector field design [Knöppel et al. 2013], parallel
transport of vectors [Sharp et al. 2018], and many more [Azencot
et al. 2015; Corman and Ovsjanikov 2019; Liu et al. 2016].

Fig. 14. Smoothing flow for an armadillo. The surfaces are colored by an-

gle defect. Each step of our Hessian energy E (top) leads to a smoother

result. Smoothing with Stein et al. [2018] (bottom) can lead to artifacts in

regions with curvature, such as the highlighted ears. The smoothing pa-

rameter α was chosen to produce a similar amount of smoothing in both

methods. Three smoothing steps were computed.

APPENDIX

A IMPLEMENTATION

The entries for each of the matrices defined in Section 6.1 needed to
construct the system matrices used in Equation (27) are as follows:
Let e be an oriented edge from the vertex i to j. The two triangles
adjacent to e are Ti jk and Tjil , and f is an oriented edge from the
vertex k to i . The entries of the symmetric CROF vector Dirichlet
matrix L on the triangle Ti jk are

L
i jk

e ‖,e ‖
= L

i jk

e⊥,e⊥
=

2

Ai jk
,

L
i jk

e ‖,e⊥
= 0,

L
i jk

e ‖,f ‖
= L

i jk

e⊥,f ⊥
=

2

Ai jk
cos2 θ

i jk
i ,

L
i jk

e⊥,f ‖
= −Li jk

e ‖,f ⊥
=

2

li j lki
cosθ i jk

i ,

(35)

where Ai jk is the double area of the triangleTi jk , θ i jk
i is the angle

in the triangleTi jk at the vertex i , and li j is the length of the edge
from vertex i to j. If one of the edges has reversed orientation in
the triangleTi jk with respect to its global orientation, then its off-
diagonal entries get multiplied by −1. These are only the terms
for the triangle Ti jk . One must add the terms for all triangles and
all pairs of edges in that triangle to compute the full matrix L. We
suggest looping through all triangles and adding the terms for each
triangle to the respective entries of the matrix corresponding to the
edges. This can easily be parallelized with a parallel_for loop.

The entries of the diagonal CROF mass matrix M on the triangle
Ti jk are

M
i jk

e ‖,e ‖
= Me⊥,e⊥ =

Ai jk

6l2i j

. (36)
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Fig. 15. Error plot for six different boundary value problems. The minimizer of the Hessian energy E discretized with our discretization is compared to a

high-resolution solution with the same discretization. Refinement happens via loop subdivision with various types of fixed boundary. The high-resolution

solution as well as the wireframe of the lowest-resolution mesh are displayed for each problem.

Fig. 16. Error plot for six different forward problems. The domains are curved surfaces of the form (x, y, z (x, y )) ∈ R3, so the integrand of the Hessian

energy can be exactly computed pointwise using the properties of Monge patches [Weisstein 2019]. Quadrature is then used to compute the exact value

of E (f ). The high-resolution function f as well as the wireframe of the lowest-resolution mesh are displayed for each problem. Refinement happens via

loop subdivision, and then projection to the given smooth surface.
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Fig. 17. The same scattered data interpolation problem solved on differ-

ent meshes for surfaces similar to the one from Figure 12 using the Hes-

sian energy E . The results are very similar. The wireframe shows each of

the meshes before further refinement through loop subdivision with fixed

boundary.

The entries of the differential matrix D on the triangle Ti jk for
each edge e are

−Di jk

i,e ‖
= D

i jk

j,e ‖
=

Ai jk

6l2i j

,

D
i jk

k,e ‖
= 0,

D
i jk

i,e⊥
= −

ljk

6li j
cosθ i jk

j ,

D
i jk

j,e⊥
= − lki

6li j
cosθ i jk

i ,

D
i jk

k,e⊥
=

1

6
,

(37)

where i is the vertex at the tail of the edge e , and j is at its tip. If one
of the edges has reversed orientation in the triangle Ti jk with re-
spect to its global orientation, then its entries get multiplied by −1.

The entries of the curvature correction matrix K on the triangle
Ti jk are

K
i jk

e ‖,e ‖
= K

i jk

e⊥,e⊥
=

1

l2i j

��
�

θ
i jk
i

si
κi +

θ
i jk
j

sj
κj +

θ
i jk

k

sk
κk

��
	
,

K
i jk

e ‖,e⊥
= 0,

K
i jk

e ‖,f ‖
= K

i jk

e⊥,f ⊥
=

cosθ i jk
i

li j lki

��
�

θ
i jk
j

sj
κj +

θ
i jk

k

sk
κk −

θ
i jk
i

si
κi

��
	
,

−Ke ‖,f ⊥ = Ke⊥,f ‖ =
sinθ i jk

i

li j lki

��
�

θ
i jk
j

sj
κj +

θ
i jk

k

sk
κk −

θ
i jk
i

si
κi

��
	

,

(38)

where κv is the angle defect at the vertex v and sv is the angle
sum at the vertex v . If one of the edges has reversed orientation
in the triangle Ti jk with respect to its global orientation, then its
off-diagonal entries get multiplied by −1.

B ADDITIONAL EXPERIMENTS

Figure 15 features a series of convergence experiments that shows
the convergence of a boundary value problem on a variety of
meshes to the highest-resolution solutions. In Figure 16, a series of

Fig. 18. A comparison of the CROF Hessian, the DEC Hessian (as of Stein

et al. [2018, (20)], described by Fisher et al. [2007], and implemented by

Wang et al. [2015]), and the Bergou Hessian (as of Stein et al. [2018, (21)],

described by Bergou et al. [2006], and implemented by Wang et al. [2017])

in green. The two non-CROF Hessians fail to match the exact solution on

the annulus, even though the method of Bergou et al. [2006] looks visually

similar.

forward problems is solved, where the Hessian energy of a func-
tion is measured on a curved surface, and because both the func-
tion and the surface embedding are known, the exact solution is
also known. This is used to measure the error. In both these ex-
amples, convergence of the order of the average edge length is
observed.

Figure 17 shows that for different meshings of the same sur-
face, very similar results are achieved, and the method is thus ro-
bust to remeshing. In Figure 18 our CROF implementation of the
Hessian energy is compared with various Hessian energies dis-
cussed by Stein et al. [2018] in the flat annulus setting, where the
exact solution is known.
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