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(a) Noisy input scalar field. (b) All minima and maxima of the
noisy input data.

(c) Extrema above a certain noise
level (persistence) are selected.

(d) Filtered output scalar field con-
tains only the selected extrema.

Figure 1. Our method filters scalar fields with explicit control over the removal and the preservation of minima (blue spheres) and
maxima (red spheres). The result is smooth and topologically clean.

Abstract—Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing
this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima
and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can
lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees
cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global
energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves
the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data
by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still
avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the
optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate
our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications.

Index Terms—Numerical optimization, topology, scalar fields.

1 INTRODUCTION

Noise and sampling artifacts hinder the visual analysis of measurements
and simulated data. For example, an isocontour visualization of a noisy
scalar field contains a large number of small connected components
which make it difficult to see the big picture. As another example,
gradient estimation is often negatively affected by noise in a scalar
field.

Many methods exist to smooth or denoise scalar fields. Some of
them focus on statistical features in the data, e.g., a Gaussian blur or
a median filter. Other methods aim to maintain spatial features while
smoothing the data, e.g., a bilateral filter preserves edges in an image.
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The method presented in this paper falls into the category of denois-
ing methods that maintain spatial features. In particular, we focus on
topological features: the minima and maxima of a scalar field. The
input of our method is a scalar field and a subset of its minima and max-
ima. The output is a smoothed version of the scalar field that contains
only the selected minima/maxima, and is otherwise as close as possible
to the original data. The values and positions of the selected extrema
are preserved, while all other extrema are removed from the data.

Such a filter provides control over the topology, which can be benefi-
cial for subsequent visualization methods. For example, the appearance
of connected components in an isocontour visualization is a matter of
topology: removing the noise-induced extrema (e.g., identified using
persistence [7]) leads to fewer and larger connected components, which
provides an isocontour visualization with less clutter.

We extend previous work [15, 24] on topological denoising filters.
Our method follows the same computation pipeline, which has two
main stages. First, the extrema of a scalar field are extracted and
filtered (Section 3). Second, the denoised scalar field is obtained as the
solution of a discrete optimization problem – we call this “numerical
reconstruction” (Section 4). The improvements over the previous work
are due to the following contributions:

• For the extraction and filtering part of the pipeline, we propose
a direct coupling of Forman’s discrete Morse theory [8] to our
numerical optimization scheme, where the output of the former
serves directly as the input to the latter. In contrast to [15,24], this
eliminates the need to remesh the domain and solve another opti-
mization problem to get a representative function. (Section 3.2.1)



• We propose a topological simplification scheme that allows user
intervention. Compared to previous work, this provides more
flexible control over the topology. (Section 3.2.2)

• For the numerical reconstruction, we propose a scheme to itera-
tively improve the quality of the solution. The result is notably
smoother and closer to the original data than in previous work.
(Section 4.2)

• For the numerical reconstruction, we propose a novel domain
decomposition, which leads to a significant speed-up (6 minutes
vs. previously 6.5 hours for 643) and a significant reduction of
the memory requirements (3 GB vs. previously 10 GB for 643).
With this contribution, our method achieves, in contrast to pre-
vious work, practicable computation times for 3D scalar fields.
(Section 4.3)

We extensively evaluate and discuss our method in Section 5, show
applications in Section 6, and conclude with a discussion of possible
future research directions in Section 7.

2 RELATED WORK

Methods for smoothing scalar data while preserving its salient features
are sought after in many domains. In image processing, typical features
are intensity edges; methods such as bilateral filtering [22] or non-local
means [3] attempt to denoise images without blurring strong edges.
In signal and geometry processing, Laplacian smoothing techniques
were adapted to interpolate the values at some prescribed points [19].
Such methods cannot guarantee exact preservation of extrema, and new
(unwanted) extrema can even emerge in the output [9]. The technique
in [9] tracks a given 2D filter, e.g. Laplacian or anisotropic diffusion,
and stops it before unwanted changes of the isocontour topology occur.

Scalar field topology is related to the more general notion of vector
field topology. An approach to a continuous topology simplification
of 2D vector fields is presented by Tricoche et al. [23]. Based on the
topological graph structure and certain relevance measures, pairs of
critical points are removed by local changes to the vector values at the
grid nodes. The method does not guarantee successful removal of all
critical points that are scheduled for removal, and smoothness criteria
of the result are not addressed. Theisel [20] and Weinkauf et al. [26]
construct a 2D or 3D vector field based on a given topological skeleton.
Such methods create piecewise-linear vector fields with C0-continuity
and cannot avoid the appearance of additional critical points.

Topology design and control is also of high interest for functions on
surfaces. Recently, Tierny et al. [21] proposed an interactive combina-
torial algorithm to edit a scalar field on a surface with a user-prescribed
topology. This 2D approach uses an iterative heuristic, but shows very
good practical performance. However, its extension to 3D is an open
problem. Chen et al. [6] use Morse decomposition to edit the topology
of vector fields on surfaces. Harmonic functions have been used for
constructing Morse functions on surfaces [17]. Topological control is
beneficial for binary image segmentation as well [5].

A number of methods exist that exploit the topological simplification
of the Morse-Smale complex to simplify 2D scalar fields. Bremer et
al. [2] smooth the function in the interior of a Morse-Smale cell after
each cancellation step to adhere to the altered topological structure.
The resulting scalar field is C0-continuous between Morse-Smale cells.
Alternative approaches for 2D scalar fields are given by Weinkauf et
al. [24] and Jacobson et al. [15], where the scalar field is reconstructed
from a given subset of the original topology. Both methods employ op-
timization to construct a 2D scalar field that conforms to the prescribed
topology, and is also smooth and close to the input data. It has also
been shown in this context that explicit control over the topology of a
scalar field has interesting applications for animating characters [14,15]
– this requires the topological design of very small 3D scalar fields.

The work presented in this paper is an extension of [15, 24] to larger
data sets. The extension is non-trivial, since directly applying the
methods of [15, 24] to 3D data leads to impractical performance, in-
cluding excessive memory use and computation times in the order of
several hours (6.5 hours for 643). Our solution is a novel domain de-
composition approach. While standard decomposition techniques may

Figure 2. The directed acyclic graph G encodes the monotonicity on the
input grid with respect to the selected extrema Kmin ∪Kmax. It is shown
here using arrows pointing into the direction of a larger neighbor. All
neighbors of a minimum (blue) are larger than the minimum itself. For a
maximum (red), all neighbors are smaller. All other vertices (white) are
described as non-extremal points by having at least one larger and one
smaller neighbor.

introduce spurious extrema, we propose an iterative processing of the
decomposed blocks which communicates the information in-between
blocks. This results in a smooth output, avoids spurious extrema, and
guarantees that only the user-selected extrema are present. This divide
and conquer approach leads to significantly faster computation times in
the order of a few minutes (6 minutes for 643), and also opens the door
to a parallel and distributed computation — decreasing the computation
times even further. Additionally, we provide an iterative scheme to
drastically improve the quality of the solution, and a direct coupling
between the topology extraction and the numerical optimization.

3 EXTREMA EXTRACTION AND FILTERING

This section discusses the extraction and filtering of extrema in a 2D
or 3D scalar field. In Section 4, we will feed the filtered extrema to
the numerical reconstruction, which generates a smooth scalar field
containing only these extrema and being otherwise as close as possible
to the input scalar field.

Let G be a uniform grid in IR2,3 with vertices vi ∈V and let ŝ be a
scalar field defined on that grid. Let K̂min ⊂ V and K̂max ⊂ V denote
the minima and maxima of ŝ , respectively.1 Our goal is now to extract
these extrema and allow the user to select some of them, i.e., we have
a subset of minima Kmin ⊆ K̂min and a subset of maxima Kmax ⊆ K̂max.
We often refer to Kmin∪Kmax as selected extrema.

The second input to the numerical reconstruction is the monotonicity
graph G = (V,E ). It is a connected, directed acyclic graph on the input
grid G, where V denotes the vertices of G and E is a set of directed
edges between neighboring vertices. Figure 2 gives a 2D illustration.
The edge-set E includes all edges emanating from Kmax, all edges
incident on Kmin, and at least one edge pointing in and one edge pointing
out of all other vertices. Loosely speaking, G represents gradient
information — it points into the direction of a larger neighbor. It
describes that all neighbors of a minimum/maximum are larger/smaller
than the extremum itself. Most importantly, it describes that any other
vertex cannot be an extremum, since it has at least one incoming and
one outgoing edge.

In general, a given set of extrema can be represented by many pos-
sible graphs G . We will propose different schemes for constructing
valid monotonicity graphs in the following. A comparison of different
monotonicity graphs is given in Section 5.3.

3.1 Approaches without Morse Theory
The extraction and filtering methods in this section are easy to imple-
ment but the resulting monotonicity graph is unaware of the input scalar

1Note that a trilinearly interpolated function attains its minima and maxima
always at the vertices of the grid. Hence, it is reasonable to define the extrema
as a subset of the vertices.



field. Consequently, a subsequent numerical reconstruction requires
usually more iterations to converge compared to the methods from
Section 3.2.

3.1.1 Non-Topological Extraction and Filtering
A simple algorithm for extracting the extrema of a scalar field is this:
Visit each vertex vi. If all of its neighbors are larger/smaller, then vi
is a minimum/maximum. One may now use any selection criteria to
define a set of selected extrema.

Now we construct a cheap-to-compute, yet unsmooth and data-
unaware scalar field sa that contains only the selected extrema. This
corresponds to the representative function in [15]. We solve the follow-
ing Laplace problem:

Lsa = 0 (1)
s.t. sa(vi) = 0 ∀vi ∈ Kmin (2)

sa(vi) = 1 ∀vi ∈ Kmax (3)

where L denotes the finite-difference discretization of the Laplace
operator on regular grids. The result sa is a harmonic function, for
which the maximum principle of discrete harmonic functions guaran-
tees that, when choosing the Dirichlet boundary conditions as above,
the locations in Kmin and Kmax become the only minima and maxima,
respectively.

As proposed in [15], a monotonicity graph is built from sa by con-
straining all edges around an extremum as well as the two edges around
every other vertex corresponding to the steepest ascent and descent.

3.1.2 Persistence Pairs
Persistence [7] provides an alternative way for selecting the extrema
of a scalar field. The algorithm tracks the topological changes in the
evolution of the sublevel sets in a scalar field, amongst which we find the
minima and maxima of the scalar field. Most importantly, persistence
provides an “importance” for each extremum. Noise-induced extrema
have a low persistence while dominant ones have a high persistence.
This is very useful for filtering extrema. Fast algorithms [12] and open-
source implementations2 [1] for computing persistence are available.

A monotonicity graph can be computed from the selected extrema
using a representative function as described above.

3.2 Approaches based on Morse Theory
The extraction and filtering methods in this section are more involved.
In contrast to above, the monotonicity graph is initially constructed
from the input scalar field and then carefully modified in combination
with the extrema filtering. Hence, the monotonicity graph is data-
aware and a subsequent numerical reconstruction usually requires less
iterations to converge compared to the methods from Section 3.1.

3.2.1 Classic Topological Simplification
In the following, we recapitulate the main idea of [15, 24] before we
present an algorithmic extension yielding a more direct and simpler
optimization strategy in which a representative function is not needed.

In [15, 24], the Morse-Smale complex of the input scalar field is
computed based on discrete Morse theory [8]. The complex consists
of the critical points (minima, maxima, saddles) and the separatrices
connecting the critical points. Filtering is done by means of topological
simplification in which extremum-saddle pairs are repeatedly removed
from the Morse-Smale complex (subject to certain conditions). In
[15, 24], the simplified Morse-Smale complex is used to construct a
data-aware representative function using an algorithm that requires an
explict remeshing of the domain and solving optimization problems in
a pre-processing step.

In this work, we propose a simpler approach which provides a direct
coupling between Forman’s discrete Morse theory and our numerical
reconstruction presented in Section 4.

We exploit the fact that discrete Morse theory allows us to encode
the Morse-Smale complex in a so-called discrete gradient field. It

2DIPHA: http://dipha.googlecode.com/

encodes the monotonicity of the scalar field — very much like our
monotonicity graph G . Furthermore, the topological simplification
of the Morse-Smale complex can be done by working directly on the
discrete gradient. For more details and schematic illustrations regarding
the simplification process in discrete Morse theory, we refer to [11]. The
only caveat is that the discrete gradient is defined on the cell complex
of the domain, whereas we require a vertex-based representation of
the monotonicity graph G . We circumvent this issue by doing all
topological computations, including the discrete gradient and the Morse-
Smale complex, on an auxiliary grid with a halved resolution. More
precisely, the resolution for each dimension is 1+(N−1)/2, where N
refers to the resolution of the input grid in that dimension.3 The cell
complex of the auxiliary grid has a 1:1 correspondence to the vertices
of the input grid, i.e., the discrete gradient can be directly used as the
monotonicity graph. A representative function is not required.

3.2.2 Extrema Cancellation with User Control
The order of a classic topological simplification is usually determined
by an importance measure for critical points such as persistence, i.e.,
the method is completely automated.

In the following, we introduce an algorithm for removing a user-
selected set of extrema Ku from the Morse-Smale complex and the
corresponding discrete gradient g. This algorithm works in 2D and 3D,
and can be run standalone or after a classic topological simplification
as described above.

Background. Let p denote a path4 in a discrete gradient g. If two
critical points a and b are connected by one and only one path p, then
we call p a cancellation path. As given by Forman [8], reversing the
flow direction along p creates a new discrete gradient g′ where a and b
are no longer critical.

Algorithm. First, we create a priority queue into which we insert
saddles as follows. For each saddle s, find the extremum e ∈ Ku to
which s is connected by a cancellation path and to which it has the
smallest height difference in the input scalar field |ŝ(s)− ŝ(e)|. If e
exists, push s into the priority queue according to the value of the height
difference.

We process the queue as follows. Pop the top element s off the queue.
Again, find the extremum e ∈ Ku with the smallest height difference
that is connected to s by a cancellation path p. If such a cancellation
path does not exist anymore, then ignore the saddle and proceed with
the queue. Otherwise, compare the new height difference to the height
difference of the next saddle in the queue. If it is larger, then reinsert
s into the priority queue with the new value. If it is smaller, then do
the actual cancellation: reverse the flow in g along p and remove the
extremum from Ku. Proceed with the queue.

With respect to the number of critical points, the time complexity
of this algorithm is cubic in the worst case, but linear in practice.
The memory complexity is always linear. The monotonicity graph is
obtained from the simplified g as with classic topological simplification.

4 NUMERICAL RECONSTRUCTION

Equipped with a set of selected extrema and a corresponding mono-
tonicity graph, we come now to the main part of our method: the
reconstruction of a smooth scalar field containing only the selected
extrema and following the prescribed monotonicity. This works for
both 2D and 3D scalar fields.

We begin with a recapitulation of the optimization problem intro-
duced in [15]. Given the mathematical formulation, we propose an
iterative reconstruction scheme which converges to a smooth scalar
field and minimizes the distance to the input field. In the last part of this
section, we present our new domain decomposition approach allowing
an efficient solving of the optimization problem.

3Note that this procedure neglects extrema whose Morse cell is smaller than
a 1-ring in the input grid. This is not an issue in our target applications, since we
want to remove small features anyway. An alternative is to double the resolution
of the input grid and supersample the data first.

4This concept is similar to an integral curve in a smooth gradient field.

http://dipha.googlecode.com/


Figure 3. Explanatory data sets. (left) 2D vorticity data set from [15,24]
shown as terrain. (right) 3D spherical function distorted by very strong
salt & pepper noise.

For explanations, we use a 3D data set with a spherical function
distorted by salt & pepper noise (Figure 3, right). The range of the
noise exceeds the range of the spherical function by a factor of two.
This is a demanding scenario where a simple smoothing filter is not
able to remove the noise, but our topology-based approach is able to do
so. Filtering is straightforward: we select one single maximum in the
center of the data set (results are shown in Figure 7a). In 2D, we use
the same vorticity data set that has been used in [15, 24] (Figure 3, left).
Extrema are filtered here like in the previous work using a persistence
threshold of 18.6 (results are shown in Figure 5).

4.1 Problem Setup and Modeling

Let G be a uniform grid in IR2,3 with vertices vi ∈V and let ŝ be the
original scalar field defined on that grid. Let Kmin ∪Kmax ⊂V be the
selected extrema of ŝ . Our goal is to find a new scalar field s with the
following properties:

I: The selected extrema appear as extrema in s of the same type.

II: s has no other extrema.

III: s interpolates the original scalar values at the selected extrema.

IV: s approximates the original scalar field at all other vertices.

V: s minimizes a smoothness energy.

We assume that the set of selected extrema does not contradict the
Morse inequalities. For example, a non-constant function on G must
have at least one minimum. We also assume that at least one selected
minimum is smaller than all selected maxima and vice-versa.

Many functions exist that fulfill the topological requirements I & II,
i.e., they have exactly the same set of extrema. This is still true when
requiring specific values for these extrema (requirement III). However,
the requirements IV & V provide a way of measuring the suitability of
such functions by means of an energy

E(s) = wD ED(s)+EL(s) = wD ∑‖s(vi)− ŝ(vi)‖2 + ‖Ls‖2 (4)

with a vertex-wise least-squares energy for the data term ED (require-
ment IV), a Laplacian energy EL for the smoothness term (require-
ment V), and the factor wD for balancing their weight. In contrast to
previous works [15, 24], which use finite elements on irregular trian-
gle/tetrahedral meshes, we work on a regular grid. Hence, we employ a
finite-difference discretization of the bi-Laplacian operator LᵀL.

The requirements I-V translate to the “ideal” discrete optimization
problem [15] as follows:

IV & V: arg min
s

E(s) (5)

subject to the constraints

I: s(v j)> s(vi) ∀v j ∈N (vi), ∀vi ∈ Kmin (6)
I: s(v j)< s(vi) ∀v j ∈N (vi), ∀vi ∈ Kmax (7)

II: s(vi)> min
v j∈N (vi)

s(v j) ∀vi /∈ Kmin∪Kmax (8)

II: s(vi)< max
v j∈N (vi)

s(v j) ∀vi /∈ Kmin∪Kmax (9)

III: s(vi) = ŝ(vi) ∀vi ∈ Kmin∪Kmax (10)

(a) “Ideal” optimization problem (5). (b) Convex subregion defined by (12).

(c) Second iteration. (d) Third iteration.

Figure 4. Illustration of the non-linear optimization problem (5) and our
scheme to iteratively decrease the energy of the solution by repeated
convexification of the feasible region using the linear constraints (12).
See the text for a detailed description.

where we denote the grid neighbors of vertex vi with the set N (vi).
The constraints (8) & (9) are non-linear inequality constraints. They are
non differentiable, and they describe a generally non-convex feasible
region. Solving with such constraints directly leads to impracticable
running times.

Instead, we use the monotonicity graph G = (V,E ) to conserva-
tively linearize these constraints. It enforces that all neighbors of a
minimum/maximum are larger/smaller than the extremum itself. Any
other vertex cannot become an extremum since it has at least one in-
coming and one outgoing edge. It allows us to convexify the feasible
region [15]:

IV & V: arg min
s

E(s) (11)

subject to the constraints

I & II: s(vi)> s(v j) ∀(vi,v j) ∈ E (12)
III: s(vi) = ŝ(vi) ∀vi ∈ Kmin∪Kmax (13)

In other words, the linear constraints (12) define a convex subspace
of the larger feasible region described by the topological requirements
I & II. The resulting optimization problem is a quadratic program which
can be efficiently optimized via conversion to a conic program (see [15]
for details). We solve it using the software package MOSEK [16].

4.2 Iterative Convexification
In the following, we explore the relationship between the “ideal”, non-
linear optimization problem (5) and the convex, linear optimization
problem (11). Based on our observations, we propose a scheme to
iteratively decrease the energy of the solution while remaining feasible.

Figure 4a is a 2D illustration of the high-dimensional, non-linear
optimization problem (5). The energy is symbolized by concentric,
elliptic isolines with a global energy minimum depicted by the blue dot.
The “ideal” constraints (6)-(10) partition the domain into a feasible
region where they are fulfilled (white), and an infeasible region where
they are not fulfilled (red).5

Figure 4b illustrates the linear optimization problem (11). The
linear inequalities (12) define overlapping halfspaces (shown with green
overlays). They form a convex subset of the feasible region, visible

5Note that the depictions in Figure 4 are artistic interpretations. In general,
the feasible region is nearly impossible to chart. It is generally not convex and
perhaps even high-genus.
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Figure 5. We can significantly decrease the energy of the solution by
iteratively convexifying the feasible region. The upper inset corresponds
to the result from [15]. We can significantly improve this result with our
iterative scheme as shown in the lower inset. Compare also to the input
data set from Figure 3.

as the white region not covered by the green overlays. Note that the
unique minimum of the energy within this convex subset can always be
found using quadratic or conic programming [18].

Previous methods [15, 24] stop here. The reconstructed scalar field s
contains only the selected extrema but the energy E(s) may still be
high. We propose the following scheme to further decrease the energy:

1. We construct a new monotonicity graph Gk+1 from the previous
optimization result sk as follows:

• Around the selected extrema, it contains the same edges as Gk.

• For every other vertex vi, we define two directed edges
(vmin

i ,vi) and (vi,vmax
i ) where vmin

i ,vmax
i refer to the small-

est and largest neighbor of vi in sk.

2. We solve the optimization problem (11) using the new mono-
tonicity graph Gk+1, which defines another convex subset of the
feasible region.

We may repeat this process until convergence, which is guaranteed
because the energy of our iterative solutions E(sk) is monotonically
decreasing. This can be seen as follows. Since the constraints are
constructed according to sk, we know that the feasible subset they
describe is nonempty: it contains at least sk. Optimizing (11) for the
next solution sk+1 guarantees that E(sk+1)≤ E(sk), since sk+1 is the
unique global minimum in the feasible subset. Figures 4c-d show this.

However, we are not guaranteed to find the feasible global minimum
or even a feasible local minimum. Our heuristic, in general, will be an
approximation of the complex, non-convex feasible region. Still, this
moving convex window will always reduce the energy or keep it on
the same level, but never increase it. In fact, we observed for all our
examples enormous energy reductions in the first few iterations, with
diminishing returns afterwards. This makes it superior to running just
one convexification and solving one optimization. Figure 5 plots the
energy reductions and compares the result from [15] without iteration
to our new result with iteration. A similar plot is shown for a 3D data
set in Figure 7b.

Our process of iteratively redefining the convex feasible set and
solving QPs is related to Sequential Quadratic Programming (SQP).
However, generic SQP assumes all nonlinear inequality constraints are
at least twice continuously differentiable [18].

4.3 Domain Decomposition
We propose an approach to a domain decomposition of the optimiza-
tion problem defined in equation (11). It leads to substantially faster
computation times and requires significantly less memory – even when

(a) Initial decomposition
into blocks of maximal
size n× n. The values
at the inner boundaries
are fixed.

(b) Shift of the decomposi-
tion by n/3, which frees
most formerly fixed ver-
tices, except for the few
highlighted.

(c) After a final shift of the
decomposition by n/3,
all vertices have been
free at least once.

Figure 6. Scheme of the repeated domain decomposition for a 2D scalar
field. In 3D, we need four decompositions shifted by n/4.

executed on a single thread. This approach is the key to handling 3D
scalar fields with a practicable performance. It also speeds up the opti-
mization in the 2D case compared to the state of the art. Furthermore,
the domain decomposition can be used to parallelize and even distribute
the computations, which leads to even faster computation times.

Consider a domain decomposition of the underlying grid G into
blocks of maximal size n3 (or n2 in 2D). Such a decomposition creates
a conflict with the monotonicity constraints (12). These constraints
form chains along which the function is monotonically increasing. The
decomposition interrupts these chains, which means that a naive inde-
pendent optimization of each block may introduce unwanted extrema.
It is a classic dependency problem: when optimizing a block B, we
need to know the values of the neighboring blocks at the boundary
in order to correctly enforce the monotonicity constraints (12). On
the other hand, the neighboring blocks need the same input from the
block B as well. Introducing “thick” boundaries between blocks is not
a solution since they still interrupt the monotonicity chains.

Our solution is twofold by (i) fixing appropriate values at the block
boundaries, and (ii) shifting the block boundaries in a repeated process
to ensure that every vertex is at least once subject to the optimization.

First, we decouple each block from the rest of the domain by fixing
the values at its boundary using a cheap-to-compute approximation sa
of the solution, which conforms to the monotonicity constraints (12),
but may exhibit a high energy, i.e., it may not be smooth or close to the
input data. We only require sa to be consistent with (12). We propose
two versions:

• Based on a given monotonicity graph G , we minimize the data
energy ED subject to the constraints (12) and (13). This is signifi-
cantly faster and more memory-efficient than the actual optimiza-
tion problem (11) since ED exhibits maximal sparsity.

• We construct sa using the method described in Section 3.1.1,
where we solve a discrete Laplacian system with the selected
extrema as Dirichlet boundary. From that we can easily derive a
monotonicity graph G , see Section 3.1.1 for details.

In either case, we have a feasible approximation sa and a corresponding
monotonicity graph G . Each block is now decoupled from the rest
of the domain by fixing its boundary to the values of sa, while the
inner vertices of the block are free. The blocks can now be optimized
independently. Figure 6a illustrates this for a 2D example.

Every vertex needs to be subjected to the optimization, otherwise
the resulting scalar field is not smooth at the fixed vertices. For a 3D
data set, we shift the domain decomposition by a fourth of the block
size into all three directions. For a 2D data set, we shift it by a third of
the block size, as illustrated in Figure 6b. This gives us different blocks
and most (but not all) of the former boundary vertices are now free.
The new boundary vertices are fixed to the values from the previous
optimization run. Now, we perform a second optimization for each new
block independently. In 3D, we need to shift the decomposition two
more times to make sure that every vertex is free during at least one of
the four optimization runs. In 2D, we only need to shift twice and run
three optimizations in total, see Figure 6c.



(a) The converged results of the global (left) and the de-
composed (right) optimization are visually identical.
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(b) Energy levels of the iterations of the global and the
decomposed optimization.
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(c) Normalized L2 distance between the converged re-
sult s∗ of the global optimization and different itera-
tions si of the decomposed optimization.

Figure 7. Comparison of the decomposed optimization to the global optimization. The low normalized L2 distance (around 10−2) proves that the
results are very similar, which can also be observed in the snapshots. The high energy in the first iteration of the decomposition scheme is due to the
rough approximation sa, but this is quickly rectified in the following iteration, where both energies match up. For all practical purposes, both schemes
converged with the second iteration.

Our decomposed optimization scheme benefits from the behavior
described in Section 4.2, namely that repeated optimizations decrease
the energy. Furthermore, one may apply the iterative convexification as
an outer loop to the decomposed optimization to decrease the energy
even further.

Rationale. Theoretically, quadratic programming complexity
scales superlinearly with respect to the number of variables, thus solv-
ing the individual quadratic programs for each block will be asymp-
totically faster than solving the global system – even when executed
sequentially. Practically, the observed computation times for the global
optimization show a quadratic behavior with respect to the number of
variables (see Figure 8b in the next section), which makes the domain
decomposition scheme even more beneficial.

The decomposition into individual blocks can be interpreted as new
constraints restricting the convex feasible set introduced in Section 4.2
even further. Applying the iterative convexification of Section 4.2 will
reduce the energy (4) until convergence. However, it is not guaranteed
that the global and the decomposed optimization end in the same local
energetic minimum because of the highly non-linear character of the
underlying energy landscape. In practice, however, the solutions of the
global and decomposed optimization converge empirically to the same
scalar field, and we see enormous benefits both in terms of final energy
and performance (see next section).

Block Size. A strategy for choosing the block size n has to take into
account that, generally speaking, smaller n lead to faster computation
times and lower memory consumption, while larger n lead to lower
energies of the solution. Based on the performance figures discussed
in the next section, it is straightforward to decide for a block size on a
given machine.

Number of Blocks. Let the grid G be of size N3 and the blocks
of size n3. Assume that d = N/n is an integer. It is easy to see that the
initial domain decomposition consists of d3 blocks. Shifting the domain
decomposition introduces 3d2 + 3d + 1 additional blocks. Example:
a 643 grid is initially decomposed into 64 blocks of size 163, i.e.,
d = 4. Shifting the decomposition creates 61 additional (smaller)
blocks, making for a total of 125 blocks.

5 EVALUATION AND DISCUSSION

In the following, we evaluate and discuss our method. We start with
an evaluation of our main contribution, followed by a demonstration of
the whole method using a simple data set, which serves to highlight the
characteristics of the method. We end the section with a discussion of
the role of the monotonicity graph.

Unless stated otherwise, all results have been computed on a laptop
with an Intel Xeon E31225 (3.1GHz) CPU and 16 GB RAM.

5.1 Evaluation of the Domain Decomposition
In the following, we evaluate the decomposed optimization scheme re-
garding its performance and its convergence to the global optimization.

Block 2562 5122 10242

size GB minutes GB minutes GB minutes

global 0.5 1.5 1.7 11.9 7.4 120

domain
decomposition

642 0.5 1.9 0.5 6.6 0.5 24.3
1282 0.5 3.3 0.5 9.9 0.5 33.9

Table 1. Measured performances of the global and the domain decom-
position approach for 2D data. The latter can benefit even further from
parallel execution. Computation times measured using a single thread.

Block 643 1283

size GB minutes GB minutes

global 10 390 n/a n/a

domain
decomposition

83 0.4 36 0.4 251
163 0.5 35 0.5 223
243 0.6 168 0.6 921

Table 2. Measured performances of the global and the domain decom-
position approach for 3D data. The latter can benefit even further from
parallel execution. Computation times measured using a single thread.

Convergence. Figure 7 compares the results of both schemes
against each other for the spherical salt & pepper data set (compare
to Figure 3). First, it has to be noted that the strong salt & pepper dis-
tortions could successfully be removed. Most importantly, the global
scheme and the decomposition scheme yield visually identical results,
which is supported by the very low normalized L2 distance. We ob-
served the same convergence for other data sets, too.

Note how the two different computation schemes start their iterations
with very different energies. This is due to the approximation sa that
we require for the decomposed optimization. Here, we used the version
where we minimize the data energy ED as described earlier. While sa
fulfills all monotonicity constraints, it is not smooth, which leads to
the very high energy in the first decomposed iteration. However, the
global and decomposed optimizations converged to visually the same
result with the second iteration. We observed similar behavior in all
our experiments. The convergence evaluation for the 2D vorticity data
set can be found in the supplemental material.

Performance. Figures 8a-b reveal why directly applying the
method of [15] to 3D data sets is impracticable. Here we see for
the global optimization that the memory consumption increases ex-
ponentially with the number of free vertices, and the computation
time increases quadratically (note that both plots have log-log axes).
For these plots, we computed a 643 data set globally: one iteration
computes for 6.5 hours requiring almost 10 GB of main memory.

The decomposition approach is significantly faster and more memory
efficient. One iteration for the same 643 data set computes for 6 minutes
with a block size of 163 on 6 threads, thereby requiring 3 GB of main
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(c) Parallel performance on a shared-memory ma-
chine for a 643 data set with blocks of size 163.

Figure 8. Memory consumption and computation times for different block sizes. The rightmost plot reveals that the parallel algorithm can be
memory-bound on shared-memory machines (indicated by the dashed line).

memory. This includes already the four required shifts of the domain
decomposition.

Interestingly, we found that the performance of the used optimization
package MOSEK does not noticeably depend on the content of the data
set, but only on its size.6 This is good news, since it allows us to predict
the performance for a given data set and block size rather accurately
from the measurements shown in Figures 8a-b. Assume we want to
compute the decomposed optimization for a 643 data set with a block
size of 163. As discussed above, this makes 439 blocks including all
shifts (smaller blocks will appear then, but we use the higher estimate
here to be on the safe side). Each 163 block computes for 5 seconds
on our hardware. This makes for a runtime prediction of 2195 seconds,
which matches the measured time of 2110 seconds quite nicely (see
Table 2 and Figure 8c). Note that these numbers are for computing on
a single thread. How this scales to several threads is discussed below.

Side-by-side overviews of measured performance figures for the
global and decomposed optimization are given in Tables 1-2 for 2D/3D
data sets. Note that the decomposed optimization provides significant
speedups over the global approach for 3D data sets and large 2D data
sets. Furthermore, we can speedup the decomposed optimization even
further by optimizing the blocks in parallel.

Scalability. Since we completely decoupled the blocks in our do-
main decomposition, the decomposed optimization can scale linearly
with the number of parallel threads or processes. Since there is no need
for communication between processes, it can easily run on clusters,
where inter-process communication is usually difficult to implement,
and achieve optimal scalability.

An interesting question, however, is how it scales on a shared-
memory machine where parallel threads compete for access to the
memory, which is usually the case on standard workstations. Figure
8c shows the scaling behavior on a machine with 96 GB main mem-
ory and 2 Intel XEON X5650 (2.66 GHz) with 6 cores each. As the
plot indicates, the memory is fast enough to answer to two threads
(speedup: 1.9), but we start to become memory-bound around 4-6
threads preventing an optimal usage of the available cores.

5.2 Data Weight, Single Cancellation, and Noise
In the following, we use simple experiments with the data set from
Figure 9a to evaluate our method and provide an intuition about its
specific characteristics.

The first experiment answers the question of what happens if all
extrema of the scalar field are selected. We extracted the extrema
from Figure 9a, kept all of them, and ran the numerical reconstruction.
Figure 9c shows the results for two different data weights. As expected,
the topology of the smoothed versions coincides with the original data:
the extrema are at the same location and have the same value, and there
are no additional extrema. This scenario nicely shows the influence
of the data weight wD from Equation (4): lower values emphasize the
Laplacian energy EL, higher values bring out the data term ED.

6The performance of MOSEK is mainly determined by the quadratic coeffi-
cient matrix of (4). This matrix does not depend on the data itself, but just on
the vertex connectivity in the grid, which is the same for every uniform grid.

The second experiment in Figure 9b shows what happens when we
remove a single extremum. Note the targeted change in the middle of
the domain where a single minimum has been removed. In all other
aspects the data coincides with the right image of Figure 9c, since we
use the same data weight. We can see from this that surgical operations
are possible with our method: removing an extremum only has an effect
in its immediate neighborhood, i.e., its Morse cell. Other parts of the
domain are unaffected, since the extrema and the monotonicity graph
are still the same there.

The third experiment demonstrates the utility of our approach when
denoising data. We added 10% white noise to the data set, which
created over 2000 additional minima and maxima. This is shown in
the left image of Figure 9d. Persistence is a powerful topological tool
to assess the importance of critical points. The critical points with
the largest persistence are shown as large spheres. We instructed our
method to keep only those while smoothing the data. The result is
shown in the right image of Figure 9d. How to work with persistence-
based denoising will be explained in more detail in Section 6 using a
real data set.

5.3 Comparison of Different Monotonicity Graphs

We presented two classes of methods for extracting and filtering ex-
trema in Sections 3.1 and 3.2. They have different properties regarding
their implementational effort and their computation time, as discussed
previously. The convergence times for the subsequent reconstruction is
shown in Table 3. Summarized, the approaches without Morse theory
(Section 3.1) are easier to implement, but they create a data-unaware
monotonicity graph that generally leads to more iterations until con-
vergence. Approaches based on Morse theory (Section 3.2) are more
involved, but the subsequent optimization benefits from the data-aware
monotonicity graph by generally converging with fewer iterations.

The most important observation is that the final reconstruction results
are very similar as proven by their normalized L2 distances, see the
rightmost column in Table 3. This agrees with the results of a larger
experiment that we provide in the supplemental material. Our findings
and our experience suggest that the choice for a specific monotonicity
graph construction method can be guided by implementational effort
and computation time – the iterative convexification seems to be able
to make up for unfavorable start conditions.

Monoton. Energy E(s) # iters Time L2

Data set graph first iter. last iter. in sec dist.

3D spherical
salt & pepper

harmonic 179.4 121.2 5 26.1
0.002

topology 137.4 121.4 3 15.5

2D vorticity
harmonic 48993 45521 38 264

0.05
topology 63919 45479 17 117

Table 3. Results for running the optimization using different monotonicity
graphs, where “harmonic” refers to the solution of the Poisson problem
(1), and “topology” to the approach using discrete Morse theory.



(a) Original data.
14492 extrema.

(b) Result for P = 0.4.
279 extrema.

(c) Result for P = 1.5.
12 extrema.

(d) Critical points over persistence P. The two vertical
lines give the persistence values for (b) and (c).

Figure 10. Temperature in the Hurricane Isabel data set (slice z = 20). Using persistence-based filtering, we create a hierarchy of scalar fields: with
increasing persistence P, our method creates increasingly smoother versions of the data. Note how the isolines (white) become less cluttered.

(a) Original Data. (b) One minimum removed. wD = 10.

(c) All extrema are kept. The data weight differs. Left: wD = 1. Right: wD = 10.

(d) Over 2000 noise-induced extrema are filtered using persistence. wD = 10.

Figure 9. Three experiments reveal the characteristics of our method.

6 APPLICATIONS

Hurricane Isabel. Topological structures are often filtered by their
persistence [7,10,13,25]. Loosely speaking, the persistence P measures
the prominence of a critical point in the data. The plot in Figure 10d
shows this for a slice of the temperature of the Hurricane Isabel data
set. The number of critical points drops drastically around P = 100:
only few critical points have higher persistence values while most of
them have lower persistence. Using our numerical reconstruction and
persistence-based filtering, we can create a hierarchy of increasingly
smoother scalar fields. Here, we show this using two persistence thresh-

olds in Figures 10b-c. Compare this to the original data in Figure 10a.
Another interesting observation in Figure 10 can be made regard-

ing the white isolines. They represent the five different isovalues
{0,2,4,6,10}. They are highly distorted for the original, unfiltered
data. This is due to the large amount of small-scale extrema. In fact, this
data set contains 14492 extrema. The denoised data in Figures 10b-c
contains only the most persistent 279 and 12 extrema, respectively. It is
known (e.g., [4]) that the number of extrema influences the number of
connected components of an isoline visualization. Hence, the filtered
data sets show less cluttered isolines. Note also that our denoising
method preserves the value range in the data set, which makes the iso-
lines directly comparable. Most importantly, the maximum temperature
in all three versions of the data set is the same: 13.1◦C.

Teaser. We use persistence-based filtering also in Figure 1 to
identify noise-induced minima and maxima in a 3D data set and remove
them using our method. The volume rendering of the input scalar field
(Figure 1a) reveals the high level of noise, which creates a large number
of local minima and maxima (Figure 1b). The majority of these extrema
have a low feature strength, i.e., their persistence is rather low. In Figure
1c, we only keep extrema with a persistence of at least 85% of the data
range (9 maxima and 19 minima). The result of our reconstruction is a
smooth and topologically clean scalar field (Figure 1d).

Aneurism. The aneurism data set in Figures 11-12 contains very
thin blood vessels obstructed by a high noise level. Smoothing such a
challenging data set with a simple Gaussian blur inadvertently interrupts
the blood vessels (Figure 12), or better to say, an isosurface showing
a blood vessel disintegrates into several connected components when
smoothing without topological control.

Our method provides such control as shown in Figure 11. In this
example, we zoomed on one of the thinner vessels. Figure 11b shows
the large number of local extrema. We know from topology that every
local minimum gives rise to a component of an isosurface. This guides
our strategy for filtering this data set: we keep one sole minimum
which is connected to the vessel (Figure 11c). This enforces a single-
component isosurface as shown in Figure 11d. Note how the general
appearance of the vessel is preserved. This shows the useful ability
of our method to enforce topological constraints while denoising: the
noise has been removed and the thin vessel structure has been preserved.

Lymphatic Capillary Network. To demonstrate the potential of
our method for the task of image segmentation, we consider a biolog-
ical data set. Figure 13a depicts a 2D image of a lymphatic capillary
network. Here, biologists are interested in segmenting the tubular struc-
tures of the lymphatic vessels to reveal their patterns and connectivity.



(a) Overview with zoom-in region. (b) All minima and maxima.

(c) One sole minimum selected to re-
main after the optimization.

(d) The filtered data set reveals the thin
vessel without obstructing noise.

Figure 11. Aneurism data set. Denoising with explicit control over
the topology is useful in scenarios like this, where a thin blood vessel
structure can be preserved including its delicate appearance, while the
noise has been removed.

(a) Subtle Gaussian smoothing cannot
remove all noise.

(b) Aggressive Gaussian smoothing in-
terrupts the blood vessel.

Figure 12. Aneurism data set smoothed using a Gaussian filter. Compare
to our method in Figure 11.

Unfortunately, the imaging process introduces noise and other arti-
facts causing discontinuities in the data. This can be observed in the
lower left corner where a vessel is interrupted due to poor acquisition.

Naively thresholding the original raw data fails to connect this region
of the vessel and introduces many speckles of noise throughout the
segmentation (see Figure 13b). Applying simple Gaussian smoothing
before thresholding removes most of the speckles (Figure 13c), yet the
lymphatic vessel remains interrupted. This is because smoothing is
only a local operation and cannot enforce such topological constraints.

In contrast, our method allows the biologist to select connected
components of the background (minima) and foreground (maxima).
The boundary of the domain is set to the global minimum to reduce the
number of minima that have to be placed. After applying our method,
a threshold segmentation is forced to have the desired connectivity.
Figure 13d shows this. Note that also all speckles are removed. This
shows that topological denoising has utility beyond mere smoothing.

7 CONCLUSIONS AND FUTURE WORK

We presented a topological denoising method that has significantly
faster computation times and lower memory consumption than previous
methods due to our novel domain decomposition approach. For the
first time, this class of algorithms achieves practicable computation

(a) Original data with selected extrema. (b) Threshold segmentation of original.

(c) Threshold segmentation after apply-
ing a Gaussian filter.

(d) Threshold segmentation after apply-
ing our method.

Figure 13. Segmentation of a lymphatic capillary network with topolog-
ical control. Our method denoises the data and enforces topological
constraints such that a subsequent threshold segmentation reveals the
connectivity of the network as desired by the biologists.

times for 3D scalar fields and large 2D data sets. Furthermore, we
proposed an iterative scheme to drastically lower the energy of the
solution by repeated convexification of the non-linear, non-convex
feasible region. Regarding the extraction and filtering of extrema, we
proposed a simple coupling between topological algorithms and the
numerical reconstruction as well as a topological simplification scheme
that allows user intervention. This leads to a versatile and powerful
denoising method which we demonstrated using several examples.

Note that our contributions, in particular the domain decomposi-
tion and the iterative convexification, do not depend on a particular
choice of the energy. In fact, our chosen energy (4) can be replaced
by other formulations. This could be of interest in order to accommo-
date application-specific requirements. Our proposed method can also
be extended to unstructured grids. As discussed in Section 3.2.1, the
optimization requires an auxiliary grid, in which each of its vertices
corresponds to a cell of the cell complex. Since this is difficult to
achieve when we coarsen an unstructured grid, an explicit refinement
would be necessary introducing a significant memory overhead.

Another interesting topic for future research is whether a domain
decomposition approach can be developed that has a “natural” decou-
pling of its blocks. In particular, one could consider a topology-based
decomposition of the domain, i.e., into Morse cells or Morse-Smale
cells. However, no guarantees can be made about the size of those
cells. One may end up with highly unbalanced block sizes, which
can lead to poor performance. Also, it may be difficult to shift such a
decomposition such that all vertices are free at least once.

A multi-resolution approach to the numerical optimization could
lower the computation times even further. However, the main challenge
is to represent all selected extrema at all resolution levels.
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