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Figure 1: Splines stay splines. Our efficient solution for linear blend skinning of splines deforms the Clam without destroying its Bézier
curve representation. Our approach matches the target deformation (dashed line) better than naive approaches. Here, skinning weights are
Bounded Biharmonic Weights [Jacobson et al. 2011].

Abstract

Smooth space deformation has become a vital tool for the animation
and design of 2D and 3D shapes. Linear methods, under the um-
brella term of “linear blend skinning”, are the de facto standard for
3D animations. Unfortunately such approaches do not trivially ex-
tend to deforming vector graphics, such as the cubic Bézier splines
prevalent in 2D or subdivision surfaces in 3D. We propose a vari-
ational approach to reposition the control points of cubic Bézier
splines and Catmull-Clark subdivision surfaces—or any linear sub-
division curves or surfaces—to produce curves or surfaces which
match a linear blend skinning deformation as closely as possible.
Exploiting the linearity of linear blend skinning, we show how this
optimization collapses neatly into the repeated multiplication of a
matrix per handle. We support C0, C1, G1, and fixed-angle conti-
nuity constraints between adjacent Bézier curves in a spline. Com-
plexity scales linearly with respect to the number of input curves
and run-time performance is fast enough for real-time editing and
animation of high-resolution shapes.
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1 Introduction

Smooth shape deformation brings animated characters to life and
facilitates virtual design and sculpture. Due to their simplicity, pre-
dictability, and real-time performance, linear methods are the de
facto standard for 3D animations. These methods, under the um-
brella term of “linear blend skinning,” describe the deformation
function at each point p on the shape as a weighted combination
of a small number of affine transformations:

p′ = sw,T (p) =

h∑
i=1

wi(p)Tip (1)

where Ti is the i-th transformation, wi(p) is its associated weight
function evaluated at p, and p′ is the new position of p. Recently,
a surge of works have perfected the automatic computation of such
weight functions [Baran and Popović 2007; Joshi et al. 2007; Lip-
man et al. 2008; Jacobson et al. 2011] and assisted with the spec-
ification of affine transformations [Der et al. 2006; Weber et al.
2007]. Though most of these 3D techniques generalize to 2D—and
some are specialized for 2D [Weber et al. 2009; Weber and Gots-
man 2010; Weber et al. 2011]—their success and impact has not
permeated 2D animation and design as thoroughly. In 2D, illustra-
tions are typically defined in terms of piecewise cubic Bézier curves
(e.g. PDF’s, modern drawing API’s, and fonts).

Space deformations, a general class of deformations containing lin-
ear blend skinning, are pointwise functions mapping a region of
space to new locations. They lend themselves nicely to piecewise
linear mesh deformation or raster image deformation, where pix-
els in the output image are computed via a texture on a deformed
mesh [Igarashi et al. 2005; Schaefer et al. 2006; Jacobson et al.
2011] or inversely as the result of warping the texture coordinate
space [Beier and Neely 1992; Hormann and Floater 2006; Adobe
Systems Inc. 2014; Schaefer et al. 2006]. Unfortunately such ap-
proaches do not trivially extend to deforming vector graphics.

The core problem is that when applying the skinning formula in
Equation (1) to an e.g. Bézier curve, the deformed result is, in gen-
eral, no longer a Bézier curve. This is only acceptable if skinning
is the last operation just before rendering. Otherwise it hinders
the application of skinning techniques to design and other editing
contexts. Artists and designers precisely place control points for
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Figure 2: The Turtles deformed using linear blend skinning as a
raster image have the obvious pitfall of fixed resolution. Tracing the
deformed raster image back into a vector graphic performs poorly
due to raster ambiguities and tracing parameters. Our method de-
forms vector graphics directly and the Turtles stay crisp.

their splines and subdivision surfaces and expect to continue edit-
ing them.

Naive solutions to skinning have drastic failure
modes (Section 5). Deforming the control points
of a spline or subdivision surface as if they were
ordinary points in space is problematic. Apply-
ing the space deformation to the control structure
is not the same as applying it to the shape (see
Figure 1 or 8). Non-interpolated control points
may lie far from the curve or surface itself and thus receive a drasti-
cally different weight function (close-up of the clam mouth, inset).
More generally, any (naive) approach that evaluates the deformation
function only at control points is unable to fully capture variations
within a single curve or surface patch (Figure 4). Our approach
evaluates the deformation function along the entire curve or sur-
face, and does not suffer from such problems (see Figures 1 and 7;
see Section 5 for details). Alternatively, one could sample and re-
trace a deformed curve (e.g. with [Schneider 1990] or [Noris et al.
2013]), but this leads to the control points swimming, jumping, or
changing quantity, in addition to unwanted parameters and related
ambiguities (see Figures 2 and 3). This destroys the editability of
the input.

Instead, we propose a variational approach that repositions the con-
trol points of an input vector graphics shape (curves or surface) to
match a given skinning deformation applied to the input shape as
closely as possible. Exploiting the linearity of Equation (1), we
show how this optimization collapses neatly into a single matrix
multiplication per weight function. We demonstrate our approach
on cubic Bézier splines and Catmull-Clark subdivision surfaces,
though our approach generalizes to any spline or linear subdivision
curve or surface. Complexity scales linearly with respect to the
number of control points and run-time performance supports inter-
active editing and animation of high-resolution shapes composed of
up to 10,000 Bézier curves.

Powerful vector graphics editors such as ILLUSTRATOR and
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Figure 3: A Bézier spline spoon bent using Equation (1), and then
infinitesimally bent again. Sampling and refitting a new Bézier
spline leads to swimming and jumping artifacts (highlighted in red).
Our approach preserves the editability of the original artwork. See
also accompanying video.

handles

control points

Figure 4: The influence of a handle (purple) placed at the mid-
point of a cubic Bézier curve may not extend to any of its control
points. The midpoint handle’s influence is shown in green. Naive
approaches that only evaluate the deformation at the curve’s con-
trol points cannot fully capture the influence of such handles.

INKSCAPE support different levels of continuity at curve junctures
along cubic Bézier splines. We complement this by introducing op-
timization constraints to preserve C0, C1, and G1 continuity. As
Bézier splines are C∞ everywhere else, our output is thus guaran-
teed to be at least G1. We support similar constraints to maintain
the angle at sharp features (such as 90◦ corners). In addition to pre-
serving the existing G1 continuity of the input, we also support G1

flexibility, which does not preserve the ratio of tangent magnitudes
on either side of a curve juncture. We enable this by enforcing non-
linear constraints via a simple and efficient solving routine. This
extra flexibility is optional, however, as it requires a few iterations.

By optimizing the sparse set of control points visible to—and in
many cases created by—designers, our output stays just as sparse
and editable. We evaluate our algorithm on a wide range of inputs
and application scenarios. We animate cartoon characters, warp
graphical designs, and apply fine-grained edits to text. We highlight
how our approach generalizes to a wide variety of deformation tech-
niques and complements a range of popular weighting functions.

2 Related Work

Bézier curve and subdivision surface fitting is nearly as old and
well studied as Bézier curves and subdivision surfaces in general.
Therefore, we focus on works closely related to our formulation and
place our work in context with other shape deformation systems.

Schneider [1990] provided a thorough and still-usedG1-continuous
solution to the general problem of fitting a cubic Bézier spline to a
digitized curve. More recently, Frisken [2008] introduced an ap-
proach suitable for fitting a G1-continuous spline to a live data
source such as handwriting. In contrast to these and other ap-
proaches for curve and surface fitting [Schmitt et al. 1986; Plass and
Stone 1983; Krishnamurthy and Levoy 1996; Wang et al. 2006],
our input is a known Bézier spline or subdivision surface undergo-
ing a linear blend skinning deformation. We exploit the additional
structure in our setting to (a) preserve the topology of the typically
hand-designed shape and (b) create a more efficient solution.

Also related to our problem are approaches for editing splines be-
yond manually moving control points. Fowler and Bartels [1993]
use a similar energy formulation and introduce techniques for on-
curve constraints, allowing for local and direct manipulation of in-
dividual curves. These constraints may be extended to deal with
more general constraints such as high level deformation operations
[Zheng et al. 1998] and over-sketching [Olsen et al. 2009]. Zhou
et al. [2007] presented a technique for the direct manipulation of
subdivision surfaces by minimizing the Laplacian Editing Energy.
Our approach is a general technique supporting any linear blend
skinning deformation.

Recently, Liao et al. [2012] proposed an alternative editing



paradigm for vector graphics. By contrast, our solution enhances
into the industry standard editing pipeline, readily taking standard
vector graphics as input and producing standard vector graphics as
output for further processing.

The reverse problem of fitting a skinning deformation to an existing,
possibly smooth, animation has been well studied since James and
Twigg [2005]. These formulations use similar energies to ours, but
are often augmented with regularization terms for ensuring smooth-
ness [Kavan et al. 2011]. With appropriate continuity constraints
and by working in the space of smooth Bézier curves, we ensure
smoothness by construction.

We focus on deformations created by linear blend skinning. Writ-
ten as in Equation (1), skinning is quite general, also encompass-
ing free-form deformation [Milliron et al. 2002], coordinate-based
cage deformations [Joshi et al. 2007], quadratic energy-based mod-
eling [Botsch and Kobbelt 2004], model-reduced non-linear vari-
ational modeling and physically-based simulations [Hildebrandt
et al. 2011; Barbič et al. 2012; Jacobson et al. 2012]. Our system
bootstraps any linear skinning deformation, regardless of whether
the user is explicitly painting the weights and choosing the trans-
formations. Therefore, we bring all of these works to the domain of
vector graphics.

3 Derivation

Our input is a parametric vector graphics shape
GC(p) and a linear blend skinning deforma-
tion function sw,T (p) : Rd → Rd, as in Equa-
tion (1). The linear blend skinning deforma-
tion function sw,T takes the form of a set of
weight functions, painted manually or computed using any tech-
nique in the literature, and a corresponding set of linear transfor-
mations. GC(p) could be a 3D Catmull-Clark subdivision surface
(with p = (face index, u, v)), orGC(p) could be a 2D Bézier curve
BC(t) : [0, 1] → R2. C is the matrix whose columns are the con-
trol points; for a cubic Bézier curve in 2D, C = [c1 c2 c3 c4] ∈
R3×4 (the third dimension is always 1 for homogeneous transfor-
mations).

A cubic Bézier curve can be expressed as the product of three ma-
trices:

BC(t) = CMt̄ = C

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0


t

3

t2

t
1

 = Cmt, (2)

where mt is a column vector. Other types of splines have dif-
ferent M matrices. Similarly, a linear subdivision surface’s GC

evaluated at a point with parameterization p can be expressed as
GC(p) = Cmp, where mp is the sparse column vector of control
point weights defined by the specific subdivision scheme.

In general, a deformed spline curve or subdivision surface
sw,T (GC(p)) will not be exactly representable by any spline curve
or subdivision surface, respectively. Thus, we find the closest fitting
shape GC′(p) with control point matrix C′.

3.1 Energy

Treating the control point matrix C′ of our fit shape as unknown,
we cast our problem as minimization of the energy

E(C′) =

∫
D

∥∥∥∥∥GC′(p)−
h∑

i=1

wi(GC(p))TiGC(p)

∥∥∥∥∥
2

dp, (3)

where E(C′) measures the integrated distance between the de-
formed shape and the shape generated with so far unknown control
points C′, over the entire parameter space D.

Since GC′(p) is linear in C′, our energy is quadratic in C′. We
set its derivative with respect to C′ equal to 0 to find the unique
minimizer. For brevity, let s(t) = sw,T (GC(p)) be the original
shape deformed by the given skinning deformation function. By
the linearity of integration we have

0 =
∂E(C′)

∂C′
=

∂

∂C′

∫
D

‖C′mp − s(t)‖2 dp,

=

∫
D

∂

∂C′
(C′mp − s(t))T(C′mp − s(t)) dp,

= 2C′
∫
D

mpm
T
p dp− 2

∫
D

s(t)mT
p dp,

and, rearranging terms and letting A(p) = mpm
T
p ,

C′
∫
D

A(t) dp =

h∑
i=1

TiC

∫
D

wi(Cmp)A(p) dp.

We can compute the matrix Â =
∫
D
A(p) dp and the matrices

Ŵi = C
∫
D
wi(Cmp)A(p) dp, independently of the actual trans-

formations Ti. The solution to our energy minimization problem,
the control points C′ of the best fitting shape, may then be found at
the cost of matrix multiplication:

C′ =

h∑
i=1

TiŴiÂ
−1 (4)

The Ŵi matrices have the same dimensions as C. Â is an N × N
symmetric matrix, where N is the number of control points. For a
single cubic Bézier curve, its inverse is:

Â−1 =

 16 −24 16 −4.
−24 69 1

3
−57 1

3
16

16 −57 1
3

69 1
3
−24

−4 16 −24 16


The Ŵi matrices—and indeed even ŴiÂ

−1—can be precomputed
once as soon as the input shape and skinning weights are defined.1

Since only the skinning transformations Ti are manipulated interac-
tively, this is the key result that allows for efficiently skinning vector
graphics. This exact formulation is suitable for subdivision surfaces
or B-splines, where the mp matrices themselves ensure continuity
or other desirable features.

4 Cubic Bézier Spline Constraints

Cubic Bézier splines, the spline format most commonly used in
2D design, are not naturally continuous. However, due to the
ubiquity of cubic Bézier splines, we support a variety of conti-
nuity constraints at the junctions between individual curves (see
Figure 5). Basic continuity conditions manifest as linear con-
straints in our energy minimization problem and so an equally ef-
ficient solution. In the following, let C =

[
c1 c2 c3 c4

]
and D =

[
d1 d2 d3 d4

]
be the control points of two cubic

Bézier curves sharing an endpoint, such that BC(1) = BD(0), and
let C′ and D′ be the control points of the fitted curves.

Continuity The linear constraint c′4 = d′1 enforces C0 continuity.

1If the Wi are integrated numerically, then Â should also be to avoid
artifacts resulting from numerical inconsistencies.
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Figure 5: On import, curves are analyzed for continuity at shared
endpoints (left). Continuity is maintained during deformation via
appropriate constraints (right).

Continuous derivatives C1 continuity requires that
dBC(1)/dt = dBD(0)/dt in addition to C0 continuity. We
enforce this via the linear constraint c′4 − c′3 = d′2 − d′1.

Continuous tangents G1 continuity is a generalization of C1

continuity [DeRose 1985]. The derivatives at BC′(1) and BD′(0)
must point in the same direction, but there need not be any rela-
tionship between their magnitudes. In practice, the control points
of the undeformed curves are often such that c4 − c3 and d2 − d1

are parallel but have differing magnitudes. We can preserve this
pre-existing G1 continuity by preserving the undeformed tangent
magnitude ratio, implemented as the (still linear) constraint

c′4 − c′3 = (d′2 − d′1)
‖c4 − c3‖
‖d2 − d1‖

. (5)

Complete G1 flexibility can be expressed as a constraint enforcing
the dot product of the curves’ tangents to be one:

(c′4 − c′3)

‖c′4 − c′3‖
· (d′2 − d′1)

‖d′2 − d′1‖
= 1. (6)

This constraint is nonlinear. In our optimization, we rewrite this
single nonlinear constraint in two different (linear) forms, and al-
ternate enforcement of one and then the other. The first form is
Equation 5, using the most recently computed values of c′4, c′3,d′2,
and d′1 for the ratio term. This allows the tangent directions to
change, but not the ratio of tangent magnitudes. The second form
fixes the direction of the tangent while allowing the magnitudes to
change. We substitute

c′3 = c′4 + αu, (7)

d′2 = d′1 + βv, (8)
where u and v are the tangent direction

v =
d′2 − d′1
‖d′2 − d′1‖

, (9)

u = −v, (10)
and α and β are new degrees of freedom subject to

α > 0, (11)
β > 0. (12)

By fixing v and u to the most recently computed tangent direc-
tion, we are left with linear equality constraints on the remaining
variables and constant bound constraints on α and β.

Preserving angles We also support constraints that maintain a
fixed angle θ between BC′(1) and BD′(0). Let R be the 2D rota-
tion matrix that rotates c3 − c4 by θ to d2 − d1. Then the linear
constraint is (cf. Equation 5):

R(c′3 − c′4) = (d′2 − d′1)
‖c4 − c3‖
‖d2 − d1‖

, (13)

Just as with G1 continuity, this preserves the pre-existing ratio of
tangent magnitudes. We can similarly relax this ratio at the cost
of nonlinear constraints. The first form of the G1 constraints is
replaced with Equation 13, and the second form is modified such
that Ru = v.

4.1 Implementation

Putting all constraints together, our complete Bézier spline energy
optimization problem for fixed tangent magnitude ratios is:

argmin
C′

n∑
j=1

`jE(C
′
j)

s.t.: c
′
4 = d

′
1, ∀ (BC , BD) C

0
,

c
′
4 − c

′
3 = (d

′
2 − d

′
1), ∀ (BC , BD) C

1

c
′
4 − c

′
3 = (d

′
2 − d

′
1)
‖c4 − c3‖
‖d2 − d1‖

, ∀ (BC , BD) G
1

R(c
′
4 − c

′
3) = (d

′
2 − d

′
1)
‖c4 − c3‖
‖d2 − d1‖

, ∀ (BC , BD) Angle.

When solving for multiple cubic Bézier curves simultaneously, we
weight the energy term for each curve Cj according to its unde-
formed length `j . We enforce these linear equality constraints via
the Lagrange multiplier method. The upper left (non-Lagrange
multiplier) portion of the system matrix Q is block diagonal, com-
posed of 4×4 blocks equal to the Âmatrix from 4. Due to the Angle
constraints, which involve the x and y dimensions simultaneously,
we solve for all dimensions ofC′ at once as a vectorized (reshaped)
column vector. In order to still compute C′ via simple matrix mul-
tiplication as handle transformations change, we perform the fol-
lowing precomputation. As soon as the curves and their constraints
are known, we calculate the Cholesky factorization of Q and solve

for the matrices Oi = Q−1

[
I3×3 ⊗ ŴT

i

0

]
, where ⊗ is the Kro-

necker product. C′ (and the Lagrange multipliers λ) are obtained

at runtime with the expression:
[

vec(C′)
λ

]
=
∑h

i=1Oivec(Ti).

To allow for flexible tangent magnitude ratios, we alternate the
above even iterations with odd iterations in which we replace the
G1 and angle constraints with their second forms. By making ap-
propriate substitutions, we enforce the linear equality constraints
for the odd iterations also via the Langrange multiplier method.
Changing the fixed magnitude ratios in the odd iterations and the
fixed directions in the even iterations affects a small number of en-
tries in the system matrix for each constraint. Thus, the odd and
even systems must be refactored anew for every iteration, though
the symbolic factorization could be reused.2 In this case, the Oi

2Several techniques exist for quickly updating the inverse of a matrix
after a low-rank update [Hager 1989; Davis and Hager 1999]; we did not
use them.
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Figure 6: Left column: A box with two handles imposing rotations.
The solution with angle-preservation maintains right angles; the
solution without does not. Right column: An undeformed shape
whose right side is stretched. The solution with G1 tangent mag-
nitude ratio flexibility closely matches the target deformation by
adjusting tangent magnitudes on the right side of the shape; the
solution without such flexibility must scale tangent magnitudes uni-
formly, leading to buckling on the left side.

precomputation is unnecessary. By default, we preserve tangent
magnitude ratios during live manipulation and relax them when the
mouse button is released.

Note that one could use a quadratic programming solver to force
α and β to be positive, but this rarely occurs in practice and we
simply clamp them. We have not found this to be a problem. We
have not experienced problems with convergence, because each it-
eration will not increase the energy. Figures 6 shows the effect of
angle preservation (left column) and G1 tangent magnitude ratio
flexibility (right column). Angle preservation is a feature unique
to our construction and difficult to achieve in raster constructions.
G1 tangent magnitude ratio flexibility allows deformations that are
asymmetric around control points more degrees of freedom for op-
timization, manifesting in lower energy and a better fitting solution.

5 Evaluation

We evaluate our approach with cubic Bézier splines and Catmull-
Clark subdivision surfaces. We use the “unconstrained” formula-
tion of our energy (Section 3.1) for Catmull-Clark surfaces (imple-
mented in C++), and the constrained formulation (Section 4) for
cubic Bézier splines (implemented in Python).

We support loading arbitrary SVG (Scalable Vector Graphics) files,
which natively support cubic Bézier splines. Upon loading, we con-
vert straight lines and circular arcs to cubic Bézier curves and ana-
lyze the junctions between curves to determine the continuity con-
straint to impose (C0, C1, G1, or fixed 90◦ angle). When creating
splines in ILLUSTRATOR, smooth junctions are always C1 upon
creation, but relaxed to G1 when editing. We mirror this concept.
Treating our operation as an edit, we default toG1 constraints along
smooth input splines.

In 2D, to obtain a mesh for computing Harmonic Coordinates [Joshi
et al. 2007] or Bounded Biharmonic Weights [Jacobson et al. 2011]

Interpolated Jacobian Our approach

Figure 7: The Clam from Figure 1 deformed using linear blend
skinning with a more sophisticated “naive” Jacobian-based ap-
proach (left) versus our approach (right). In this Interpolated Ja-
cobian approach, the linear blend skinning deformation is directly
applied to the Bézier splines’ interpolated control points. Each off-
curve control point is transformed by the Jacobian of the deforma-
tion at its adjacent interpolated control point. This example uses
Shepard weights.

(or any other automatic weights requiring spatial discretization), we
triangulate the user-defined cage or the largest closed curve (or a
manually created union curve in Adobe Illustrator if no such curve
exists) using Triangle [Shewchuk 1996]. We sample every curve
uniformly 100 times or once per pixel, whichever is sparser, and
submit the positions as additional meshing constraints for the tri-
angulation. In 3D, to obtain a Bounded Biharmonic Weights, we
used OpenSubdiv [Pixar 2014] to generate a refined mesh, gen-
eralized winding numbers [Jacobson et al. 2013] to compute an
intersection-free bounding volume, and TetGen [Si 2003]. In 2D
and 3D, our examples using Shepard weights compute the weights
analytically during numerical integration of Ŵ (Equation 4). We
compute Catmull-Clark subdivision matrices using OpenSubdiv.

In our figures, when dashed target curves are visible, they are color-
coded to display normalized energy along the curve, with red as the
maximum and purple as the minimum.

Comparisons to Naive Approaches We compare our approach
to four “naive” alternatives. In the first, we apply the deformation
directly to all control points (Figure 1 for Bézier splines and Fig-
ure 8 for Catmull-Clark subdivision surfaces). In the second and
third, we apply the deformation directly to the interpolated con-
trol points and indirectly to the off-curve points by treating each
off-curve point as a vector whose origin is the adjacent interpo-
lated point. (Note that this is only possible for Bézier or Her-
mite splines.) For the second approach, we apply the interpolated
point’s transformation (Figure 1, interpolated control points). For
the third approach, we apply the Jacobian of the interpolated point’s
transformation (Figure 7). This Jacobian-based approach requires
computation of the weight function derivative, which cannot be an-
alytically computed for manually painted weights or many com-
monly used automatic weight functions. (Our example uses Shep-
ard weights.) Unlike our approach, the naive approaches do not
evaluate the deformation along the entire curve (Figure 4). As a re-
sult, the naive approaches’ control points produce curves that stray
far from the target deformation.

Our fourth comparison is with the still-popular cubic Bézier spline
fitting algorithm of Schneider [1990]. Figure 3 demonstrates swim-
ming and jumping artifacts that often occur between a deformation
and an infinitesimally small perturbation of it. These artifacts can
be seen more vividly in the accompanying video.
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Figure 8: A pyramid and torus Catmull-Clark subdivision surface
are deformed via linear blend skinning (Shepard weights). Naively
applying the deformation to the control points matches the target
shape much less accurately than our approach. Here, the target
shape is depicted point-wise; the color of each point corresponds to
its distance from the target shapes as a percentage of the bounding
box diagonal.

Performance. Data regarding the performance of our approach is
presented in Tables 1 (Bézier splines) and Table 2 (Catmull-Clark
subdivision surfaces). Our timing information was gathered on a
dual-core, 2 GHz Intel Core i7 for Bézier splines and on a 2.4 GHz
Intel Core i5 for Catmull-Clark subdivision surfaces. Precomputa-
tion time measures computation of ŴiÂ

−1 (subdivision surfaces)
or Oi (Bézier splines). For Bézier splines, it does not include the
computation of the weight functions wi themselves. We sampled
every curve in the spline or face in the surface 100 times uniformly.
In 2D, our precomputation typically takes less time than computing
e.g. Bounded Biharmonic Weights.

For subdivision surfaces (resp. Bézier splines), the performance of
our approach is the cost of multiplying an N × 4 matrix by a 4× 4
matrix (resp. 3N × 9 matrix by a 9× 1 matrix) for each handle and
then summing the result. (N is the number of control vertices.) We
are able to deform complex vector graphics extremely efficiently.
Our approach computes updated control point positions for all of
our 3D models, and all but the 10,000 Bézier curve Coat of Arms,
at over 30fps. The butterfly, rabbit, and squirrel models are pro-
duction subdivision surfaces [Blender Foundation 2008]. Run-time
memory usage is the cost of storing these matrices. Computation is
independent across splines, but we do not currently take advantage
of this embarrassing parallelism.

For Bézier splines, when tangent magnitude ratio flexibility is de-
sired, the even & odd optimization requires several iterations per
update, each of which entails solving a 3N + 2L× 3N + 2L sys-
tem, where L is the number of constraints. We typically perform
this non-linear optimization when the user finishes dragging a han-
dle (e.g. on mouse-up).

6 Results

A variety of edited 2D vector graphics using our technique can
be seen in Figure 10. We deformed illustrations and typography.
The Turtles, stacked seven tall, demonstrate the resolution inde-
pendence of our approach. Our construction is general with re-
spect to weights. Applications can choose fast, low quality an-
alytic weights or more expensive numerically-optimized weights.
The Penguin and Lion were deformed using a cage and Harmonic
Coordinates [Joshi et al. 2007]. The Clam (Figure 1) and Worm
were deformed using Bounded Biharmonic Weights (BBW) [Ja-
cobson et al. 2011]. The Coat of Arms, which contains nearly
10,000 Bézier curves, was deformed using Shepard weights [Shep-

# G1

& angle
constraints

precomp.
secs

seconds per update

example # curves # handles regular flexible

Boxes (Fig. 6) 4 2 4 0.03 2e-4 0.008
Spoon (Fig. 3) 7 2 7 0.08 2e-4 0.02
Clam (Fig. 1) 56 3 50 0.1 8e-4 0.1
Boy 226 5 118 0.7 5e-3 0.4
Zapfino 379 3 316 1.4 4e-3 0.65
Worm 395 2 261 8.1 3e-2 2.75
Penguin on Lion 400 9 168 2.5 1e-2 0.64
Man 516 4 240 1.3 1e-2 0.78
Seven Turtles 1324 5 914 3.2 3e-2 2.5
Octopus 1706 8 1181 11 2e-2 4.2
Coat of Arms 9496 4 8159 42 1e-1 16.1

Table 1: The performance of our cubic Bézier spline deformation.
Precomputation measures our own computation for Ôi; it does not
include linear blend skinning weight computation. Flexible tangent
magnitude ratio updates are optional, and can be computed on e.g.
mouse-up.

# control
vertices

# control
faces

precompute
time (secs)

seconds per
updateexample

pyramid 5 5 1e-3 6e-6
torus 32 32 8e-3 6e-6
butterfly 1216 1222 0.3 5e-5
squirrel 4307 4278 4 2e-4
rabbit 4139 4150 9 2e-4

Table 2: The performance of our Catmull-Clark subdivision sur-
face deformation. All examples used 4 handles. Precomputation
measures computation of ŴiÂ

−1.

ard 1968]. Note that while BBW weights and Harmonic Coor-
dinates are computed numerically on a piecewise linear—that is,
C0— domain, the deformations are restricted by our construction
to the space of smooth splines. Thus the deformation is always C1

regardless of the discrete integration of these C0 weights.

In Figure 9, our approach is used to edit 3D Catmull-Clark sub-
division surfaces with Shepard weights (the car) and Bounded Bi-
harmonic Weights. To achieve the same result without our approach
would require the tedious repositioning of multiple control vertices.
By construction, our optimization maintains the desired continuity
(including the car’s sharp edges).

7 Conclusion

Our method bridges a long-standing gap between mesh-based de-
formation techniques and vector graphics. We hope our work’s suc-
cess encourages more thorough treatment of vector graphics in fu-
ture research on image deformation and warping techniques.

Our work could even offer a more efficient alternative to vertex-
based linear blend skinning for animation. For 2D vector graphics
on the web, where Bézier spline drawing is highly optimized, our
approach can be implemented in JavaScript to animate characters
created out of Bézier curves. In 3D, vertex-based linear blend skin-
ning with h bones requires 12(h+1) floating-point fused multiply-
add (FMA) operations in a vertex shader. For a Catmull-Clark sub-
division surface with N control points, each refined vertex is the
weighted sum of 16 control points. Our approach therefore requires
16hN FMA and 3N(h− 1) add operations to compute the control
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Figure 9: A variety of linear blend skinning deformations applied to Catmull-Clark subdivision surfaces. The car uses Shepard weights; the
remainder use Bounded Biharmonic Weights. The sharp edges along the bottom of the car and along the wheel wells are maintained by our
optimization. The rabbit and squirrel are from the film Big Buck Bunny [Blender Foundation 2008]. The car is copyright Pixar [Pixar 2014].

points once per-frame, and only 16 · 3 FMA operations in a vertex
shader. Thus, our approach offers potential performance advan-
tages when linear blend skinning with 4 or more bones. In this
way, subdivision surfaces could be animated and directly rendered
[Niessner et al. 2012] on the GPU.

7.1 Limitations and Future Work

The most immediate future work is building support for other prim-
itives common in vector graphics. Many editing tools already
convert rectangles, circular arcs and polylines seamlessly to cubic
Bézier curves during editing. However, maintaining these shapes
would also be an interesting feature better suited for vector graphics
than raster editing where discrete optimization over a mesh would
be necessary [Bouaziz et al. 2012].

Features like gradients are linear or radial, and cannot be smoothly
deformed by anything more interesting than an affine or similarity
transform, respectively, to stay linear or radial. Perhaps exploiting
not-yet standardized diffusion curves could alleviate this.

When there are insufficient control points to represent a desired de-
formation, our optimization may produce undesirable undulations
(Figure 11). These can be eliminated with the insertion of addi-
tional control points. In the future, we wish to automatically insert
control points to maintain a desired deformation accuracy.

We plan to improve the precomputation efficiency of our algorithm.
We can adaptively sample the curve and surface integral. Each

spline in an illustration can be precomputed (and deformed) in par-
allel. The repeated block diagonal structure of our system matrix
invites so far unexplored benefits of SIMD parallelism and a possi-
ble GPU solver.

We would also like to explore efficient approaches to skinning other
types of curves and surfaces. Our approach could be applied mu-
tatis mutandis to the “linear” portion of NURB curves and surfaces,
but optimizing the knot vector and the rational control point weights
is an avenue of future work. Though non-standard, clothoid splines
promise higher order continuity [McCrae and Singh 2009; Baran
et al. 2010].

Finally, while we highlight the usefulness of editing splines for vi-
sual design and animation tasks, splines have many other uses. An
obvious extension of our work is to consider curve editing in other
contexts such as silhouette editing [Zimmermann et al. 2007] or
motion path planning [Kim et al. 2009].

Acknowledgements

We are grateful to Kenshi Takayama, Romain Prévost, Chaim Gin-
gold, and the anonymous reviewers for helpful feedback; Michelle
Lee for artwork; Denis Zorin for an illuminating discussion; and
Jianchao Tan for moral support. Authors Liu and Gingold are sup-
ported in part by the NSF (IIS-1451198) and a Google research
award. The Columbia University Computer Graphics Group is sup-
ported by the NSF, Intel, The Walt Disney Company, and Autodesk.



Figure 10: A variety of linear blend skinning deformations applied
to vector graphics using our approach. The left column depicts un-
deformed shapes. The boy, man, lion, and penguin are copyright
Michelle Lee. The coat of arms of the Solomon Islands are copy-
right Wikimedia Commons user Prez001.
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Figure 11: Top: A caterpillar whose long back and belly are each
composed of a single Bézier curve. Middle: Deforming the long
body results in highly undesirable undulations. Bottom: Splitting
the back and belly into three Bézier curves allows the target defor-
mation to be closely matched.
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clothoid splines using shortest paths. In Comput. Graph. Forum.
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