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1 Introduction to model reduction

Figure 1: Model reduction overview: a high-dimensional ordinary differential equation is approximated
with a projection to a low-dimensional space.

Model reduction (also called dimensional model reduction, or model order reduction (MOR)) is a tech-
nique to simplify the simulation of dynamical systems described by differential equations. The idea is to
project the original, high-dimensional, state-space onto a properly chosen low-dimensional subspace to
arrive at a (much) smaller system having properties similar to the original system (see Figure 1). Complex
systems can thus be approximated by simpler systems involving fewer equations and unknown variables,
which can be solved much more quickly than the original problem. Such projection-based model reduction
appears in literature under the names of Principal Orthogonal Directions (POD) Method, or Subspace Integra-
tion Method, and it has a long history in the engineering and applied mathematics literature [29]. See [27]
and [33] for good overviews of model reduction applied to linear and nonlinear problems, respectively.

Model reduction has been used extensively in the fields of control theory, electrical circuit simulation,
computational electromagnetics and microelectromechanical systems [28]. Most model reduction tech-
niques in these fields, however, aim at linear systems, and linear time-invariant systems in particular,
e.g., small perturbations of voltages in some complex nonlinear circuit. Another common characteristic of
these applications is that both the input and output are low-dimensional, i.e., one may want to study how
the voltage level at some circuit location depends on the input voltage at another location, in a complex
nonlinear circuit. In computer graphics, however, one is often interested in nonlinear systems (e.g., large
deformations of objects) that exhibit interesting, very visible, dynamics. The output in computer graphics
is usually high-dimensional, e.g., the deformation of an entire 3D solid object, or fluid velocities sampled
on a high-resolution grid. For these reasons, many conventional reduction techniques do not immediately
apply to computer graphics problems.

1.1 Survey of POD-based model reduction in computer graphics

The initial model reduction applications to deformable object simulation in computer graphics investi-
gated linear FEM deformable objects [32, 18, 14]. These models are very fast, but are (due to linear Cauchy

1



strain) accurate only for small deformations and produce visible artifacts under large deformations. In
order to avoid such artifacts, it is necessary to apply reduction to nonlinear elasticity. For real-time geomet-
rically nonlinear deformable objects (quadratic Green-Lagrange strain), such an approach was presented
by Barbič and James [6, 4], who also gave an automatic approach to select a quality low-dimensional
basis, using modal derivatives. An and colleagues [2] demonstrated how to efficiently support arbitrary
nonlinear material models. Model reduction has also been used for fast sound simulation [17, 10] and to
simulate frictional contact between deformable objects [21]. For deformable FEM offline simulations, Kim
and James [23] applied online model reduction to adaptively replace expensive full simulation steps with
reduced steps, which made it possible to throttle the simulation costs at run-time. Treuille and colleagues
applied model reduction to fluid simulation in computer graphics [39]. Wicke and colleagues [41] im-
proved Treuille’s fluid method to support reduced fluid simulations on several (inter-connected) domains
with specialized basis functions on each domain (domain decomposition for fluids). Recently, Barbič and
Zhao [8] demonstrated a domain decomposition method for open-loop solid deformable models, by em-
ploying gradients of polar decomposition rotation matrices, whereas Kim and James [24] tackled a similar
problem using inter-domain spring forces.

2 Linear modal analysis

Figure 2: Linear modes for a cantilever beam.

Although elastic objects can in principle deform arbitrarily, they tend to have a bias in deforming into
certain characteristic, low-energy shapes. Most of us will remember the high-school physics example of a
string stretched between two walls (or, say, a violin string), where one studies the natural frequencies ωi
of the string, together with their associated shapes, typically of the form sin(ωix) and cos(ωix). The same
intuition carries over to arbitrary three-dimensional elastic objects deforming by a small amount around
their rest configuration, whether it be a metal wire, a thin shell (e.g., cloth on a character), or a solid 3D tet
mesh model of a skyscraper. The low-frequency modes are the deformations, which, for a given amount
of displaced mass (or volume), subject to specific boundary conditions such as fixed vertices, increase
the elastic strain energy of the object by the least amount. In other words, they are the shapes with the
least resistance to deformation. How are the modes and frequencies computed? One has to first form the
system mass and stiffness matrices M ∈ R3n×3n and K ∈ R3n×3n, where n is the number of mesh vertices.
The specific approach to compute M and K depends on each particular mechanical system. For example,
the tet skyscraper may be modeled using 3D FEM elasticity, whereas for a cloth model one may compute
M by lumping the mass at the vertices, and set K to the gradient of the internal cloth forces (in the rest
configuration), computed, say, using the Baraff-Witkin cloth model [3]. Once M and K are known, one has
to prescribe boundary conditions, i.e., specify how the object is constrained. The modes and frequencies
greatly depend on this choice. It is possible to set no boundary conditions, in which case one obtains free-
flying modes. In order to compute the modes, one forms matrices M and K where the rows and columns
corresponding to the fixed degrees of freedom have been removed from M and K. Then, one solves the
generalized eigenvalue problem

Kx = λMx. (1)

Matrices M and K are typically large and sparse. One can solve the eigenvalue problem, say, using the
Arnoldi iteration implemented by the ARPACK eigensolver [26]. This solver is free, and has performed
very well in various model reduction computer graphics projects by Jernej Barbič and other researchers in
the field. Because M and K are symmetric positive-definite (in typical applications, e.g., deformable object
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in the rest configuration), the eigenvalues are real and non-negative. One seeks the smallest eigenvalues
λi and their associated eigenvectors ψi, i = 1, 2, . . . , k, where k is the number of modes to be retained.
For objects with no constrained vertices (free-flying objects), the first six eigenvalues are zero and the
modes correspond to rigid translations and infinitesimal rotations; these modes are typically discarded.
The eigenvalues are squares of the natural frequencies of vibration, λi = ω2

i , and the eigenvectors ψi are
the modes. It should be noted that one typically inserts zeros into ψi at locations of fixed degrees of
freedom, so that the resulting vector is of length 3n. In order to check that the eigensolver was successful,
it is common to visualize the individual modes, by animating them as ψisin(ωit), where t is time. The
different modal vectors are typically assembled into a linear modal basis matrix U = [ψ1, . . . , ψk] ∈ R3n×k.

2.1 Small deformation simulation using linear modal analysis

Small deformations u ∈ R3n (n is the number of mesh vertices) follow the equation

Mü + Du̇ + Ku = f , (2)

where M, D, K ∈ R3n×3n are the mass, damping and stiffness matrices, respectively, and f ∈ R3n are the
external forces [35]. Equation 2 is a linear, high-dimensional ordinary differential equation, obtained by
applying the Finite Element Method (FEM) to the linearized partial differential equations of elasticity. It
is most commonly applied to 3D solids, but can also model shells and strands. It is only accurate under
small deformations; very visible artifacts appear under large deformations. Equation 2 models the object
at full resolution (no reduction), which means that it incorporates transient effects such as (localized)
waves traveling across the object. It is often employed, for example, to perform earthquake simulation,
typically using supercomputers on large meshes involving millions of degrees of freedom [1]. For real-
time applications, the computational costs of timestepping Equation 2 may be prohibitive. Instead, one
can perform model reduction, by approximating the deformation vector u as u = Uz, where z ∈ Rk is a
vector of modal amplitudes (typically k � 3n). If we choose damping to be a linear combination of M and
K, D = αM + βK, for some scalars α, β > 0 (this is called Rayleigh damping), and pre-multiply Equation 2
by UT , Equation 2 projects to k independent one-dimensional ordinary differential equations

z̈i + (α + βλi)żi + λizi = ψT
i f , (3)

for i = 1, . . . , k. Here, we have used the fact that the modes are generalized eigenvectors Kψi = λi Mψi,
and are therefore mass-orthonormal, (Mψi)Tψj = 0 when i 6= j, and (Mψi)Tψi = 1 for all i. The one-
dimensional equations given in (3) can be timestepped independently. This can be done very efficiently
(see, e.g., [18]). The full deformation can be reconstructed by multiplying u = Uz. This multiplication
is fast when k is small (a few hundred modes). It can also be performed very efficiently in graphics
hardware [18]. It can be shown that as k → 3n, this approximation converges to the solution of Equation 2.
This property is very useful, as it makes it possible to trade computation accuracy for speed.

2.2 Application to sound simulation

Sound originates from mechanical vibration of objects. These mechanical vibrations excite the surrounding
medium (typically air or water), and the pressure waves then propagate to the listener location. The object
mechanical vibrations are usually modeled using FEM and the equations of elasticity, whereas the pressure
propagation is usually modeled by the wave equation. There are varying degrees of approximation that
can be applied to each of these two tasks. Because deformation amplitudes in sound applications are
small, linear elasticity is often employed for their simulation [31, 17]. However, richer, nonlinear sound
can be produced using nonlinear simulation [10]. Linear simulation is straightforward and follows the
material from Section 2.1. For each object that is to produce sound, one first has to set the fixed vertices
(if any), and extract the modes. Next, one runs any physical simulation (typically rigid body simulation),
producing contact forces. These forces are then used as external forces f for the modal oscillators in
Equation 3, producing modal excitations zi(t). It remains to be described how zi(t) are used to generate
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the sound signal s(t). A very common approach is to assign some meaningful weights wi to each mode,
and compute sound as

s(t) =
k

∑
i=1

wizi(t), (4)

where k is the number of modes. The weights wi can be set to a constant, wi = 1 [31], or they can be
made non-constant to model the fact that different modes radiate with different intensities. Alternatively,
weights can be made to depend on the listener location x, wi = wi(x, t), by solving the spatial part of the
wave equation (Helmholtz equation) [17, 10]. Such spatially-dependent weights can model diffraction of
sound around the scene geometry.

3 Model reduction of nonlinear deformations

Up to this point, we have considered model reduction of linear systems (Equation 2). Linear systems have
an important limitation: they produce very visible artifacts under large deformations (see Figure 3). These
artifacts can be removed by applying model reduction to the nonlinear equations of a deformable object:

Mü + Du̇ + fint(u) = f . (5)

As detailed in the first part of the course, the nonlinearity in the internal forces fint(u) arises due to large-
deformation strain (geometric nonlinearity), and due to nonlinearities in the strain-stress relationship. How
to apply model reduction to Equation 5? We proceed in the same way as with linear systems; we assume
the availability of a basis U ∈ R3n×r (r is basis size) and approximate u = Uz, where z ∈ Rr is the vector
of reduced coordinates. After projection by UT , we obtain

z̈ + UT DUż + UT fint(Uz) = UT f . (6)

This equation determines the dynamics of the reduced coordinates z = z(t) ∈ Rr, and therefore also
the dynamics of u(t) = Uz(t). Equation 5 is similar to Equation 3, except that it is nonlinear and the
components of z are not decoupled. At this point, two questions emerge: (1) How can we timestep
Equation 6? (2) How do we choose the basis U?

Figure 3: Model reduction applied to a linear and nonlinear system.

3.1 Timestepping the reduced nonlinear equations of motion

In order to timestep Equation 5, one needs to evaluate the reduced internal forces, f̃int = UT fint(Uz) for arbi-
trary configurations z ∈ Rr. Furthermore, as equations of elasticity are typically stiff, implicit integration
is required, necessitating a further derivative of f̃int, the reduced tangent stiffness matrix

K̃(z) =
d f̃int

dz
= UTK(Uz)U ∈ Rr×r. (7)
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Here K(u) = d fint/du is the (unreduced) tangent stiffness matrix in configuration u. Note that in general,
the term f̃int cannot be algebraically simplified; its evaluation must proceed by first forming Uz, then
evaluating fint(Uz) and finally forming a projection by pre-multiplying with UT . Evaluation of K̃(z) is
even more complex. Once f̃int(z) and K̃(z) are known, one can use any implicit integrator to timestep the
system (see [4] for details). The key important fact is that this integrator will need to solve a dense r× r
linear system as opposed to a sparse 3n× 3n system as is the case with implicit integration of unreduced
systems. Since r � 3n, this usually leads to significant computational savings.

How to evaluate f̃int(z) and K̃(z) in practice? If the simulation is geometrically nonlinear, but materially
linear, then it can be shown [4] that each component of fint(u) is a cubic polynomial in the components of
u [4]. Consequently, f̃int are cubic polynomials in the components of z. Note that this is a manifestation of
a more general principle: for any polynomial function G(u), its projection UTG(Uz) will be a polynomial
in z, of the same degree. Treuille and colleagues, for example, exploited this fact with quadratic advection
forces for reduced fluids [39]. For geometrically nonlinear materials, one can precompute the coefficients
of the cubic polynomials. As there are r components of the reduced force, each of which is a cubic
polynomial in r variables, the necessary storage is O(r4). For moderate values of r (r < 30), this storage
is manageable (under one megabyte; details are in [4]). Because the reduced stiffness matrix K̃(z) is the
gradient of f̃int with respect to z, the reduced stiffness matrix is a quadratic function in z with coefficients
directly related to those of the reduced internal forces. For exact evaluation of internal forces and tangent
stiffness matrices, all polynomial terms must be “touched” exactly once. Therefore, the cost of evaluation
of reduced internal forces and tangent stiffness matrices is O(r4), whereas the cost of implicit integration
is O(r3).

For general materials, An and colleagues [2] have designed a fast approximation scheme which can
decrease the reduced internal force and stiffness matrix computation time to O(r2) and O(r3), respectively.
For simulations that use implicit integration, the runtime complexity is therefore O(r3). The method works
by observing that the elastic strain energy E(z) and internal forces f̃int(z), for reduced coordinates z, are
obtained by integration of the energy density Ψ(X, z) and its gradient over the entire mesh:

E(z) =
∫

Ω
Ψ(X, z)dV, (8)

f̃int(z) =
∫

Ω

∂Ψ(X, z)
∂z

dV. (9)

As opposed to evaluating f̃int using the exact formula f̃int = UT fint(Uz), An and colleagues approximate
the integral in (9) using numerical quadrature. In order to do so, they determine positions Xi ∈ Ω, and
weights wi ∈ R, such that

f̃int(z) =
∫

Ω

∂Ψ(X, z)
∂z

dV ≈
T

∑
i=1

wi g(Xi, z), (10)

K̃(z) ≈
T

∑
i=1

wi
∂g(Xi, z)

∂z
, (11)

where g(X, z) = ∂Ψ(X, z)/∂z. At runtime, given a value z, one then only has to evaluate g(Xi, z) and
∂g(Xi, z)/∂z, for i = 1, . . . , T and sum the terms together. The number of quadrature points T is usually
set to T = r. Positions and weights are obtained using a training process. Given a set of representa-
tive “training” reduced coordinates z(1), . . . , z(N), the method computes positions and weights that best
approximate the reduced force f̃int for these training datapoints. To avoid overfitting and to keep the
stiffness matrix symmetric positive-definite, the weights wi are chosen to be non-negative, using nonneg-
ative least squares (NNLS) [25]. The positions Xi are determined using a greedy approach, designed to
minimize the NNLS error residual (details in [2]).

5



3.2 Choice of basis

The matrix U is a time-invariant matrix specifying a basis of some r-dimensional (r � 3n) linear subspace
of R3n. The basis is assumed to be mass-orthonormal, i.e., UT MU = I. If this is not the case, one can
easily convert U to such a basis using a mass-weighted Gramm-Schmidt process. For each fixed r > 1,
there is an infinite number of possible choices for the linear subspace and for its basis. Good subspaces
are low-dimensional spaces which well-approximate the space of typical nonlinear deformations. The
choice of subspace depends on geometry, boundary conditions and material properties. Selection of a
good subspace is a non-trivial problem. We now present two choices: basis from simulation data (“POD
basis”), and basis from modal derivatives. The former requires pre-simulation (using a general deformable
solver), whereas the latter can create a basis automatically without pre-simulation.

3.2.1 Basis from simulation data (“POD basis”)

In model reduction literature, a very common approach to create a basis for nonlinear systems is to
obtain some “snapshots” of the system, u1, u2, . . . , uN , and then use statistical techniques to extract a
representative low-dimensional space. The snapshots can be obtained by running a full (unreduced)
simulation, or using measurements of a real system. Given the snapshots, one obtains the subspace U by
performing singular value decomposition (SVD) on A = [u1, u2, . . . , uN ],

A = UΣVT , (12)

and retains the columns of U corresponding to the largest r singular values. In practice, it is advantageous
to apply SVD not with respect to the standard inner product in R3n, but with respect to a mass-weighted
inner-product < Mx, y> (mass-PCA; see [4] for details).

It is challenging to measure transient volumetric deformation fields with high accuracy [22, 9]. There-
fore, large-deformation model reduction applications in computer graphics have so far relied on simula-
tion data, or on modal derivatives, which we describe next.

3.2.2 Modal derivatives

Linear modal analysis (Section 2) provides a quality deformation basis for small deformations away from
the rest pose. The linear modes, however, are not a good basis for large deformations, because they lack the
deformations that automatically “activate” in a nonlinear system. For example, when a cantilever beam
deflects sideways in the direction of the first linear mode, it also simultaneously compresses, in a very
specific, non-uniform way. This happens automatically in a nonlinear system. A linear basis, however,
lacks the proper (non-uniform) compression mode, and therefore the system projected onto the linear basis
will be stiff (it “locks”). In practice, such locking manifests as a rapid loss of energy (numerical damping),
and as an increase in the natural oscillation frequencies of the system, a phenomenon also observed with
model reduction of electrical circuits [13]. One could attempt to resolve these issues by retaining a larger
number of linear modes. Such an approach is, however, not very practical with nonlinear systems, because
a very large number of modes would be needed in practice, whereas the time to solve the reduced system
for implicit integration scales as O(r3).

These problems can be remedied using modal derivatives: deformations that naturally co-appear in
a nonlinear system when the system is excited in the direction of linear modes. By forming a basis that
consists of both linear modes and their modal derivatives, we arrive at a compact, low-dimensional basis,
that can represent large deformations and that can be computed purely based on the mesh geometry
and material properties; no advance knowledge of run-time forcing or pre-simulation is required. We
will illustrate modal derivatives for deformable objects that are sufficiently constrained so that they do
not possess rigid degrees of freedom, but modal derivatives can also be computed for unconstrained sys-
tems. Under a static load f , the system will deform into a deformation u, where u satisfies the unreduced
static equation fint(u) = f . Consider what happens if we statically load the system into the direction of
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Figure 4: Modal derivatives for a cantilever beam.

linear modes. In particular, suppose we apply a static force load MUlinΛp, where M is the mass ma-
trix, Ulin = [ψ1, ψ2, . . . , ψk] is the linear modal matrix, Λ is the diagonal matrix of squared frequencies
diag(ω2

1, . . . , ω2
k), and p ∈ Rk is some parameter that controls the strength of each mode in the load.

It can be easily verified that these are the force loads which, for small deformations, produce deforma-
tions within the space spanned by the linear modes. Given a p, we can solve the nonlinear equation
fint(u) = MUlinΛp for u, i.e., we can define a unique function u = u(p) (mapping from Rk to R3n, and
C∞ differentiable), such that

fint(u(p)) = MUlinΛp, (13)

for every p ∈ Rk in some sufficiently small neighborhood of the origin in Rk. Can we compute the Taylor
series expansion of u in terms of p? By differentiating Equation 13 with respect to p, one obtains

∂ fint

∂u
∂u
∂p

= MUlinΛ, (14)

which is valid for all p in some small neighborhood of the origin of Rk. In particular, for p = 0k, we get
K ∂u

∂p = MUlinΛ. Therefore, ∂u
∂p = Ulin, i.e., the first-order response of the system are the linear modes, as

expected. To compute the second order derivatives of u, we differentiate Equation 14 one order further by
p, which, when we set p = 0k, gives us

K
∂2u

∂pi∂pj
= −(H : ψj)ψi. (15)

Here, H is the Hessian stiffness tensor, the first derivative of the tangent stiffness matrix, evaluated at u = 0
(see [4]). The deformation vectors

Φij =
∂2u

∂pi∂pj
(16)

are called modal derivatives. They are symmetric, Φij = Φji, and can be computed from Equation 15 by
solving linear systems with a constant matrix K (stiffness matrix of the origin). Because K is constant and
symmetric positive-definite, it can be pre-factored using Cholesky factorization. One can then rapidly (in
parallel if desired) compute all the modal derivatives, 0 ≤ i ≤ j < k. Note that the modal derivatives are,
by definition, the second derivatives of u = u(p). The second-order Taylor series expansion is therefore

u(p) =
k

∑
i=1

Ψi pi +
1
2

k

∑
i=1

k

∑
j=1

Φij pi pj + O(p3). (17)
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Figure 5: Extreme shapes captured by modal derivatives: Although modal derivative are computed
about the rest pose, their deformation subspace contains sufficient nonlinear content to describe large
deformations. Left: Spoon (k = 6, r = 15) is constrained at far end. Right: Beam (r = 5, twist angle=270◦)
is simulated in a subspace spanned by “twist” linear modes and their derivatives Ψ4, Ψ9, Φ44, Φ49, Φ99.

The modal derivatives, together with the linear modes, therefore span the natural second-order system
response for large deformations around the origin.

Creating the basis U: Equation 17 suggests that the linear space spanned by all vectors Ψi and Φij

is a natural candidate for a basis (after mass-Gramm-Schmidt mass-orthonormalization). However, its
dimension k + k(k + 1)/2 may be prohibitive for real-time systems. In practice, we obtain a smaller basis
by scaling the modes and derivatives according to the eigenvalues of the corresponding linear modes, and
applying mass-PCA on the “dataset”

{λ1

λj
Ψj | j = 1, . . . , k

}
∪

{ λ2
1

λiλj
Φij | i ≤ j; i, j = 1, . . . , k

}
. (18)

The scaling puts greater weight on dominant low-frequency modes and their derivatives, which could
otherwise be masked by high-frequency modes and derivatives.

Figure 6: Reduced simulations: Left: Model reduction enables interactive simulations of nonlinear de-
formable models. Right: reduction also enables fast large-scale multibody dynamics simulations, with
nonlinear deformable objects undergoing free flight motion. Collisions among the 512 baskets were re-
solved using BD-Trees [20].
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4 Model reduction and domain decomposition

Model reduction as described in the previous section is global: it reduces the entire object using a sin-
gle, global basis. Unless r is large, it is difficult to capture local detail using such a basis. Because the
computation time grows at least as O(r3) (time to solve the dense r × r system [2]), large values of r
(several hundreds of modes) are not practical. It is therefore natural to ask if the object can somehow be
decomposed into smaller pieces, each of which is reduced separately, and the pieces are then connected
into a global system. This is the idea of domain decomposition, a classical technique in applied mathe-
matics and engineering. In engineering applications, however, the deformations are typically small. In
computer graphics, we have to accommodate large deformations (e.g., rotations) in the interfaces joining
two domains, which means that standard domain decomposition techniques cannot simply be extended
to computer graphics problems.

In computer graphics, domain decomposition for deformable models has initially been applied to small
domain deformations and with running times dependent on the number of domain and interface vertices.
For example, a linear quasi-static application using Green’s functions has been presented in [19], whereas
Huang and colleagues [15] exploited redundancy in stiffness matrix inverses to combine linear FEM with
domain decomposition. Recently, domain decomposition under large deformations has received signifi-
cant attention in computer graphics literature. Barbič and Zhao [8] demonstrated a domain decomposition
method by employing gradients of polar decomposition rotation matrices, whereas Kim and James [24]
tackled a similar problem using inter-domain spring forces.

Figure 7: Model reduction with a large number of localized degrees of freedom: Left: nonlinear reduced
simulation of an oak tree (41 branches (r = 20), 1394 leaves (r = 8), d = 1435 domains, r̂ = 11, 972 total
DOFs) running at 5 fps. Right: simulation detail.

5 Model reduction and control

Optimal control problems occur frequently in computer animation. Often, they are cast as space-time
optimization problems involving human motion [34], fluids [40, 30] and deformations [42]. With optimal
control of deformable objects, one seeks a sequence of forces (control vectors) fi ∈ R3n, i = 0, ..., T − 1,
such that the resulting deformations (state vectors) ui ∈ R3n, i = 0, ..., T − 1, obtained by timestepping
Equation 5 forward in time under those forces, minimize some scalar objective E(u0, ..., uT−1). The scalar
objective typically includes terms such as magnitude of control vectors, deviation from some reference
trajectory, deviation from keyframes at specific moments of time, and magnitude of deformation velocities
and accelerations. The forces are sometimes expressed as fi = Bgi, where the matrix B ∈ R3n×m gives
the control basis. The problem is said to be underactuated when m < 3n and fully actuated for m = 3n.
Underactuated problems can model objects that can propel themselves using “muscles”, and are generally
much more difficult to solve than fully actuated problems. Because optimal control problems compound
both space and time, they have a very high dimensionality: there are 3nT unknowns (the control vectors
fi) in the optimal control problem. Such a huge state space leads to optimization problems that diverge,
converge to local minima, or take a very long time to converge to a plausible solution.
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Figure 8: Fast authoring of animations with dynamics [5]: This soft-body dinosaur sequence consists
of five walking steps, and includes dynamic deformation effects due to inertia and impact forces. Each
step was generated by solving a space-time optimization problem, involving 3 user-provided keyframes,
and requiring only 3 minutes total to solve due to a proper application of model reduction to the control
problem. Unreduced optimization took 1 hour for each step. The four images show output poses at times
corresponding to four consecutive keyframes (out of 11 total). For comparison, the keyframe is shown in
the top-left of each image.

Model reduction is very beneficial to optimal control because it greatly reduces the state and control
size. The states ui are replaced with the reduced states zi, the control vectors fi are replaced with the
reduced internal forces f̃i, and Equation 5 is replaced with its reduced version (Equation 6). Although
such a reduced optimal control problem only approximates the original problem, its dimensionality is
only rT � 3nT; therefore, the occurrence of local minima is greatly decreased. Optimal reduced forces
can be found faster than unreduced forces, because one can rapidly explore the solution space by running
many reduced forward simulations and by quickly evaluating the reduced objective gradient [5] (Figure 8).
Standard controllers such as the linear-quadratic regulator [37] are impractical with deformable objects as
they involve dense 3n × 3n gain matrices. With reduction, however, such control becomes feasible as
the gain matrices are now much smaller (r× r). Barbič and Popović [7] exploited such a combination of
LQR control and model reduction for real-time tracking of nonlinear deformable object simulations, using
minimal (“gentle”) forces.

6 Free software for model reduction

The implementation of [6] (by Jernej Barbič) is freely available on the web (BSD license) at:
http://www.jernejbarbic.com/code. It includes

1. a precomputation utility to compute linear modes (Equation 1) and modal derivatives (Equation 15),
and to construct the simulation basis U (mass-PCA applied to the dataset of Equation 18); optionally,
the basis can also be computed from pre-existing simulation data (“POD basis”),

2. a precomputation utility to compute the cubic polynomial coefficients for reduced internal forces
f̃int and stiffness matrices K̃ (Section 3.1), for isotropic geometrically nonlinear material model (St.
Venant-Kirchhoff material)

3. an efficient C/C++ library to timestep the reduced model precomputed in the above steps 1., 2.
(Equation 6), and an example run-time driver.

The code shares basic classes with Vega, a general-purpose simulator for FEM nonlinear 3D deformable
objects (including deformable dynamics), also available at the same URL (BSD license).
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Figure 9: Precomputation utility to compute linear modes, derivatives, basis for large deformations, and
cubic polynomial coefficients. Freely available (BSD license) at http://www.jernejbarbic.com/code .

7 Deformation warping

As outlined in Section 3, linear modal analysis (Section 2) leads to visible artifacts under large defor-
mations, and these artifacts can be removed by applying model reduction to the nonlinear equations of
motion. Deformation warping is an alternative, purely geometric, approach to remedy the same problem.
The idea is to keep Equation 2 as the underlying dynamic equation, but to post-process the resulting
deformations u using a geometric “filter” that removes large-deformation artifacts. For example, given
a tetrahedral mesh, warping establishes a mapping that maps linearized deformations u ∈ R3n (away
from the rest configuration) to “good-looking” large deformations q = W(u) ∈ R3n (also away from the
rest configuration). The user is only shown the corrected deformations q. Warping is very robust. For
example, twisting deformations, with local rotations as large as several complete 360 degrees cycles, can
be easily accommodated. The underlying dynamics, however, is still linear, and this is visible with large-
deformation motion as linear deformations essentially follow a sinusoidal curve, sin(ωit). In contrast,
objects simulated using nonlinear methods usually stiffen under large deformations, and therefore spend
a smaller percentage of the oscillation cycle time at large deformations.

The idea that modes could be warped to correct large deformation artifacts was first observed by
Choi and Ko [11]. They noticed that, by taking the curl of each modal vector, one can derive per-vertex
infinitesimal rotations due to the activation of each mode. These rotations can then be integrated in time,
resulting in large deformations free of artifacts. Although not surveyed here in detail, their approach is
fast, and laid the foundation for other warping methods developed later.

7.1 Rotation-strain coordinate warping

In these notes, we describe a recent efficient flavor of warping, the rotation-strain coordinate warping [16]. Let
Gj ∈ R9×3n be the discrete gradient operator of tet j, i.e., deformation gradient of tet j under deformation
u ∈ R3n equals I + Gju. Decompose the 3× 3 matrix Gju into a symmetric and antisymmetric component,

Gju =
Gju + (Gju)T

2
+

Gju− (Gju)T

2
. (19)

We can then denote the upper triangle of the symmetric part as εj ∈ R6, and the skew-vector correspond-
ing to the antisymmetric part as ωj ∈ R3. We then assemble [εj, ωj] for all tets into a vector y(u) ∈ R9#tets;
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Figure 10: Warping corrects linearization artifacts under large deformations.

denote yε,j = εj and yω,j = ωj. Vector y forms the rotation-strain coordinates of the mesh. Given a linearized
deformation u, we then postulate that we should seek a deformation q so that the deformation gradient
inside tet j equals

exp
(
ỹω,j

)(
I + sym(yε,j)

)
. (20)

Here, sym(x) is the 3× 3 symmetric matrix corresponding to its upper-triangle x ∈ R6, x̃ is the 3× 3
skew-symmetric cross-product matrix corresponding to vector x ∈ R3 (x̃v = x× v for all v ∈ R3), and exp
is the matrix exponential function [36]. This condition cannot be satisfied for all the tets simultaneously.
Instead, given u, we find a deformation q under which the deformation gradients are as close as possible
to those given by Equation 20. This can be done by solving the following least-squares problem:

arg min
q

#tets

∑
j=1

Vj||I + Gjq− exp
(
ỹω,j

)(
I + sym(yε,j)

)
||2F, (21)

subject to pinned vertices (22)

where || ||F denotes the Frobenius norm of a 3× 3 matrix, and Vj is the volume of tet j. The pinned vertices
are the vertices where the model is rooted to the ground (boundary conditions). For free-flying objects, a
constraint can be formed that keeps the center of mass unmodified. The objective function in Equation 21
is quadratic in q, and can be rewritten as

||VGq− b||22, (23)

for V = diag(
√

V1,
√

V1, . . . ,
√

V#tets) (each entry repeated 9x), and where G ∈ R9#tets×3n is the gradient
matrix assembled from all Gj. The nine-block of vector b ∈ R9#tets corresponding to tet j, expressed as a
row-major 3× 3 matrix, equals

bj =
√

Vj
(
exp(ỹω,j)(I + sym(yε,j))− I

)
. (24)

In a typical tet mesh, there are more tets than vertices, therefore, the optimization problem is overcon-
strained. The minimization can be performed via Lagrange multipliers, by solving[

L d
dT 0

] [
q
λ

]
=

[
(VG)Tb

0

]
, (25)

where L = GTV2G, and where d corresponds to the pinned input vertices (note: an implementation can
simply remove the rows-columns from L; this is equivalent). Matrix L is called the discrete Laplacian of the
mesh. It only depends on the input mesh geometry, and not on U or u. The system matrix in Equation 25
is sparse and constant, and can be pre-factored, so warping can be performed efficiently at runtime.

12



7.2 Warping for triangle meshes

Triangle meshes are commonly employed in computer graphics, say, for simulation of thin shells and
cloth. Such physical systems also produce the mass matrix M and stiffness matrix K. Therefore, the small
deformation analysis (Equation 2) and model reduction (as in Equation 3) apply also to such problems. In
order to apply warping, however, we must define deformation gradients for each triangle. As observed
by Sumner and Popović [38], the three vertices of a triangle before and after deformation do not fully
determine the affine transformation since they do not establish how the space perpendicular to the triangle
deforms. They resolve this issue by adding a (fictitious) fourth vertex v4,

v4 = v1 +
(v2 − v1)× (v3 − v1)√
|(v2 − v1)× (v3 − v1)|

, (26)

where v1, v2, v3 are the triangle vertices. Vertices v1, v2, v3, v4 define a tetrahedron. Let v′1, v′2, v′3 denote
the deformed vertex positions; then, we can use (26) to compute the deformed fictitious vertex v′4. The
deformation gradient F for the triangle equals

F =

 v′2 − v′1 v′3 − v′1 v′4 − v′1

  v2 − v1 v3 − v1 v4 − v1

−1

. (27)

Given the deformation gradient, warping then proceeds in the same way as described for tetrahedral
meshes in previous sections. A more principled version of triangle mesh warping has been presented
by [12].
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