
Supporting Early Decision-Making in the Presence
of Uncertainty

Jennifer Horkoff∗, Rick Salay†, Marsha Chechik†, and Alessio Di Sandro†
∗Department of Information Engineering and Computer Science, University of Trento, Italy

horkoff@disi.unitn.it
†Department of Computer Science, University of Toronto, Toronto, Canada

{rsalay,chechik,adisandro}@cs.toronto.edu

Abstract—Requirements Engineering (RE) involves eliciting,
understanding, and capturing system requirements, which nat-
urally involves much uncertainty. During RE, analysts choose
among alternative requirements, gradually narrowing down the
system scope, and it is unlikely that all requirements uncertainties
can be resolved before such decisions are made. There is a need
for methods to support early requirements decision-making in
the presence of uncertainty. We address this need by describing
a novel technique for early decision-making and tradeoff analysis
using goal models with uncertainty. The technique analyzes goal
satisfaction over sets of models that can result from resolving
uncertainty. Users make choices over possible analysis results,
allowing our tool to find critical uncertainty reductions which
must be resolved. An iterative methodology guides the resolution
of uncertainties necessary to achieve desired levels of goal
satisfaction, supporting trade-off analysis in the presence of
uncertainty.

I. INTRODUCTION

During the process of eliciting requirements, it is common
to encounter uncertainties, including gaps in domain knowl-
edge, disagreements between stakeholders, or uncertainty over
requirement details. Early requirements elicitation typically
uncovers a large space of alternative requirements and con-
flicting needs, making it necessary to support decision-making
over alternatives in order to find acceptable trade-offs between
conflicting requirements. Given the wide scope of early system
analysis, it may not be feasible to resolve all uncertainty before
decision-making occurs. Ignoring uncertainty forces implicit
and premature decisions over the space of early requirements.
Thus, methods and tools to (a) support early decision-making
and trade-off analysis and (b) do so in the presence of
uncertainty are needed. To support these needs, we make
use of existing, established Requirements Engineering (RE)
techniques: goal modeling and associated analysis [11], and
the MAVO framework for formally capturing and reasoning
over model uncertainty [20].

Goal models (e.g., NFR [3], KAOS [4], i* [24]) have been
widely studied in RE as a means to explicate system goals and
high-level requirements. The ability to facilitate the analysis of
alternative requirements makes goal models especially power-
ful for RE. For example, “what if?” analysis [3], [7], [11] uses
the effects on and relationships between goals to determine
the (degrees of) goal satisfaction resulting from a selection of
alternative requirements. Such analysis helps modelers select

a viable set of requirements, making acceptable trade-offs
between user needs.

Current goal model analysis procedures evaluate the effects
of alternative requirements on user goals but do not account
for model uncertainties discovered at design time. Much focus
has been placed on capturing and reasoning over vague goals,
using the softgoal concept to capture goals without clear-cut
criteria for success. However, in addition to being vague, goals
(and associated relationships) can be uncertain, for example,
we might be uncertain about the presence or absence of an
element. Ignoring uncertainty, i.e., treating the element as
present, may lead us to eliminate viable alternatives or accept
alternatives which do not sufficiently satisfy key goals.

The MAVO framework [20] has been introduced in order
to explicitly and formally capture uncertainty in the contents
of models. MAVO is language-independent, and our previous
work, [18], [19], allowed us to record model changes,
including change rationale, checking that these changes reduce
uncertainty, and to propagate uncertainty reductions across
traceability links between different models. In this work, we
take the semantics of the target language (i*) into account,
allowing us to determine the satisfaction of goals, evaluate
alternative solutions, make tradeoffs and find satisfactory so-
lutions – even in the presence of model uncertainty.

Specifically, we facilitate analysis and decision-making in
the presence of uncertainty by integrating goal model anal-
ysis with uncertainty expressed using MAVO. We describe
a semi-automated method which finds sets of possible goal
satisfaction analysis results, accounting for all of the ways
in which model uncertainty may be resolved. Our approach
determines which uncertainties must be resolved to achieve
desired levels of goal satisfaction, allowing for targeted do-
main elicitation. We provide a methodology which supports an
iterative reduction of uncertainty, moving towards “concrete”
models in which uncertainties are resolved and desired levels
of goal satisfaction are achieved. Thus, we allow users to make
decisions over the space of early requirements even in the
presence of uncertainty.

A variety of goal modeling languages and analysis proce-
dures have been introduced (e.g., [3], [24], [4], [7]). In order
to make our contribution concrete, we selected a particular
language, i* [24], and a particular method for qualitative
analysis [11]. However, our approach can be generalized to

978-1-4799-3033-3/14 c© 2014 IEEE RE 2014, Karlskrona, Sweden

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

33

A
Meeting

Initiator

(MI)

Meeting

Participant

(MP)

Organize

Meeting

(OM)

Determine

Meeting

Date (DMD)

Low Effort

(LE)

 Other Ways to

Organize

Meeting

(OWOM)

Dependencies

(Dep)
D D

Unknown

U
n
k
n
o
w

n

Attend

Meeting

(AM)

Participate

in Meeting

(PiM)

Provide

Details

(PrD)

Details

(D)

D
D

Meeting

Scheduler

(MS)

Meeting be

Scheduled

(MBSD)

D

D

Schedule

Meeting

(SM)

Let Scheduler

Schedule

Meeting

(LSSM)

Meeting Be

Scheduled

(MBS)

H
e
lpH

el
p

Low Effort

(LEP)

Agreeable

Meeting

Date (AMD)

Decide

Convenient

Dates (DCD)

Convenient

Meeting Date

(CMD)

Use

Profiles

(UP)

?

Satisfied (FS)

Partially Satisfied (PS)

Conflict (C)

Unknown (U) N

Partially
Denied (PD)

Denied (FD)

No Label (N)

?

Actor

Goal

Softgoal

Task

Resource

D

Help

Means-Ends

Decomposition

Contribution

Dependency

i* Legend

Initial

Analysis

Label

Actor

Boundary

Quick

(Q) ?

Fig. 1. A goal model for the Meeting Scheduler Example with analysis of the OWOM alternative.

any goal-oriented language with formal semantics. We do not
model the intrinsic, run-time uncertainty of the environment,
but the design-time uncertainty of the modeler, which can be
eventually resolved. This type of uncertainty is best captured
possibilistically rather than probabilistically as the statistics
needed for the latter is typically not available at design time.

The rest of this paper is organized as follows: Sec. II
describes a motivating scenario and notation background using
the Meeting Scheduler example. We provide the necessary for-
mal background and notation in Sec. III. Sec. IV describes how
to compute and interpret analysis labels over uncertain models.
Sec. V describes a methodology for analysis of uncertain
models, including finding suggested uncertainty refinements
given analysis choices. Sec. VI describes our tool support and
experiences. We compare our approach with related work in
Sec. VII. Sec. VIII summarizes the paper and discusses future
work.

II. BACKGROUND AND MOTIVATING SCENARIO

We motivate our approach using a well-known meeting
scheduler example1. In this scenario, a Meeting Initiator has
a variety of ways to schedule meetings, including using a
(semi)automated Meeting Scheduler, and must chose between
scheduling alternatives. However, in the early analysis of this
scenario, we are uncertain about several aspects of the domain.
What are some other ways for the Meeting Initiator to schedule
a meeting? What information is needed from the Meeting
Participant? Who determines possible meeting dates? Despite
these uncertainties, we need to make decisions over the space
of scheduling alternatives. We ask: Can we evaluate whether or
not an alternative is viable even in the presence of uncertainty?
and What uncertainties must be resolved in order to facilitate
our decision-making process?

1Parts of this scenario have appeared in previous work, e.g., [24], [18].

i* Language. Fig. 1 depicts an i* model, model A for the
meeting scheduler capturing a simplistic view of the goals,
actors and dependencies for this system. It does not yet
explicitly capture our uncertainties concerning the scenario.
The social aspect of i* is represented by actors, e.g., Meeting
Initiator (MI for short, see Fig. 1 for shorthands), and Meeting
Participant (MP). Actors depend upon each other for the
accomplishment of tasks, e.g., Provide Details (PrD), and
Determine Meeting Date (DMD), the provision of resources,
e.g., Details (D), the satisfaction of goals, e.g., Meeting
be Scheduled (MBS) and softgoals, goals without clear-cut
satisfaction criteria, e.g., Low Effort (LE). Together, these are
called intentions. Actor “boundaries” contain the intentions
explicitly desired by these actors, e.g., MP wants to achieve
Participate in Meeting (PiM).

The interrelationships between the intentions are depicted
via three types of links: decomposition, representing intentions
necessary to accomplish a task, e.g., to achieve PM the MP
actor must satisfy AM, PrD, and satisfy the other three decom-
position intentions; means-end, representing alternative tasks
which can accomplish a goal, e.g., Other Ways to Organize
Meeting (OWOM) or Let Scheduler Schedule Meeting
(LSSM) will satisfy MBS; and contribution, showing the
effects of softgoals, goals, and tasks on softgoals, e.g., LSSM
helps Quick (Q). Positive/negative contributions representing
evidence sufficient to satisfice/deny a softgoal are represented
by Make/Break links, respectively. Weaker contributions are
represented by Help/Hurt links. Unknown contribution links
represent the presence of evidence with yet unknown polarity.

Goal Model Analysis. Model A allows the analyst to cap-
ture requirement options, and existing analysis procedures,
e.g., [11], allow her to evaluate such alternatives. The analysis
procedure starts with a question of the form “How effective is
an alternative w.r.t. the goals in the model?”. In our example,

34

B
MI MP

OM

Q LE

 (S)

OWOM

(S
)

(MS) Dep (MS) D (MS) D

(S) U
nknown

(S
)

U
n
k
n
o
w

n
AM

PiM

(MS) PrD

(comp)

(S) D

(M
S

)
D

(S
) D

MS

MBSD

D

D
SB

LSSM

MBS

H
e
lpH

el
p

LEP

(M
S
)

(V) AMD

(V
)

(V) Date

Determiner

(DD)

(VM)

(M
S)

(M) DCD

DMD

(M
)

(VM) CMD

(M) UP

(M
)

unknown set of other ways

to organize meetings

unknown

types of

contributions

unknown which actor

will perform this task

unknown

dependencies

unknown whether

these are actually

different goals

unknown if we

need this

unknown if

we need this

unknown what or

how many details

there will be

Fig. 2. A goal model for the Meeting Scheduler Example annotated with uncertainties informally (dashed notes) and formally (annotations).

there are two alternative ways to satisfy MBS: LSSM and
OWOM. If we want to find the effects of selecting OWOM,
we place initial labels, satisfying the task OWOM and denying
LSSM in model A. For completeness, other initial labels, re-
flecting a more detailed analysis question, are chosen (shaded
intentions in model A).

Initial labels are iteratively propagated through links using
propagation rules for decomposition, means-ends, dependency,
and contribution links, resulting in labels for other model
elements, representing the cumulative level of positive or
negative evidence. The propagation continues until no new
labels can be produced. In our example, initial labels for
OWOM and LSSM are propagated through the means-end
(OR) link. By this rule, MBS is (fully) satisfied (FS or , see
legend in Fig. 1). Similarly, incoming labels for PiM in MP
are propagated through the (AND) decomposition, this time
selecting the minimum label, fully denied (FD).

Since there is a dependency relationship between D and
PrD, a denied value for the latter implies a denied value
for the former. Propagation through contribution links uses
rules adopted from [3]. In order to capture partial evidence
propagated through contribution links, goal model analysis
captures partial positive or negative evidence towards goal
satisfaction, via partially satisfied (PS) and partially denied
(PD) labels, respectively. For example, the FD label for LSSM
propagates a PD label through the Help link to Q and LE.
Similarly, the Unknown label (U) represents the presence of
evidence which could be positive or negative. For example,
the FS value for OWOM propagates U through the Unknown
links. In this case, U represents a missing piece of evidence
that should be addressed by users.

As softgoals often have multiple incoming contribution
links, multiple labels might apply at once, e.g., Q is both U

and PD. Such cases can be combined into a single label for
subsequent propagation; possibly making use of the Conflict
label, (C) indicating the presence of positive and negative
evidence of roughly the same strength. In this paper, we
combine evidence automatically: we select U when present,
or C when evidence is both positive and negative, and other-
wise select the minimum (most pessimistic) label. When an
intention is the target of both a dependency link and another
type of link (decomposition, means-ends, contribution), the
propagation results from both types of links are combined via
AND (taking the minimum label). The N (no label) symbol is
used to explicitly indicate the absence of other labels.

Domain experts and analysts can determine whether the
analysis results are sufficient or viable. In our example, the
analysis indicates that the MI actor is unable to satisfy OM
(FD), so OWOM is a non-viable alternative. In this case, the
modeler would analyze other model alternatives (LSSM) or
perform additional elicitation to find further alternatives.

Model Uncertainty. As mentioned, the scenario involves
several points of uncertainty. We summarize this uncertainty
using free-form notes in model B in Fig. 2. We can use the
MAVO method described in [18] to formally express the
uncertainties in our model, shown in the same figure.

MAVO uses four types of annotations, each adding support
for a different type of uncertainty in a model. The May
annotation allows us to express uncertainty about the presence
of an element in a model. Annotating it with M indicates that
it “may exist”; otherwise, it “must exist”. E.g., in model B,
we are unsure if the MP’s task DCD is present in the model.
Uncertainty is reduced by removing the May annotation or
eliminating the element altogether.

The Abs annotation allows a modeler to express uncertainty
about the number of elements in the model. An S represents

35

TABLE I
ANALYSIS QUESTIONS OVER UNCERTAIN GOAL MODELS.

Q1 What are the analysis results given a particular analysis alternative in the goal model, considering model uncertainties?
Q2 Can viable choices be made over the set of results from Q1?
Q3 Can viable choices be achieved simultaneously? If so, find example uncertainty resolutions that achieve choices.
Q4 Given choices, what uncertainty reductions are forced? How can we target elicitation?
Q5 Are uncertainty reductions suggested by Q3 reasonable given the domain? If not, find further uncertainty reductions.

TABLE II
SELECTED PROPAGATION RULES.

Link Type Original Rule Example MAVO Rule
Dependency

isid
D (v ∈ V) v(is)⇒ v(id) ∀t : Task, g : Goal · (Dep(t, g) ∧ FS(g))⇒ FS(t)

Decomposition

i1 in…

id
(
∧n

j=1 FS(ij))⇒ FS(id) ∀t1 . . . tn : Task, g : Goal · (Decomp(t1 . . . tn, g) ∧
∧n

j=1 FS(tj))⇒ FS(g)
.
(
∨n

j=1 FD(ij))⇒ FD(id) ∀t1 . . . tn : Task, g : Goal · (Decomp(t1 . . . tn, g) ∧
∨n

j=1 FD(tj))⇒ FD(g)

Contribution
idis c

(c = Make) FS(is)⇒ FS(id) ∀t : Task, g : Goal · (Make(t, g) ∧ FS(t))⇒ FS(g)
(c = Help) FS(is)⇒ PS(id) ∀t : Task, g : Goal · (Help(t, g) ∧ PS(t))⇒ PS(g)
.
(c = Unk, v ∈ V) v(is)⇒ U(id) ∀t : Task, g : Goal · (Unknown(t, g) ∧ v(t))⇒ U(g)
(c ∈ {Make,Help . . .}) U(is)⇒ U(id) ∀t : Task, g : Goal · (c(t, g) ∧ U(t))⇒ U(g)

a “set”; omitting the annotation means that the element is
“particular”. E.g., the S-annotated operation OWOM in actor
MI in model B indicates that there are some such operations
but they are as yet unknown. Uncertainty is reduced by
elaborating the content of S elements into a set of (possibly
annotated) elements.

The Var annotation allows a modeler to express uncertainty
about the distinctness of individual elements in the model
by annotating an element as a “variable” (V); omitting the
annotation means that the element is a “constant”. Uncertainty
is reduced by merging variable elements with constants or
other variables. E.g., while it is known that task DMD should
be in model B, it is not yet clear which actor should perform it.
Yet it must be assigned to some actor for i* well-formedness.
We thus put the task in a V-annotated actor, allowing it to
merge with other actors and eventually be assigned to a “real”
(constant) actor.

The OW annotation allows a modeler to explicitly state
whether her model is incomplete (i.e., can be extended) (INC)
or complete (the default). Here the annotation is at the level of
the entire model rather than individual elements. Our model
B is complete.

Analysis with Uncertainty. We want to be able to make early
decisions over alternative requirements, even in the presence
of uncertainty. Given our explicit recording of uncertainties in
the modeling process, we want to know how their presence
affects analysis results (Fig. 1), and how such uncertainties
can be used to guide analysis and elicitation. Specifically, (Q1)
how do the uncertainties in model B affect analysis results in
model A? For example, if we are not sure about the presence
of PrD (labelled with FD), perhaps the MP actor may be able
to satisfy PiM (i.e., this task could be FS). If the MP actor can
satisfy PiM, then the satisfaction of OM in the MI actor may
actually be unknown (U). We wish to see all of the possible
labels given possible uncertainty reductions in the model.

Given the answer to Q1, we wish to answer additional
questions as listed in Table I. The rest of this paper describes a

method which takes uncertainty into account when analyzing
goal models, allowing us to answer these questions.

III. PRELIMINARIES

In this section, we give the necessary formal background on
goal model analysis and uncertainty via the MAVO framework.

A. Goal Model Analysis

The forward propagation algorithm [11] begins by applying
initial labels corresponding to the analysis question to the
model, queuing the labels. All labels in the queue are prop-
agated through outgoing links, with multiple incoming labels
resolved using human judgment as in [11] or, in our case, rules
as described in Sec. II. Propagation ends when the label queue
is empty (see [11] for a discussion of termination).

The above procedure uses six predicates over model
elements corresponding to the six analysis labels (V =
{FS(),PS(),C(),U(), PD(),FD()}), where the predicate
holds if the label applies.

Initial Analysis Labels. A selected subset of intentions
within a goal model are assigned initial analysis labels, e.g.,
FS(OWOM) and FD(LSSM) in Fig. 1.

Propagation Constraints. The procedure provides rules in
order to facilitate a standard propagation of labels through goal
model relationships (links). The Original Rule column of Table
II presents selected propagation rules for the dependency,
decomposition, and contribution relationships depicted in the
Link Type columns. Dependency links propagate evidence
unchanged, decomposition combines evidence using “AND”
(minimum), while means-ends combines evidence using “OR”
(maximum). The following order between labels is used:
(FS ≥ PS ≥ U ≥ C ≥ PD ≥ FD). Furthermore,
FS(i)⇒ PS(i) and FD(i)⇒ PD(i), where i is an element in
the model.

Means-end rules (omitted from Table II) are derived from
decomposition rules by replacing

∧
with

∨
and vice versa.

Contribution links can weaken or negate evidence, or make
evidence unknown, depending on the incoming label, (v(is)),

36

and the type of contribution link. For example, the second
to last row of the table says that for an Unknown (Unk)
contribution link, regardless of the incoming analysis label
(v(is)), the U label is propagated (U(id) holds).

B. Capturing Uncertainty with MAVO

MAVO [20] is an approach for adding uncertainty informa-
tion as annotations in models. Although MAVO can be applied
to any type of goal model, this exposition uses i* models. A
MAVO i* model contains annotations on the model elements
that together represent a set of different possible concrete (i.e.,
ordinary) i* models that would resolve the uncertainty:

Definition 1 (MAVO i* model): A MAVO i* model M
consists of an i* base model, denoted bs(M), and a set
of annotations. [M] denotes the set of i* models called the
concretizations of M . M is called consistent iff it allows at
least one concretization, i.e., [M] 6= ∅.
Formalizing MAVO. We now describe how MAVO annotations
formally characterize a set of i* models – it is the foundation
of the method for encoding and automatically reasoning with
MAVO models. The i* metamodel represents the set of well-
formed i* models and can be expressed as a First Order Logic
(FOL) theory.

Definition 2 (i* metamodel): The i* metamodel is an FOL
theory T = 〈Σ,Φ〉, where Σ is the signature with sorts
representing the entity types (e.g., Actor, Intention, Task) and
predicates representing the relations (e.g., Task decomposes
Goal); Φ is a set of sentences representing the i* well-
formedness constraints (e.g., multiplicities, dependencies be-
tween actors). The models that conform to T are the finite
FO Σ-structures that satisfy Φ according to the usual FO
satisfaction relation. We denote this set of models by Mod(T).

Like the i* metamodel, a MAVO i* model also represents
a set of models and thus can also be expressed as an FOL
theory. Specifically, for a MAVO i* model M , we construct a
theory FO(M) s.t. Mod(FO(M)) = [M]. We illustrate the
construction of FO(B) for MAVO i* model B in Fig. 2.

(1) Let G = bs(B) be the base model of model B. We define
a new MAVO i* model BG with G as its base model and its
sole concretization, i.e., bs(BG) = G and [BG] = {G}. We
call BG the ground model of B.

(2) To construct the FOL encoding of BG, FO(BG), we
extend the i* metamodel to include a unary predicate for each

ΣG has unary predicates MP(Actor), AM(Task)), . . . ,
and binary predicates AMinMP(Task,Actor), . . .

ΦG contains the following sentences:
(Complete) (∀x : Actor ·MP(x) ∨MS(x) ∨ DD(x) ∨ . . .)∧

(∀y : Task, x : Actor · in(y, x)⇒ (AMinMP(y, x) ∨ . . .)) ∧ . . .
MP:

(ExistsMP) ∃x : Actor ·MP(x)
(UniqueMP) ∀x, x′ : Actor ·MP(x) ∧MP(x′)⇒ x = x′

(DistinctMP−MS)∀x : Actor ·MP(x)⇒ ¬MS(x)
(DistinctMP−DD)∀x : Actor ·MP(x)⇒ ¬DD(x)
(DistinctMP−MI) ∀x : Actor ·MP(x)⇒ ¬MI(x)

similarly for all other element and relation predicates

Fig. 3. The MAVO predicates and constraints for G.

element in G and a binary predicate for each relation instance
between the elements in G. Then, we add constraints to ensure
that the only first order structure that satisfies the resulting
theory is G itself:

FO(BG) = 〈Σ ∪ ΣG,Φ ∪ ΦG〉 (see Def. 2)

where ΣG and ΦG are model G-specific predicates and con-
straints, defined in Fig. 3. We refer to ΣG and ΦG as the MAVO
predicates and constraints, respectively.

The FO structures that satisfy FO(BG) are those i* models
that satisfy the constraint set ΦG in Fig. 3. Assume that K is
one such i* model. The MAVO constraint Complete ensures
that K contains no more elements or relation instances than
G. Now consider the actor MP in G. ExistsMP says that K
contains at least one actor called MP, UniqueMP – that it
contains no more than one actor called MP, and the clauses
DistinctMP−∗ – that the actor called MP is different from all
the other actors. Similar MAVO constraints are given for all
other elements and relation instances in G. These constraints
ensure that FO(BG) has exactly one concretization and thus
K = G.

(3) We construct FO(B) from FO(BG) by removing con-
straints corresponding to the annotations in B. This constraint
relaxation allows more concretizations and thus represents
increasing uncertainty. If B were incomplete, we could express
this fact by removing the Complete clause from ΦG, thereby
allowing concretizations to be those i* models that extend G.
Similarly, expressing the effect of the M, S and V annotations
for an element E corresponds to relaxing ΦG by removing
ExistsE , UniqueE and DistinctE−∗ clauses, respectively. E.g.,
removing the DistinctDD−∗ clauses expresses the V annotation
on the actor DD (i.e., it may or may not be distinct from
another actor).

IV. ANALYSIS OF GOAL MODELS WITH MAVO
UNCERTAINTY

In this section, we describe our key contribution, the
combination of goal model analysis with MAVO uncertainty
annotations, “lifting” goal model analysis from conventional
to uncertain goal models.

A. Correctness Condition for MAVO Goal Model Analysis

A MAVO goal model represents a set of goal models (i.e.,
its concretizations), whereas goal model analysis applies only
to a single goal model. Thus, correct analysis results over a
MAVO goal model should aggregate the analysis results over
all of its concretizations:

Definition 3 (Correct Labeling): Let M be a MAVO goal
model. M is correctly labelled iff for all intentions I in M ,
label v is assigned to I iff ∃m ∈ [M], i ∈ Im · v(i), where Im
is the set of intentional elements mapped to I in m.
Thus, a label gets applied to an intention when there is a
concretization that has that label on the intention. Model C
in Fig. 4 shows a correct analysis labeling of our example
model from Fig. 2. Here we use a shorthand notation for
sets of possible labels, e.g., N for {FS, FD, N } in PiM.

37

C

MI
MP

OM

Q LE

 (S)

OWOM

(S
)

(MS) Dep (MS) D
(MS) D

Unknown

U
n

k
n

o
w

n

AM

PiM

(MS) PrD

(comp)

(S) D

(M
S
) D

(S
) D

MS

D

D
SM

LSSM

MBS

H
e
lp

H
elp

LEP

(M
S)

(V) AMD

(V
)

(V) DD

(VM)

(M) DCD

DMD

(M
)

(VM) CMD

(M) UP

(M
)

MBSD

(M
S)

N

N

N

N

N

N

N

N

?

?
?

Forced
Uncertainty
Reduction

(M
)

Fig. 4. Analysis of an alternative considering model uncertainty showing forced uncertainty reductions (result of Q1).

Thus, the FS label in PiM means that there exists at least one
concretization in which at least one concrete intention mapped
to PiM has label FS. An example of such a concretization is
one in which PiM has the two sub-intentions AM and AMD
with labels FS (they are initial labels indicated by the shading)
and the remaining sub-intentions removed (possible because
they are M-annotated). In this concretization, PiM gets the
propagated label FS.

B. Constructing the MAVO Goal Analysis Encoding

In Sec. III-B, we described construction of an FOL encoding
FO(M) for every MAVO model M , whose satisfying instances
are exactly the concretizations of M (see Fig. 3 for an exam-
ple). We can incorporate goal analysis into this formalization
by adding constraints that express the initial conditions and
propagation rules as described in [11]. We define this extended
FOL encoding as follows:

Definition 4 (Extended Encoding): Let M be an i* MAVO
model, FO(M) = 〈Σ∪ΣM ,Φ∪ΦM 〉 be its FOL encoding and
Intention ∈ Σ its sort for intentions. The extended encoding
FOe(M) is a tuple FOe(M) = 〈Σ∪ΣM ∪Σlabel,Φ∪ΦM ∪
Φl ∪ Φp〉, where Σlabel = {FS(Intention), . . . ,N(Intention)}
are unary predicates representing the possible analysis labels
on intentions, Φl is the set of constraints encoding initial
analysis values and Φp is the set of constraints encoding the
analysis propagation rules. We define Φe

M = Φ∪ΦM∪Φl∪Φp.
The above definition ensures that each instance of FOe(M)

is a concretization of M with the analysis labeling that would
result from performing goal analysis on it with the initial
labeling defined by Φl. Thus, it guarantees that M satisfies the
Correct Labeling condition (Def. 3) and we can use FOe(M)
to reason about the analysis results on the concretizations of
M . Specifically, we use it to answer the analysis questions
posed over our example model in Sec. II.

Initial Analysis Labels (Φl). Goal model analysis starts with a
set of initial labels representing the analysis question (e.g., the
FS label applied to OWOM and FD applied to LSSM, i.e., the
shaded intentions in model A in Fig. 1). On the MAVO model
level, we interpret these labels as follows: if an intention i in
a MAVO goal model is given an initial label, then all concrete
intentions mapped to i must also have this label. A set of
constraints Φl expresses this condition. For example, to say
that the initial FS label is applied on OWOM, (FS(OWOM)),
we add the constraint ∀i : Intention · OWOM(i) ⇒ FS(i) to
Φl.

We enforce the constraint that all leaf intentions (intentions
with no incoming links) which are not explicitly assigned
an initial label must be assigned an explicit N (none) label.
Similarly, we enforce a constraint that each intention in the
concrete model must have only one analysis label. These initial
constraints are added to Φl.

Propagation Constraints (Φp). Φp consists of the FOL
encoding of the propagation rules summarized in Sec. III-A
and described in [8]. For example, if an FS-labelled task is
connected to a goal by a Make contribution link, the goal
should also get label FS. This rule is encoded in the original
goal model analysis using the predicate FS(is) ⇒ FS(id).
In order to encode it using MAVO, we add the constraint
∀t : Task, g : Goal · (Make(t, g) ∧ FS(t)) ⇒ FS(g), where
Task and Goal are the sorts for tasks and goals, respectively,
for the MAVO model being encoded. We call the set of
all such propagation constraints Φp. Similar constraints are
added for the propagation of other labels on other element
types through other links (see the third column of Table II
for more examples). The full set of propagation constraints
in our encoding covers all combinations of element types,
relationships, and intentions.

38

C. Determining Possible Analysis Labels

We can use our encoding to find analysis results given a par-
ticular alternative (set of initial labels) and model uncertainty,
answering Q1. By Def. 3, a label can hold for an intention in
a MAVO model iff there exists a concretization containing a
corresponding concrete intention with that label. The following
proposition shows we can use the extended encoding FOe(M)
to check this condition.

Proposition 1 (Analysis Labeling): Let M be a MAVO i*
model with an analysis label set assigned to each intention. M
is correctly labelled according to Def. 3 iff for all intentions I
in M , label v is assigned to I iff Φe

M ∪ (∃i : Intention · I(i)∧
v(i)) is satisfiable.
For each possible labeling of intention I with label v, this
checks whether the labeling is consistent with Φe

M . If so, there
must exist a concretization with this labeling. Checking this
for all labellings ensures that condition in Sec. 3 is met. For
example, for model C , to check whether PiM should have
label FS, we ask whether Φe

C∪(∃i : Intention ·PiM(i)∧FS(i))
is satisfiable. It is satisfiable since there is a concretization (see
Sec. 3) in which PiM gets the propagated label FS. Performing
this check for every possible combination of model element
and analysis label allows us to find results across the entire
model, as we do in model C.

V. REASONING METHODOLOGY

In our motivating scenario, we raised five analysis questions
(Table I). We have shown how to answer Q1, finding possible
analysis labels given uncertainty, in Sec. IV-C. In this section,
we describe how the combination of goal model analysis and
MAVO uncertainty can be used to answer Q2-Q5, providing
an analysis methodology guiding users in asking the questions
and interpreting the answers. We summarize our methodology
in Fig. 5. Steps which require manual judgment are indicated
by the presence of an actor.

Answering Q2: Making Choices. Given the set of analysis
results over the uncertain model, users can select a subset of
the results that they consider acceptable. We call this subset
choices. In our example, the fully satisfied () value is the
most desired for PiM in Model C, while unknown () value
is the most desired for OM (circled in model C).

Answering Q3: Checking Simultaneous Achievablility
of Choices. Once analysis choices have been selected, we
can use the extended encoding to check if such choices are
simultaneously achievable in one or more concretizations.
This is done by encoding the desired label choices as
constraints to require that concretizations simultaneously
achieve these labels. For example, for model C, our choices
consist of U for OM and FS for PiM and so we define the
following constraints: (1) ∀i : Intention · OM(i) ⇒ U(i) and
(2) ∀i : Intention · PiM(i) ⇒ FS(i). We call the set of all
such constraints Φc and use it to check the existence of a
concretization satisfying these choices.

Pose Analysis Question (Alternative)

Start

(Q1) Apply Analysis

(Q4) Find Forced Uncertainty Reductions

[Acceptable choices found]

[Forced reductions acceptable]

(Q2) Make choices

Viable Alternative Found

(Q5) Evaluate Uncertainty Reductions

[Choices achieved with certainty]

(Q3) Check Simultaneous Achievability

[Choices simultaneously achievable]

[Further
analysis/

elicitation]

Fig. 5. Goal model analysis methodology with actors indicating manual
tasks.

Proposition 2 (Choice Achievablility Check): Given a
MAVO model M and a constraint set Φc encoding a set of
choices, this set of choices is simultaneously achievable iff
Φe

M ∪ Φc is satisfiable.
For model C, checking the constraints Φe

C∪Φc shows that our
label choices (U for OM and FS for PiM) are simultaneously
achievable.

Answering Q4: Finding Forced Uncertainty Reductions.
Once the users check their choices for simultaneous achiev-
ablility, we can use the approach defined in [21] to determine
which uncertainties are forced, i.e., those which must be
resolved in all concretizations in order to achieve analysis
choices. In our example, the forced uncertainty reductions
are those related to PrD. In this case, the decomposition link
must be removed for our choices to be achieved. We indicate
this in model C by making the link and the corresponding M
uncertainty annotation red and bold. Such information allows
users to target elicitation on a subset of uncertainties in the
model. In our example, users judge this forced resolution to
be acceptable, and continue with the analysis process.

Answering Q5: Evaluating Uncertainty Reductions. As an
outcome of checking for simultaneous achievablility in Q3, we
produce a concrete model with uncertainties resolved such that
choice values are achieved. Model D in Fig. 6 is a particular
concretization for our example. It shows the meeting scheduler
example after a set of uncertainty reductions (in bold) which
allow achievement of the chosen analysis results. For example,
the M-annotated task PrD and the uncertainty concerning UP
have been removed when compared to model C.

In our example, users judge some, but not all, of the
suggested uncertainty reductions in D to be consistent with
the domain. For example, it is deemed acceptable that the MP

39

D
MI MP

OM

Q LE

OWOM

Dep D D

Unknown
U

n
k
n

o
w

n
AM

PiM

D

D

MS

MBSD

D

D SM

LSSM

MBS

H
e
lpH

el
p

LEP

AMD

DCD

CMD

UP

Removed in
concretization

Uncertainty
Removed

DD

DMD

N

N

N

N

?
?

?

Fig. 6. One possible concretization achieving analysis choices in Model C in Fig. 4 (result of Q3).

E

MI
MP

OM

Q LE

 (S)

OWOM

(S
)

(MS) Dep (MS) D
(MS) D

Unknown

U
n

k
n

o
w

n

AM

PiM

(comp)

(S) D

(S
) D

(S
) D

MS

D

D
SM

LSSM

MBS

H
e
lp

H
elp

LEP

(V) AMD

(V
)

(V) DD

(V)

DCD

DMD

(V) CMD

UP

MBSD

?
?

?

Fig. 7. Chosen and forced uncertainty reductions achieving analysis choices (results of Q5, reapplying Q1).

actor will not perform the task PrD (removed in D); instead,
she can keep track of participant details using the UP task. In
another example, it is deemed unacceptable for the dependency
link from resource D to be removed from the model altogether.
This link should now depend on UP instead of the removed
PrD. Further uncertainties are accepted or rejected and the
model is updated to reflect these decisions (uncertainties
are removed, model elements are changed, analysis (Q1) is
reapplied).

When iterating over analysis results, different constraints
can be added in order to determine if concretizations satisfying
them exist, producing one such concretization. For example,
when finding concretizations for model C, we may want to
specify that actors DD and MP cannot be merged together,
expressed by the property Ψ. Checking Φe

C∪Φc∪{Ψ} produces
a concretization in which Ψ holds.

An iterative process of finding concrete models, constrain-
ing the problem and accepting or rejecting suggested uncer-
tainty reductions will lead, in the optimal case, to a model in
which choices are achieved with certainty and a viable set of
alternative requirements is found. Otherwise, the model may
not contain viable alternatives, prompting further elicitation.
Alternative outcomes are discussed in Sec. VI.

In our running example, iterative analysis directed us to
reduce targeted uncertainty in the model and the domain such
that we could achieve our analysis choices with certainty. We
show the final model resulting from this process, model E,
in Fig. 7. In the model without uncertainty, A, we rejected
the alternative that included OWOM. Yet considering model
uncertainty, as we did in model C, made this alternative
viable. We have determined the viability of this alternative
without the need to remove all model uncertainty. Applying

40

this methodology iteratively can enable exploring the viability
of other alternatives in the model (e.g., satisfying LMSM),
allowing for a final selection between alternative requirements.

VI. EXPERIENCE AND DISCUSSION

Implementation. We have implemented the automatable ques-
tions in our methodology (Q1, Q3, Q4), building on top
of Model Management Tool Framework (MMTF) [17]. Our
implementation automatically converts an i* model with un-
certainty annotation 〈ΣM,ΦM〉, together with the i* metamodel
〈Σ,Φ〉, analysis constraints (ΦM ∪Φp), and initial labels (Φl),
into their corresponding FOL encoding.

Our implementation uses an SMT solver, specifically, Z3
version 4.3.12. It answers Q1 by iteratively calling the solver,
checking each possible label for each intention. We answer Q3
by adding the user choices to the encoding (Φc) and checking
for satisfiability. The result is a suggested concrete model.
Q4 is answered using the implementation outlined in [21],
integrated into the MMTF Framework.

Experience. Answering questions Q1, Q3, and Q4 for the
illustrated alternative in the Meeting Scheduler example took
20.72, 0.18, and 7.31 seconds, respectively, using a PC with
Intel Core i7-2600 3.40 GHz x 4 cores and 8 GB RAM.
We have applied our approach to three additional alternatives
for the Meeting Scheduler and to a larger example, Inflo. A
description of these models, analysis results, SMT encodings,
and running times can be found online3.

Alternative Analysis Paths. Our scheduler example described
a successful analysis path through our methodology, leading
to a viable analysis alternative with certainty.

However, there may be less successful outcomes which
correspond to back-edges in Fig. 5. We claim that even those
scenarios that do not directly lead to a viable alternative
can help eliminate alternative sets of requirements, reduce
uncertainty, and refine the model.

In one scenario, the set of possible analysis values may
not yield viable choices, (i.e., Q2 is answered negatively).
For example, if the analysis in model D in Fig. 6 yielded
only negative values (PD or FD) for both PiM and OM, users
could evaluate further alternatives in the model (e.g., LSSM),
or perform further elicitation to discover other requirement
alternatives.

In another scenario, if users are able to find sufficient choice
values over uncertain results but these values are not simul-
taneously achievable (Q3 is answered negatively), users must
revise their choices, or evaluate further alternatives. Similarly,
if critical uncertainty reductions (Q4) are not consistent with
the domain, options include relaxing choice values, finding an
alternative set of choice values making different trade-offs, or
evaluating further alternatives.

If the reductions in uncertainty evaluated as part of Q5 are
not consistent with domain knowledge, users can articulate the
reasons for such inconsistencies and either revise the model

2http://z3.codeplex.com/
3http://www.cs.utoronto.ca/~jenhork/AnalyzingUncertainGM

and MAVO uncertainties to reflect this understanding, or add
more specific constraints to the SMT encoding (see Sec. V for
an example).

Backward Reasoning. In this paper, we have illustrated our
technique using forward analysis, i.e., placing labels on leaf
elements and asking “what if?” questions. It is also possible
to conduct backward analysis by placing analysis labels on
root elements and asking if it is possible to achieve them
and if so, how? [8]. Our current implementation can support
backward analysis by removing the constraint which assigns
the N label to all leaf intentions not explicitly assigned an
initial label. In this case, the set of possible analysis labels
presented when answering Q1 includes possible labels which
satisfy backward constraints and labels made possible via
uncertainty. Future work will focus on making the sets of
possible labels comprehensible to the user, both in forward
and backward analysis, e.g., understanding how they can be
used to visualize consistent solutions over the whole model.

VII. RELATED WORK

Uncertainty in RE. Several approaches consider uncertainty
in requirements, often as part of an overall strategy for manag-
ing uncertainty in software development (e.g, [12], [16]). The
MAVO approach adopted in this work takes a different view
on uncertainty in RE, allowing users to capture uncertainty on
top of their preferred RE modeling language [20].

Much of the investigation of uncertainty in RE concerns
adaptive systems. Such systems aim to respond to run-time
uncertainty by specifying functional adaptations as part of
RE (see [22] for overview). MAVO is aimed to represent
uncertainty in the content, or structure, of requirements models
arising as part of elicitation and design, ideally resolved as part
of the software development process, and does not explicitly
handle run-time or environmental uncertainty.

Uncertainties in software development are often considered
as part of risk management, (e.g, [13]). Although certain risk
factors (e.g., an unknown budget) may motivate the presence
of model uncertainty, MAVO is not explicitly intended to
capture risks.

Partial Modeling. May uncertainty in MAVO is related to
various modal extensions to behavioural modeling formalisms.
For example, Modal Transition Systems (MTSs) [14] allow
introduction of uncertainty about transitions on a given event,
whereas Disjunctive Modal Transition Systems (DMTSs) [15]
add a constraint that at least one of the possible transitions
must be taken in the refinement. Concretizations of these mod-
els are Labelled Transition Systems (LTSs). MTSs and DMTSs
have been used to capture some forms of uncertainty in early
design models [23]. The MAVO approach allows specification
of more uncertainty types, although it is applicable only to
structural models.

Goal Model Analysis. Several goal model analysis procedures
have been proposed, facilitating decision-making in RE (see
[10] for a survey). In this paper, we have focused on qualitative
satisfaction analysis. Quantitative approaches (e.g., [7]) are

41

appropriate for later, detailed requirements analysis, where
reliable metrics can be found, and are less applicable to
possibilistic, early uncertainties. Other approaches consider
uncertainty in goal models through varying contexts (e.g.,
[1]) or by analyzing risk (e.g., [2]). These approaches capture
uncertainty inherent in the domain, for example, a change in
user context or failure of a component, while our approach
focuses on evolving uncertainty arising as part of requirements
elicitation, ideally resolved before implementation.

Further approaches have applied SAT solving to goal mod-
els, using interpolation to automatically refine operational
goals [5]. This technique is not aimed for decision-making or
trade-off analysis but to automatically find goal operational-
izations which satisfy safety and liveness goals.

Related work has explored the application of search based
(SB) techniques to the problem of requirement selection,
finding non-dominated sets of optimal requirements [25].
Yet application of SB techniques requires quantitative utility
functions mapping all alternatives to all objectives, which are
difficult to elicit with accuracy in early RE. Our approach fo-
cuses on qualitative analysis over goal models with uncertainty
which are more feasible for early decision making.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have motivated the need for support of
early decision-making in the presence of uncertainty. We pro-
vide such support via an explicit consideration of uncertainty
as part of goal model analysis. We have provided a tool-
supported methodology, allowing users to answer five analysis
questions using uncertain goal models. The result of this
process is a reduction of necessary uncertainties, accepting
or rejecting alternative requirements with certainty. This work
is the first example application of the MAVO uncertainty
framework [20] taking semantics of a target language into
account (in our case, such semantics has been provided in
[11], [8]).

While we chose i* as a particular goal modeling framework
and [11] as a particular analysis algorithm, our approach can
be applied more generally to work with other goal modeling
frameworks (e.g., NFR [3] or KAOS [4]) or other qualitative
goal model analysis approaches (e.g., [3], [7]), especially
if such approaches come with their own formal semantics,
translatable into FOL. We are currently working to improve
the usability of MAVO labels (e.g., representing uncertainty
over link types [6]).

We plan to further evaluate our technique by applying it to
industrial RE case studies. The visual presentation of multiple
analysis labels should be evaluated and improved through
user studies. This work should be further integrated with goal
model visualization techniques, helping users understand why
the tooling produces no solution for a model [9]. Finally, we
are currently considering the consequences of analysis over
incomplete models, in a open world.

ACKNOWLEDGMENTS

This work was supported in part by ERC advanced grant
267856, “Lucretius: Foundations for Software Evolution”,
www.lucretius.eu.

REFERENCES

[1] R. Ali, F. Dalpiaz, and P. Giorgini. A Goal-Based Framework for Con-
textual Requirements Modeling and Analysis. Requir. Eng., 15(4):439–
458, Nov. 2010.

[2] Y. Asnar, V. Bryl, and P. Giorgini. Using Risk Analysis to Evaluate
Design Alternatives. In Proc. of AOSE’07, pages 140–155, 2007.

[3] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-Functional
Requirements in Software Engineering. Kluwer Academic Publishers,
2000.

[4] A. Dardenne, A. V. Lamsweerde, and S. Fickas. Goal-Directed Require-
ments Acquisition. Sci. of Comp. Prof., 20(1-2):3–50, 1993.

[5] R. Degiovanni, D. Alrajehy, N. Aguirre, and S. Uchitely. Automated
goal operationalisation based on interpolation and sat solving. In Proc.
of ICSE’14, 2014.

[6] M. Famelis and S. Santosa. MAV-Vis: A Notation for Model Uncertainty.
In Proc. of MiSE’13, pages 7–12, 2013.

[7] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Reasoning
with Goal Models. In Proc. of ER’02, volume 3084 of LNCS, pages
167–181, 2002.

[8] J. Horkoff and E. Yu. Finding Solutions in Goal Models: An Interactive
Backward Reasoning Approach. In Proc. of ER’10, volume 6412 of
LNCS, page 59, 2010.

[9] J. Horkoff and E. Yu. Visualizations to support interactive goal model
analysis. In Proc. of REV’10, pages 1–10, 2010.

[10] J. Horkoff and E. Yu. Analyzing Goal Models: Different Approaches
and How to Choose among Them. In Proc. of SAC’11, pages 675–682,
2011.

[11] J. Horkoff and E. Yu. Interactive goal model analysis for early
requirements engineering. Requirements Engineering (accepted with
minor revisions), 2014.

[12] H. Ibrahim, B. H. Far, A. Eberlein, and Y. Daradkeh. Uncertainty
Management in Software Engineering: Past, Present, and Future. In
Proc. of CCECE’09, 2009.

[13] S. Islam and S. H. Houmb. Integrating Risk Management Activities into
Requirements Engineering. In Proc. of RCIS’10, pages 299–310, 2010.

[14] K. G. Larsen and B. Thomsen. A Modal Process Logic. In Proc. of
LICS’88, 1988.

[15] P. Larsen. The Expressive Power of Implicit Specifications. In Proc. of
ICALP’91, volume 510 of LNCS, pages 204–216, 1991.

[16] J. Noppen, P. van den Broek, and M. Akşit. Software Development with
Imperfect Information. J. Soft Computing, 12(1):3–28, 2008.

[17] R. Salay, M. Chechik, S. Easterbrook, Z. Diskin, P. McCormick,
S. Nejati, M. Sabetzadeh, and P. Viriyakattiyaporn. An Eclipse-Based
Tool Framework for Software Model Management. In Proc. of OOPSLA
Eclipse Wrksp., pages 55–59, 2007.

[18] R. Salay, M. Chechik, and J. Horkoff. Managing Requirements Uncer-
tainty with Partial Models. In Proc. of RE’12, pages 1–10, 2012.

[19] R. Salay, M. Chechik, J. Horkoff, and A. Sandro. Managing re-
quirements uncertainty with partial models. Requirements Engineering,
18(2):107–128, 2013.

[20] R. Salay, M. Famelis, and M. Chechik. Language Independent Refine-
ment Using Partial Modeling. In Proc. of FASE’12, volume 7212 of
LNCS, 2012.

[21] R. Salay, J. Gorzny, and M. Chechik. Change Propagation Due to
Uncertainty Change. In Proc. of FASE’13, pages 21–36, 2013.

[22] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein.
Requirements-Aware Systems: A Research Agenda for RE for Self-
adaptive Systems. In Proc. of RE’10, pages 95–103, 2010.

[23] S. Uchitel and M. Chechik. Merging Partial Behavioural Models. In
Proc. of SIGSOFT FSE’04, pages 43–52, 2004.

[24] E. Yu. Towards Modelling and Reasoning Support for Early-Phase
Requirements Engineering. In Proc. of RE’97, pages 226–235, 1997.

[25] Y. Zhang, A. Finkelstein, and M. Harman. Search based requirements
optimisation: Existing work and challenges. In Proc. of REFSQ’08,
pages 88–94, 2008.

42

