
Deep learning via Hessian-free optimization

James Martens JMARTENS@CS.TORONTO.EDU

University of Toronto, Ontario, M5S 1A1, Canada

Abstract
We develop a 2nd-order optimization method
based on the “Hessian-free” approach, and apply
it to training deep auto-encoders. Without using
pre-training, we obtain results superior to those
reported by Hinton & Salakhutdinov (2006) on
the same tasks they considered. Our method is
practical, easy to use, scales nicely to very large
datasets, and isn’t limited in applicability to auto-
encoders, or any specific model class. We also
discuss the issue of “pathological curvature” as
a possible explanation for the difficulty of deep-
learning and how 2nd-order optimization, and our
method in particular, effectively deals with it.

1. Introduction
Learning the parameters of neural networks is perhaps one
of the most well studied problems within the field of ma-
chine learning. Early work on backpropagation algorithms
showed that the gradient of the neural net learning objective
could be computed efficiently and used within a gradient-
descent scheme to learn the weights of a network with mul-
tiple layers of non-linear hidden units. Unfortunately, this
technique doesn’t seem to generalize well to networks that
have very many hidden layers (i.e. deep networks). The
common experience is that gradient-descent progresses ex-
tremely slowly on deep nets, seeming to halt altogether be-
fore making significant progress, resulting in poor perfor-
mance on the training set (under-fitting).

It is well known within the optimization community that
gradient descent is unsuitable for optimizing objectives
that exhibit pathological curvature. 2nd-order optimization
methods, which model the local curvature and correct for
it, have been demonstrated to be quite successful on such
objectives. There are even simple 2D examples such as the
Rosenbrock function where these methods can demonstrate
considerable advantages over gradient descent. Thus it is
reasonable to suspect that the deep learning problem could
be resolved by the application of such techniques. Unfortu-

Appearing in Proceedings of the 27 th International Conference
on Machine Learning, Haifa, Israel, 2010. Copyright 2010 by the
author(s)/owner(s).

nately, there has yet to be a demonstration that any of these
methods are effective on deep learning problems that are
known to be difficult for gradient descent.

Much of the recent work on applying 2nd-order methods
to learning has focused on making them practical for large
datasets. This is usually attempted by adopting an “on-line”
approach akin to the one used in stochastic gradient descent
(SGD). The only demonstrated advantages of these meth-
ods over SGD is that they can sometimes converge in fewer
training epochs and that they require less tweaking of meta-
parameters, such as learning rate schedules.

The most important recent advance in learning for deep
networks has been the development of layer-wise unsu-
pervised pre-training methods (Hinton & Salakhutdinov,
2006; Bengio et al., 2007). Applying these methods before
running SGD seems to overcome the difficulties associated
with deep learning. Indeed, there have been many suc-
cessful applications of these methods to hard deep learn-
ing problems, such as auto-encoders and classification nets.
But the question remains: why does pre-training work and
why is it necessary? Some researchers (e.g. Erhan et al.,
2010) have investigated this question and proposed various
explanations such as a higher prevalence of bad local op-
tima in the learning objectives of deep models.

Another explanation is that these objectives exhibit patho-
logical curvature making them nearly impossible for
curvature-blind methods like gradient-descent to success-
fully navigate. In this paper we will argue in favor of this
explanation and provide a solution in the form of a pow-
erful semi-online 2nd-order optimization algorithm which
is practical for very large models and datasets. Using
this technique, we are able to overcome the under-fitting
problem encountered when training deep auto-encoder
neural nets far more effectively than the pre-training +
fine-tuning approach proposed by Hinton & Salakhutdinov
(2006). Being an optimization algorithm, our approach
doesn’t deal specifically with the problem of over-fitting,
however we show that this is only a serious issue for one of
the three deep-auto encoder problems considered by Hin-
ton & Salakhutdinov, and can be handled by the usual
methods of regularization.

These results also help us address the question of why
deep-learning is hard and why pre-training sometimes



Deep learning via Hessian-free optimization

helps. Firstly, while bad local optima do exist in deep-
networks (as they do with shallow ones) in practice they do
not seem to pose a significant threat, at least not to strong
optimizers like ours. Instead of bad local minima, the diffi-
culty associated with learning deep auto-encoders is better
explained by regions of pathological curvature in the ob-
jective function, which to 1st-order optimization methods
resemble bad local minima.

2. Newton’s method
In this section we review the canonical 2nd-order optimiza-
tion scheme, Newton’s method, and discuss its main ben-
efits and why they may be important in the deep-learning
setting. While Newton’s method itself is impractical on
large models due to the quadratic relationship between the
size of the Hessian and the number of parameters in the
model, studying it nevertheless informs us about how its
more practical derivatives (i.e. quasi-Newton methods)
might behave.

Newton’s method, like gradient descent, is an optimization
algorithm which iteratively updates the parameters θ ∈ RN

of an objective function f by computing search directions p
and updating θ as θ+αp for some α. The central idea mo-
tivating Newton’s method is that f can be locally approxi-
mated around each θ, up to 2nd-order, by the quadratic:

f(θ + p) ≈ qθ(p) ≡ f(θ) +∇f(θ)⊤p+ 1

2
p⊤Bp (1)

where B = H(θ) is the Hessian matrix of f at θ. Find-
ing a good search direction then reduces to minimizing this
quadratic with respect to p. Complicating this idea is that
H may be indefinite so this quadratic may not have a mini-
mum, and moreover we don’t necessarily trust it as an ap-
proximation of f for large values of p. Thus in practice the
Hessian is “damped” or re-conditioned so that B = H+ λI
for some constant λ ≥ 0.

2.1. Scaling and curvature

An important property of Newton’s method is “scale invari-
ance”. By this we mean that it behaves the same for any
linear rescaling of the parameters. To be technically pre-
cise, if we adopt a new parameterization θ̂ = Aθ for some
invertible matrix A, then the optimal search direction in the
new parameterization is p̂ = Ap where p is the original
optimal search direction. By contrast, the search direction
produced by gradient descent has the opposite response to
linear re-parameterizations: p̂ = A−⊤p.

Scale invariance is important because, without it, poorly
scaled parameters will be much harder to optimize. It also
eliminates the need to tweak learning rates for individual
parameters and/or anneal global learning-rates according
to arbitrary schedules. Moreover, there is an implicit “scal-
ing” which varies over the entire parameter space and is
determined by the local curvature of the objective function.

Figure 1. Optimization in a long narrow valley

By taking the curvature information into account (in the
form of the Hessian), Newton’s method rescales the gradi-
ent so it is a much more sensible direction to follow.

Intuitively, if the curvature is low (and positive) in a par-
ticular descent direction d, this means that the gradient of
the objective changes slowly along d, and so d will remain
a descent direction over a long distance. It is thus sensi-
ble to choose a search direction p which travels far along
d (i.e. by making p⊤d large), even if the amount of reduc-
tion in the objective associated with d (given by−∇f⊤d) is
relatively small. Similarly if the curvature associated with
d is high, then it is sensible to choose p so that the dis-
tance traveled along d is smaller. Newton’s method makes
this intuition rigorous by computing the distance to move
along d as its reduction divided by its associated curvature:
−∇f⊤d/d⊤Hd. This is precisely the point along d after
which f is predicted by (1) to start increasing.

Not accounting for the curvature when computing search
directions can lead to many undesirable scenarios. First,
the sequence of search directions might constantly move
too far in directions of high curvature, causing an unstable
“bouncing” behavior that is often observed with gradient
descent and is usually remedied by decreasing the learning
rate. Second, directions of low curvature will be explored
much more slowly than they should be, a problem exacer-
bated by lowering the learning rate. And if the only direc-
tions of significant decrease in f are ones of low curvature,
the optimization may become too slow to be practical and
even appear to halt altogether, creating the false impression
of a local minimum. It is our theory that the under-fitting
problem encountered when optimizing deep nets using 1st-
order techniques is mostly due to such techniques becom-
ing trapped in such false local minima.

Figure 1 visualizes a “pathological curvature scenario”,
where the objective function locally resembles a long nar-
row valley. At the base of the valley is a direction of low
reduction and low curvature that needs to be followed in
order to make progress. The smaller arrows represent the
steps taken by gradient descent with large and small learn-
ing rates respectively, while the large arrow along the base
of the valley represents the step computed by Newton’s
method. What makes this scenario “pathological” is not
the presence of merely low or high curvature directions,



Deep learning via Hessian-free optimization

Algorithm 1 The Hessian-free optimization method
1: for n = 1, 2, ... do
2: gn ← ∇f(θn)
3: compute/adjust λ by some method
4: define the function Bn(d) = H(θn)d+ λd
5: pn ← CG-Minimize(Bn,−gn)
6: θn+1 ← θn + pn
7: end for

but the mixture of both of them together.

2.2. Examples of pathological curvature in neural nets

For a concrete example of pathological curvature in neu-
ral networks, consider the situation in which two units a
and b in the same layer have nearly identical incoming
and outgoing weights and biases. Let d be a descent di-
rection which increases the value of one of a’s outgoing
weights, say parameter i, while simultaneously decreasing
the corresponding weight for unit b, say parameter j, so
that dk = δik − δjk. d can be interpreted as a direction
which “differentiates” the two units. The reduction associ-
ated with d is −∇f⊤d = (∇f)j − (∇f)i ≈ 0 and the cur-
vature is d⊤Hd = (Hii−Hij)+ (Hjj −Hji) ≈ 0+0 = 0.
Gradient descent will only make progress along d which is
proportional to the reduction, which is very small, whereas
Newton’s methods will move much farther, because the as-
sociated curvature is also very small.

Another example of pathological curvature, particular
to deeper nets, is the commonly observed phenomenon
where, depending on the magnitude of the initial weights,
the gradients will either shrink towards zero or blow up as
they are back-propagated, making learning of the weights
before the last few layers nearly impossible. This difficulty
in learning all but the last few layers is sometimes called
the “vanishing gradients” problem and may be slightly mit-
igated by using heuristics to adapt the learning rates of each
parameter individually. The issue here is not so much that
the gradients become very small or very large absolutely,
but rather that they become so relative to the gradients of
the weights associated with units near the end of the net.
Critically, the second-derivatives will shrink or blow up in
an analogous way, corresponding to either very low or high
curvature along directions which change the affected pa-
rameters. Newton’s method thus will rescale these direc-
tions so that they are far more reasonable to follow.

3. Hessian-free optimization
The basis of the 2nd-order optimization approach we de-
velop in this paper is a technique known as Hessian-
free optimization (HF), aka truncated-Newton, which has
been studied in the optimization community for decades
(e.g. Nocedal & Wright, 1999), but never seriously applied
within machine learning.

In the standard Newton’s method, qθ(p) is optimized by
computing the N×N matrix B and then solving the system
Bp = −∇f(θ). This is prohibitively expensive when N is
large, as it is with even modestly sized neural networks. In-
stead, HF optimizes qθ(p) by exploiting two simple ideas.
The first is that for an N -dimensional vector d, Hd can be
easily computed using finite differences at the cost of a sin-
gle extra gradient evaluation via the identity:

Hd = lim
ϵ→0

∇f(θ + ϵd)−∇f(θ)
ϵ

The second is that there is a very effective algorithm for
optimizing quadratic objectives (such as qθ(p)) which re-
quires only matrix-vector products with B: the linear con-
jugate gradient algorithm (CG). Now since in the worst
case CG will require N iterations to converge (thus requir-
ing the evaluation of N Bd-products), it is clearly imprac-
tical to wait for CG to completely converge in general. But
fortunately, the behavior CG is such that it will make sig-
nificant progress in the minimization of qθ(p) after a much
more practical number of iterations. Algorithm 1 gives the
basic skeleton of the HF method.

HF is appealing because unlike many other quasi-Newton
methods it does not make any approximation to the Hes-
sian. Indeed, the Hd products can be computed accurately
by the finite differences method, or other more stable algo-
rithms. HF differs from Newton’s method only because it is
performing an incomplete optimization (via un-converged
CG) of qθ(p) in lieu of doing a full matrix inversion.

Another appealing aspect of the HF approach lies in the
power of the CG method. Distinct from the non-linear
CG method (NCG) often used in machine learning, linear
CG makes strong use of the quadratic nature of the op-
timization problem it solves in order to iteratively gener-
ate a set of “conjugate directions” di (with the property
that d⊤i Adj = 0 for i ̸= j) and optimize along these
independently and exactly. In particular, the movement
along each direction is precisely what Newton’s method
would select, the reduction divided by the curvature, i.e.
−∇f⊤di/d

⊤
i Adi, a fact which follows from the conjugacy

property. On the other hand, when applying the non-linear
CG method (which is done on f directly, not qθ), the di-
rections it generates won’t remain conjugate for very long,
even approximately so, and the line search is usually per-
formed inexactly and at a relatively high expense.

Nevertheless, CG and NCG are in many ways similar and
NCG even becomes equivalent to CG when it uses an ex-
act line-search and is applied to a quadratic objective (i.e.
one with constant curvature). Perhaps the most important
difference is that when NCG is applied to a highly non-
linear objective f , the underlying curvature evolves with
each new search direction processed, while when CG is ap-
plied to the local quadratic approximation of f (i.e. qθ), the
curvature remains fixed. It seems likely that the later condi-
tion would allow CG to be much more effective than NCG



Deep learning via Hessian-free optimization

at finding directions of low reduction and curvature, as di-
rections of high reduction and high curvature can be found
by the early iterations of CG and effectively “subtracted
away” from consideration via the conjugate-directions de-
composition. NCG, on the other hand, must try to keep up
with the constantly evolving curvature conditions of f , and
therefore focus on the more immediate directions of high-
reduction and curvature which arise at each successively
visited position in the parameter space.

4. Making HF suitable for machine learning
problems

Our experience with using off-the-shelf implementations
of HF is that they simply don’t work for neural network
training, or are at least grossly impractical. In this sec-
tion we will describe the modifications and design choices
we made to the basic HF approach in order to yield an al-
gorithm which is both effective and practical on the prob-
lems we considered. Note that none of these enhancements
are specific to neural networks, and should be applicable to
other optimization problems that are of interest to machine-
learning researchers.

4.1. Damping

The issue of damping, like with standard Newton’s method,
is of vital importance to the HF approach. Unlike methods
such as L-BFGS where the curvature matrix is crudely ap-
proximated, the exact curvature matrix implicitly available
to the HF method allows for the identification of directions
with extremely low curvature. When such a direction is
found that also happens to have a reasonable large reduc-
tion, CG will elect to move very far along it, and possibly
well outside of the region where (1) is a sensible approx-
imation. The damping parameter λ can be interpreted as
controlling how “conservative” the approximation is, es-
sentially by adding the constant λ∥d∥2 to the curvature es-
timate for each direction d. Using a fixed setting of λ is not
viable for several reasons, but most importantly because
the relative scale of B is constantly changing. It might also
be the case that the “trustworthiness” of the approximation
varies significantly over the parameter space.

There are advanced techniques, known as Newton-Lanczos
methods, for computing the value of λ which corresponds
to a given “trust-region radius” τ . However, we found
that such methods were very expensive and thus not cost-
effective in practice and so instead we used a simple
Levenberg-Marquardt style heuristic for adjusting λ di-
rectly: if ρ < 1

4 : λ ← 3
2λ elseif ρ > 3

4 : λ ← 2
3λ

endif where ρ is the “reduction ratio”. The reduction ratio
is a scalar quantity which attempts to measure the accuracy
of qθ and is given by:

ρ =
f(θ + p)− f(θ)

qθ(p)− qθ(0)

4.2. Computing the matrix-vector products

While the product Hd can be computed using finite-
differences, this approach is subject to numerical problems
and also requires the computationally expensive evaluation
of non-linear functions. Pearlmutter (1994) showed that
there is an efficient procedure for computing the product
Hd exactly for neural networks and several other models
such as RNNs and Boltzmann machines. This algorithm is
like backprop as it involves a forward and backward pass,
is “local”, and has a similar computational cost. Moreover,
for standard neural nets it can also be performed without
the need to evaluate non-linear functions.

In the development of his on-line 2nd-order method
“SMD”, Schraudolph (2002) generalized Pearlmutter’s
method in order to compute the product Gd where G is
the Gauss-Newton approximation to the Hessian. While
the classical Gauss-Newton method applies only to a sum-
of-squared-error objective, it can be extended to neural net-
works whose output units “match” their loss function (e.g.
logistic units with cross-entropy error).

While at first glance this might seem pointless since we
can already compute Hd with relative efficiency, there are
good reasons for using G instead of H. Firstly, the Gauss-
Newton matrix G is guaranteed to be positive semi-definite,
even when un-damped, which avoids the problem of neg-
ative curvature, thus guaranteeing that CG will work for
any positive value of λ. Mizutani & Dreyfus (2008) argue
against using G and that recognizing and exploiting nega-
tive curvature is important, particularly for training neural
nets. Indeed, some implementations of HF will perform a
check for directions of negative curvature during the CG
runs and if one is found they will abort CG and run a spe-
cialized subroutine in order to search along it. Based on
our limited experience with such methods we feel that they
are not particularly cost-effective. Moreover, on all of the
learning problems we tested, using G instead of H con-
sistently resulted in much better search directions, even in
situations where negative curvature was not present. An-
other more mundane advantage of using G over H is that
the associated matrix-vector product algorithm for G uses
about half the memory and runs nearly twice as fast.

4.3. Handling large datasets

In general, the computational cost associated with comput-
ing the Bd products will grow linearly with the amount of
training data. Thus for large training datasets it may be
impractical to compute these vectors as many times as is
needed by CG in order to sufficiently optimize qθ(p). One
obvious remedy is to just truncate the dataset when comput-
ing the products, but this is unsatisfying. Instead we seek
something akin to “online learning”, where the dataset used
for each gradient evaluation is a constantly changing subset
of the total, i.e. a “mini-batch”.

Fortunately, there is a simple way to adapt the HF as an on-



Deep learning via Hessian-free optimization

line algorithm which we have found works well in practice,
although some care must be taken. One might be tempted
to cycle through a sequence of mini-batches for the evalu-
ation of each Bd product, but this is a bad strategy for sev-
eral reasons. Firstly, it is much more efficient to compute
these products if the unit activations for each training ex-
ample can be cached and reused across evaluations, which
would be much less viable if the set of training examples
is constantly changing. Secondly, and more importantly,
the CG algorithm is not robust to changes in the B matrix
while it is running. The power of the CG method relies
on the invariants it maintains across iterations, such as the
conjugacy of its search directions. These will be quickly vi-
olated if the implicit definition of B is constantly changing
as CG iterates. Thus the mini-batch should be kept constant
during each CG run, cycling only at the end of each HF it-
eration. It might also be tempting to try using very small
mini-batches, perhaps even of size 1. This strategy, too,
is problematic since the B matrix, if defined using a very
small mini-batch, will not contain enough useful curvature
information to produce a good search direction.

The strategy we found that works best is to use relatively
large mini-batches, the optimal size of which grows as
the optimization progresses. And while the optimal mini-
batch size may be a function of the size of the model (we
don’t have enough data to make a determination) it criti-
cally doesn’t seem to bear any relation to the total dataset
size. In our experiments, while we used mini-batches to
compute the Bd products, the gradients and log-likelihoods
were computed using the entire dataset. The rationale for
this is quite simple: each HF iteration involves a run of CG
which may require hundreds of Bd evaluations but only 1
gradient evaluation. Thus it is cost-effective to obtain a
much higher quality estimate of the gradient. And it should
be noted that unlike SGD which performs tens of thousands
of iterations, the number of iterations performed by our HF
approach rarely exceeds 200.

4.4. Termination conditions for CG

Implementations of HF generally employ a convergence
test for the CG runs of the form ∥Bp + ∇f(θ)∥2 < ϵ
where the tolerance ϵ is chosen high enough so as to
ensure that CG will terminate in a number of iterations
that is practical. A popular choice seems to be ϵ =

min(12 , ∥∇f(θ)∥
1
2
2 )∥∇f(θ)∥2, which is supported by some

theoretical convergence results. In this section we will ar-
gue why this type of convergence test is bad and propose
one which we have found works much better in practice.

While CG is usually thought of as an algorithm for finding a
least-squares solution to the linear system Ax = b, it is not
actually optimizing the squared error objective ∥Ax− b∥2.
Instead, it optimizes the quadratic ϕ(x) = 1

2x
⊤Ax− b⊤x,

and is invoked within HF implementations by setting A =
B and b = −∇f(θ). While ϕ(x) and ∥Ax − b∥2 have the
same global minimizer, a good but sub-optimal solution for

one may actually be a terrible solution for the other. On a
typical run of CG one observes that the objective function
ϕ(x) steadily decreases with each iteration (which is guar-
anteed by the theory), while ∥Ax−b∥2 fluctuates wildly up
and down and only starts shrinking to 0 towards the very
end of the optimization. Moreover, the original motivation
for running CG within the HF method was to minimize the
quadratic qθ(p), and not ∥Bp+∇f(θ)∥2.

Thus it is in our opinion surprising that the commonly used
termination condition for CG used within HF is based on
∥Ax − b∥2. One possible reason is that while ∥Ax − b∥2
is bounded below by 0, it is not clear how to find a sim-
ilar bound for ϕ(x) that would generate a reasonable ter-
mination condition. We experimented with several obvious
heuristics and found that the best one by far was to termi-
nate the iterations once the relative per-iteration progress
made in minimizing ϕ(x) fell below some tolerance. In
particular, we terminate CG at iteration i if the following
condition is satisfied:

i > k and ϕ(xi) < 0 and
ϕ(xi)− ϕ(xi−k)

ϕ(xi)
< kϵ

where k determines how many iterations into the past we
look in order to compute an estimate of the current per-
iteration reduction rate. Choosing k > 1 is in general
necessary because, while the average per-iteration reduc-
tion in ϕ tends to decrease over time, it also displays a
considerable amount of variance and thus we need to av-
erage over many iterations to obtain a reliable estimate.
In all of our experiments we set k = max(10, 0.1i) and
ϵ = 0.0005, thus averaging over a progressively larger in-
terval as i grows. Note that ϕ can be computed from the
CG iterates at essentially no additional cost.

In practice this approach will cause CG to terminate in very
few iterations when λ is large (which makes qθ(p) easy
to optimize) which is the typical scenario during the early
stages of optimization. In later stages, qθ(p) begins to ex-
hibit pathological curvature (as long as λ is decayed ap-
propriately), which reflects the actual properties of f , thus
making it harder to optimize. In these situations our ter-
mination condition will permit CG to run much longer, re-
sulting in a much more expensive HF iteration. But this is
the price that seemingly must be paid in order to properly
compensate for the true curvature in f .

Heuristics which attempt to significantly reduce the num-
ber of iterations by terminating CG early (and we tried
several, such as stopping when f(θ + p) increases), pro-
vide a speed boost early on in the optimization, but con-
sistently seem to result in worse long-term outcomes, both
in terms of generalization error and overall rate of reduc-
tion in f . A possible explanation for this is that shorter
CG runs are more “greedy” and do not pursue as many
low-curvature directions, which seem to be of vital impor-
tance, both for reducing generalization error and for avoid-
ing extreme-curvature scenarios such as unit saturation and



Deep learning via Hessian-free optimization

poor differentiation between units.

4.5. Sharing information across iterations

A simple enhancement to the HF algorithm which we found
improves its performance by an order of magnitude is to use
the search direction pn−1 found by CG in the previous HF
iteration as the starting point for CG in the current one.
There are intuitively appealing reasons why pn−1 might
make a good initialization. Indeed, the values of B and
∇f(θ) for a given HF iteration should be “similar” in some
sense to their values at the previous iteration, and thus the
optimization problem solved by CG is also similar to the
previous one, making the previous solution a potentially
good starting point.

In typical implementations of HF, the CG runs are initial-
ized with the zero vector, and doing this has the nice prop-
erty that the initial value of ϕ will be non-positive (0 in
fact). This in turn ensures that the search direction pro-
duced by CG will always provide a reduction in qθ, even if
CG is terminated after the first iteration. In general, if CG is
initialized with a non-zero vector, the initial value of ϕ can
be greater than zero, and we have indeed found this to be
the case when using pn−1. However, judging an initializa-
tion merely by its ϕ value may be misleading, and we found
that runs initialized from pn−1 rather than 0 consistently
yielded better reductions in qθ, even when ϕ(pn−1)≫ 0. A
possible explanation for this finding is that pn−1 is “wrong”
within the new quadratic objective mostly along the volatile
high-curvature directions, which are quickly and easily dis-
covered and “corrected” by CG, thus leaving the harder-to-
find low-curvature directions, which tend to be more stable
over the parameter space, and thus more likely to remain
descent directions between iterations of HF.

4.6. CG iteration backtracking

While each successive iteration of CG improves the value
of p with respect to the 2nd-order model qθ(p), these im-
provements are not necessarily reflected in the value of
f(θ + p). In particular, if qθ(p) is untrustworthy due to the
damping parameter λ being set too low or the current mini-
batch being too small or unrepresentative, then running CG
past a certain number of iterations can actually be harmful.
In fact, the dependency of the directions generated by CG
on the “quality” of B should almost certainly increase CG
iterates, as the basis from which CG generates directions
(called the Krylov basis) expands to include matrix-vector
products with increasingly large powers of B.

By storing the current solution for p at iteration ⌈γj⌉ of
CG for each j (where γ > 1 is a constant; 1.3 in our ex-
periments), we can “backtrack” along them after CG has
terminated, reducing j as long as the ⌈γj−1⌉th iterate of
CG yields a lower value of f(x+ p) than the ⌈γj⌉th. How-
ever, we have observed experimentally that, for best perfor-
mance, the value of p used to initialize the next CG run (as

described in the previous sub-section) should not be back-
tracked in this manner. The likely explanation for this ef-
fect is that directions which are followed too strongly in p
due to bad curvature information from an unrepresentative
mini-batch, or λ being too small, will be “corrected” by the
next run of CG, since it will use a different mini-batch and
possibly a larger λ to compute B.

4.7. Preconditioning CG

Preconditioning is a technique used to accelerate CG.
It does this by performing a linear change of variables
x̂ = Cx for some matrix C, and then optimizing
the transformed quadratic objective given by ϕ̂(x̂) =
1
2 x̂

⊤C−⊤AC−1x̂ − (C−1b)⊤x̂. ϕ̂ may have more forgiv-
ing curvature properties than the original ϕ, depending on
the value of the matrix C. To use preconditioned CG one
specifies M ≡ C⊤C, with the understanding that it must
be easy to solve My = x for arbitrary x. Preconditioning
is somewhat of an application specific art, and we experi-
mented with many possible choices. One that we found to
be particularly effective was the diagonal matrix:

M =

[
diag

(
D∑
i=1

∇fi(θ)⊙∇fi(θ)

)
+ λI

]α

where fi is the value of the objective associated with
training-case i, ⊙ denotes the element-wise product and
the exponent α is chosen to be less than 1 in order to sup-
press “extreme” values (we used 0.75 in our experiments).
The inner sum has the nice interpretation of being the di-
agonal of the empirical Fisher information matrix, which
is similar in some ways to the G matrix. Unfortunately,
it is impractical to use the diagonal of G itself, since the
obvious algorithm has a cost similar to K backprop opera-
tions, where K is the size of the output layer, which is large
for auto-encoders (although typically not for classification
nets).

5. Random initialization
Our HF approach, like almost any deterministic optimiza-
tion scheme, is not completely immune to “bad” initializa-
tions, although it does tend to be far more robust to these
than 1st-order methods. For example, it cannot break sym-
metry between two units in the same layer that are initial-
ized with identical weights. However, as discussed in sec-
tion 2.2 it has a far better chance than 1st-order methods of
doing so if the weights are nearly identical.

In our initial investigations we tried a variety of random
initialization schemes. The better ones, which were more
careful about avoiding issues like saturation, seemed to
allow the runs of CG to terminate after fewer iterations,
mostly likely because these initializations resulted in more
favorable local curvature properties. The best random ini-
tialization scheme we found was one of our own design,



Deep learning via Hessian-free optimization

“sparse initialization”. In this scheme we hard limit the
number of non-zero incoming connection weights to each
unit (we used 15 in our experiments) and set the biases to
0 (or 0.5 for tanh units). Doing this allows the units to be
both highly differentiated as well as unsaturated, avoiding
the problem in dense initializations where the connection
weights must all be scaled very small in order to prevent
saturation, leading to poor differentiation between units.

6. Related work on 2nd-order optimization
LeCun et al. (1998) have proposed several diagonal ap-
proximations of the H and G matrices for multi-layer neu-
ral nets. While these are easy to invert, update and store,
the diagonal approximation may be overly simplistic since
it neglects the very important interaction between parame-
ters. For example, in the “nearly identical units” scenario
considered in section 2.2, a diagonal approximation would
not be able to recognize the “differentiating direction” as
being one of low curvature.

Amari et al. (2000) have proposed a 2nd-order learning al-
gorithm for neural nets based on an empirical approxima-
tion of the Fisher information matrix (which can be defined
for a neural net by casting it as a probabilistic model).
Since Schraudolph’s approach for computing Gd may be
generalized to compute Fd, we were thus able to evaluate
the possibility of using F as an alternative to G within our
HF approach. The resulting algorithm wasn’t able to make
significant progress on the deep auto-encoder problems we
considered, possibly indicating that F doesn’t contain suffi-
cient curvature information to overcome the problems asso-
ciated with deep-learning. A more theoretical observation
which supports the use of G over F in neural nets is that
the ranks of F and G are D and DL respectively, where D
is the size of the training set and L is the size of the output
layer. Another observation is that G will converge to the
Hessian as the error of the net approaches zero, a property
not shared by F.

Building on the work of Pearlmutter (1994), Schraudolph
(2002) proposed a 2nd-order method called “Stochastic
Meta-descent” (SMD) which uses an on-line 2nd-order ap-
proximation to f and optimizes it via updates to p which
are also computed on-line. This method differs from HF
in several important ways, but most critically in the way it
optimizes p. The update scheme used by SMD is a form of
preconditioned gradient-descent given by:

pn+1 = pn +M−1rn rn ≡ ∇f(θn) + Bpn

where M is a diagonal pre-conditioning matrix chosen to
approximate B. Using the previously discussed method for
computing Bd products, SMD is able to compute these up-
dates efficiently. However, using gradient-descent instead
of CG to optimize qθ(p), even with a good diagonal precon-
ditioner, is an approach likely to fail because qθ(p) will ex-
hibit the same pathological curvature as the objective func-
tion f that it approximates. And pathological curvature was

Table 1. Experimental parameters

NAME SIZE K ENCODER DIMS
CURVES 20000 5000 784-400-200-100-50-25-6
MNIST 60000 7500 784-1000-500-250-30
FACES 103500 5175 625-2000-1000-500-30

the primary reason for abandoning gradient-descent as an
optimization method in the first place. Moreover, it can
be shown that in the batch case, the updates computed by
SMD lie in the same Krylov subspace as those computed
by an equal number of CG iterations, and that CG finds the
optimal solution of qθ(p) within this subspace.

These 2nd-order methods, plus others we haven’t discussed,
have only been validated on shallow nets and/or toy prob-
lems. And none of them have been shown to be fundamen-
tally more effective than 1st-order optimization methods on
deep learning problems.

7. Experiments
We present the results from a series of experiments
designed to test the effectiveness of our HF ap-
proach on the deep auto-encoder problems considered by
Hinton & Salakhutdinov (2006) (abbr. H&S). We adopt
precisely the same model architectures, datasets, loss func-
tions and training/test partitions that they did, so as to en-
sure that our results can be directly compared with theirs.

Each dataset consists of a collection of small grey-scale
images of various objects such as hand-written digits and
faces. Table 1 summarizes the datasets and associated ex-
perimental parameters, where size gives the size of the
training set, K gives the size of minibatches used, and
encoder dims gives the encoder network architecture. In
each case, the decoder architecture is the mirror image of
the encoder, yielding a “symmetric autoencoder”. This
symmetry is required in order to be able to apply H&S’s
pre-training approach. Note that CURVES is the synthetic
curves dataset from H&S’s paper and FACES is the aug-
mented Olivetti face dataset.

We implemented our approach using the GPU-computing
MATLAB package Jacket. We also re-implemented, us-
ing Jacket, the precise approach considered by H&S, us-
ing their provided code as a basis, and then re-ran their
experiments using many more training epochs than they
did, and for far longer than we ran our HF approach on
the same models. With these extended runs we were able
to obtain slightly better results than they reported for both
the CURVES and MNIST experiments. Unfortunately, we
were not able to reproduce their results for the FACES
dataset, as each net we pre-trained had very high gen-
eralization error, even before fine-tuning. We ran each
method until it either seemed to converge, or started to
overfit (which happened for MNIST and FACES, but not
CURVES). We found that since our method was much bet-
ter at fitting the training data, it was thus more prone to



Deep learning via Hessian-free optimization

Table 2. Results (training and test errors)

PT + NCG RAND+HF PT + HF
CURVES 0.74, 0.82 0.11, 0.20 0.10, 0.21
MNIST 2.31, 2.72 1.64, 2.78 1.63, 2.46
MNIST* 2.07, 2.61 1.75, 2.55 1.60, 2.28
FACES -, 124 55.4, 139 -,-
FACES* -,- 60.6, 122 -,-

overfitting, and so we ran additional experiments where we
introduced an ℓ2 prior on the connection weights.

Table 2 summarizes our results, where PT+NCG is the
pre-training + non-linear CG fine-tuning approach of H&S,
RAND+HF is our Hessian-free method initialized ran-
domly, and PT+HF is our approach initialized with pre-
trained parameters. The numbers given in each entry of the
table are the average sum of squared reconstruction errors
on the training-set and the test-set. The *’s indicate that
an ℓ2 prior was used, with strength 10−4 on MNIST and
10−2 on FACES. Error numbers for FACES which involve
pre-training are missing due to our failure to reproduce the
results of H&S on that dataset (instead we just give the test-
error number they reported).

Figure 2 demonstrates the performance of our implementa-
tions on the CURVES dataset. Pre-training time is included
where applicable. This plot is not meant to be a definitive
performance analysis, but merely a demonstration that our
method is indeed quite efficient.

8. Discussion of results and implications
The most important implication of our results is that learn-
ing in deep models can be achieved effectively and effi-
ciently by a completely general optimizer without any need
for pre-training. This opens the door to examining a diverse
range of deep or otherwise difficult-to-optimize architec-
tures for which there are no effective pre-training methods,
such as asymmetric auto-encoders, or recurrent neural nets.

A clear theme which emerges from our results is that the
HF optimized nets have much lower training error, imply-
ing that our HF approach does well because it is more ef-
fective than pre-training + fine-tuning approaches at solv-
ing the under-fitting problem. Because both the MNIST
and FACES experiments used early-stopping, the training
error numbers reported in Table 2 are actually much higher
than can otherwise be achieved. When we initialized ran-
domly and didn’t use early-stopping we obtained a training
error of 1.40 on MNIST and 12.9 on FACES.

A pre-trained initialization benefits our approach in terms
of optimization speed and generalization error. However,
there doesn’t seem to be any significant benefit in regards
to under-fitting, as our HF approach seems to solve this
problem almost completely by itself. This is in stark con-
trast to the situation with 1st-order optimization algorithms,
where the main hurdle overcome by pre-training is that
of under-fitting, at least in the setting of auto-encoders.

10
3

10
4

0

1

2

3

4

time in seconds (log−scale)

er
ro

r

 

 
PT+NCG
RAND+HF
PT+HF

Figure 2. Error (train and test) vs. computation time on CURVES

Based on these results we can hypothesize that the way pre-
training helps 1st-order optimization algorithms overcome
the under-fitting problem is by placing the parameters in a
region less affected by issues of pathological curvature in
the objective, such as those discussed in section 2.2. This
would also explain why our HF approach optimizes faster
from pre-trained parameters, as more favorable local cur-
vature conditions allow the CG runs to make more rapid
progress when optimizing qθ(p).

Finally, while these early results are very encouraging,
clearly further research is warranted in order to address
the many interesting questions that arise from them, such
as how much more powerful are deep nets than shallow
ones, and is this power fully exploited by current pre-
training/fine-tuning schemes?

Acknowledgments
The author would like to thank Geoffrey Hinton, Richard
Zemel, Ilya Sutskever and Hugo Larochelle for their help-
ful suggestions. This work was supported by NSERC and
the University of Toronto.

REFERENCES

Amari, S., Park, H., and Fukumizu, K. Adaptive method of realiz-
ing natural gradient learning for multilayer perceptrons. Neural
Computation, 2000.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. Greedy
layer-wise training of deep networks. In NIPS, 2007.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P., Vincent, P.,
and Bengio, S. Why does unsupervised pre-training help deep
learning? Journal of Machine Learning Research, 2010.

Hinton, G. E. and Salakhutdinov, R. R. Reducing the dimension-
ality of data with neural networks. Science, July 2006.

LeCun, Y., Bottou, L., Orr, G., and Muller, K. Efficient backprop.
In Orr, G. and K., Muller (eds.), Neural Networks: Tricks of
the trade. Springer, 1998.

Mizutani, E. and Dreyfus, S. E. Second-order stagewise back-
propagation for hessian-matrix analyses and investigation of
negative curvature. Neural Networks, 21(2-3):193 – 203, 2008.

Nocedal, J. and Wright, S. J. Numerical Optimization. Springer,
1999.

Pearlmutter, B. A. Fast exact multiplication by the hessian. Neu-
ral Computation, 1994.

Schraudolph, N. N. Fast curvature matrix-vector products for
second-order gradient descent. Neural Computation, 2002.


