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Abstract—We present a non-monotonic gradient descent
algorithm with infeasible iterates for the nonnegatively con-
strained least-squares deblurring of images. The skewness of
the intensity values of the deblurred image is used to establish a
criterion for when to enforce the nonnegativity constraints. The
approach is observed on several test images to either perform
comparably to or to outperform a non-monotonic gradient
descent approach that does not use infeasible iterates, as well
as the gradient projected conjugate gradients algorithm. Our
approach is distinguished from the latter by lower memory
requirements, making it suitable for use with large, three-
dimensional images common in medical imaging.

Keywords-Image processing, image restoration; Inverse prob-
lems, deconvolution.

I. INTRODUCTION

Image restoration is a common and essential task in

astronomy, medical imaging, and digital photography. Image

degrading blur may result from sources including optical

aberrations in lens systems, atmospheric turbulence in the

case of astronomical or satellite images, out of focus con-

tributions of light in widefield microscopy, and motion blur.

Removing or reducing the amount of blur is often required

before being able to successfully apply image analysis

techniques.
Blur is often modelled as being linear [1], and it is as-

sumed that the point spread function (PSF) that mathemati-

cally describes the blur is available, either through modelling

or measurement. The blurred image is the convolution of

the “true” image with the PSF. Deblurring is accomplished

through deconvolution.
The deconvolution problem is often formulated as a least-

squares problem. Solving that problem directly does not

yield useful results as noise that is inevitably present in

digital images is amplified in the inverse filtering process.

Instead, various regularization approaches that weigh low

least-squares values against desirable image properties (e.g.,

the absence of excessive high frequency content) have been

proposed [1]. A commonly used regularization technique is

to employ an iterative solver and to terminate after some

number of iterations. It is typically observed that image qual-

ity initially improves before the deblurred image becomes

overly contaminated by noise and its quality deteriorates.

The phenomenon is referred to as semi-convergence [2].

Iterative solvers that have been applied to image deblur-

ring include monotonic and non-monotonic gradient descent

algorithms as well as conjugate gradient approaches. Ill-

conditioning of the deblurring problem usually causes mono-

tonic gradient descent approaches, such as the steepest de-

scent method, to converge prohibitively slowly unless a good

preconditioner can be found. Non-monotonic gradient de-

scent approaches, such as the Barzilai-Borwein method [3],

offer an interesting alternative that is less sensitive to ill-

conditioning and the performance of which can without

preconditioning be comparable with that of conjugate gra-

dient approaches. Compared with the latter, non-monotonic

gradient descent approaches are characterized by virtue of

lower memory requirements, making them suitable for the

deblurring of large, three-dimensional images common in

medical imaging.

It has been found that in images with large dark areas,

which are often encountered in astronomy and medical

imaging, imposing nonnegativity constraints on pixel inten-

sities can provide a stabilizing effect and result in higher

quality solutions [4], [5], [6], [7], [8]. Constrained variants

of iterative solvers that have been applied to nonnegatively

constrained least-squares deblurring include projected steep-

est descent, gradient projected conjugate gradients, and con-

strained variants of non-monotonic gradient descent strate-

gies. To the best of our knowledge, all of the approaches

that have been proposed are feasible-iterates algorithms and

either project onto the feasible region or limit step sizes in

every iteration.

In this paper, we propose a Barzilai-Borwein algorithm

with infeasible iterates and apply it to the nonnegatively con-

strained least-squares deblurring of images. The approach

benefits from the frequently observed efficiency of the non-

monotonic search while providing the beneficial stabilizing

effects of nonnegativity constraints. We experimentally com-

pare the performance of our algorithm with the projected

Barzilai-Borwein method without infeasible iterates as well

as with the gradient projected conjugate gradients strategy.
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We find the infeasible-iterates approach to either perform

comparably to or to outperform the other algorithms on

several test instances.

The remainder of this paper is organized as follows.

Section II introduces formalism and notational conventions

and briefly discusses related approaches. Section III mo-

tivates and describes BBII, a Barzilai-Borwein algorithm

with infeasible iterates for the constrained least-squares

deblurring of images. Section IV presents an experimental

evaluation of BBII using several test images, and it compares

its performance with that of other approaches. Section V

concludes with a brief discussion.

II. BACKGROUND

Image degradation is commonly modelled as

b = Ax+ η, (1)

where for an image consisting of m×n pixels, column vector

x ∈ R
mn contains the true image’s pixel intensities, assum-

ing periodic boundary conditions matrix A ∈ R
(mn)×(mn)

is a block circulant matrix with circulant blocks that imple-

ments the blur, η ∈ R
mn represents noise, and b ∈ R

mn

contains the pixel intensities of the observed, blurred and

noisy image [1]. Due to its size, storage of matrix A as an

(mn) × (mn) array is impractical for all but very small

images. However, multiplication with A as well as with

its inverse can be accomplished in the frequency domain

by multiplication with the optical transfer function (OTF),

which is the discrete Fourier transform of the PSF, with

computational cost linear in mn. The dominant computa-

tional cost of deblurring algorithms is that of transforming

between the spatial and frequency domains by means of the

fast Fourier transform (FFT).

The quality of a candidate solution y to the image resto-

ration problem is commonly quantified by the relative error

e(y) =
‖y − x‖
‖x‖ , (2)

where x is the “true” image before blurring and noise and

‖ · ‖ denotes the Euclidean length. Obviously, the relative

error of a solution cannot be computed in practice as the

true solution is unknown; however, it is a useful quantity

for comparing deblurring algorithms on test instances where

optimal solutions are known [4], [9], [7], [10].

Many approaches to image restoration rely on minimiza-

tion of objective function

φ(y) = 1
2‖Ay − b‖2. (3)

That is, they strive to compute the image y that, if subjected

to the (known) blur, yields optimal agreement with the

observed blurred and noisy image. However, due to the

presence of noise, the exact solution y = A−1b is worthless

as division by the OTF acts to amplify the noise present in b.

A commonly used regularization approach is to minimize

Eq. (3) iteratively and to terminate the minimization once

it is observed that further iterations result in an undue

amplification of noise [9], [7]. Gradient descent approaches

generate sequences of solutions by iterating

yt+1 = yt − αtgt, (4)

where subscripts denote iteration number,

gt = ∇φ(yt) = AT(Ayt − b) (5)

is the gradient, and αt is the step size. If proceeding using

Eq. (4), the gradient can be updated incrementally according

to

gt+1 = gt − αtA
TAgt, (6)

effectively reducing the number of FFTs required per itera-

tion. The steepest descent algorithm (SD) uses step size

αSD
t =

gT
t gt

gT
t A

TAgt
, (7)

requiring two FFTs per iteration if the incremental gradient

update is used. The Barzilai-Borwein method (BB) defines

Δy = yt − yt−1 and Δg = gt − gt−1 and uses either

αBB1
t =

ΔyTΔy

ΔyTΔg
(8)

or

αBB2
t =

ΔyTΔg

ΔgTΔg
(9)

as the step size. Fletcher [11] states that there is some

evidence that the two rules are “not all that dissimilar”, and

only the former is considered in what follows. Eq. (8) can

equivalently be written as

αBB1
t =

gT
t−1gt−1

gT
t−1A

TAgt−1
, (10)

and comparison of Eq. (10) with Eq. (7) has resulted in

the Barzilai-Borwein method being referred to as a lagged

steepest descent approach [12]. A BB iteration using either

Eqs. (8) or (9) can be accomplished using a single FFT.

Implementing the variant given by Eq. (10) instead requires

two FFTs per iteration.

Nagy and Palmer [9] consider the problem of deblurring

images and present results that suggest that due to favourable

stability properties, preconditioned SD methods may be an

attractive alternative to conjugate gradient approaches when

solving linear systems arising from the discretization of

ill-posed problems. Huang and Ascher [13] apply the BB

method to the problem of least-squares image deblurring and

find that the number of iterations required to obtain good

solutions is often much smaller than in an unpreconditioned

SD approach. This is reflected in Fig. 1, which shows that

for the case of the commonly employed satellite test image

(compare Section IV), zero-mean Gaussian noise, and a
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blurred signal to noise ratio (BSNR) of 20dB, the non-

monotonic BB approach generates solutions of a quality

comparable to those generated using SD, but after a much

smaller number of iterations. (The best solution generated

using SD has a relative error value of 0.383 after 881

FFTs, while the BB approach generates a solution with

relative error 0.382 after only 74 FFTs.) The sequence of

error values generated using the BB approach exhibits semi-

convergence behaviour (i.e., it decreases before increasing)

interrupted by frequent spikes where large step sizes result in

poor solutions that the approach typically is able to quickly

recover from. The reasons for that type of behaviour are

poorly understood [11].

Projected gradient descent approaches that enforce non-

negativity constraints y ≥ 0 employ update rule

yt+1 = P [yt − αtgt] , (11)

where P[·] denotes projection onto the feasible region. Using

Eq. (11) with step size rule Eq. (7) yields the projected

steepest descent method (pSD). The pSD method requires

three FFTs in those iterations where an initially infeasible

solution needs to be projected, as projection precludes the

incremental gradient update from Eq. (6). Using Eq. (11)

with Eqs. (8), (9), or (10) yields variants of the projected

Barzilai-Borwein method (pBB), which require two FFTs

per iteration in the former cases and three FFTs in the latter

one in those steps where the solution needs to be projected.

Dai and Fletcher [14] study pBB methods with update

rules Eqs. (8) and (9) as well as several further variants for

large-scale box-constrained quadratic programming. They

show that global convergence can be established if a non-

monotone line search is incorporated in the algorithm, and

they propose an adaptive line search approach that appears to

not lead to a significant deterioration of performance. They

also note that failure of the method to converge without a line

search is unlikely to be observed in practice. However, the

task in [14] is minimization of φ(·) and thus differs from the

one considered here in that the objective in image restoration

is to minimize relative error values e(·). Wang and Ma [10]

apply a pBB approach with step size rule Eq. (10) and the

adaptive Armijo-Goldstein inexact line search by Dai and

Fletcher [14] to the image restoration problem and report to

observe good performance.

Included in Fig. 1 are curves representing the result of

applying pSD as well as pBB with step sizes according to

Eq. (8) to the problem of deblurring the satellite image. It

can be seen that enforcing nonnegativity constraints allows

generating solutions with much smaller relative error values

than the best values observed without projection. The pSD

method generates solutions with relative error values of

0.332 after 4000 FFTs, and iterating further would result in

further improvements. The pBB method, while converging

more slowly than BB, generates solutions with superior

relative error values much faster then pSD and achieves
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Figure 1. Relative restoration error plotted against the number of FFTs
for the steepest descent, Barzilai-Borwein, projected steepest descent, and
projected Barzilai-Borwein methods applied to the deblurring of the satellite
image with BSNR = 20dB.

relative error values of 0.319 after 827 FFTs. Not shown

in the figure, the pBB approach with step sizes according to

Eq. (10) exhibits behaviour that is almost indistinguishable

from that of pSD. It is thus not considered in what follows.

III. ALGORITHM

We present a Barzilai-Borwein based algorithm for the

iterative, nonnegatively constrained least-squares deblurring

of images that allows infeasible iterates with the goal of

combining the fast initial progress of the BB method with the

ability of the pBB approach to generate superior solutions.

The algorithm determines when the constraints should be

enforced by considering the skewness

γ(y) =
1

mn

∑mn
i=1(yi − ȳ)3

(
1

mn

∑mn
i=1(yi − ȳ)2

)3/2 (12)

of the pixel intensities in the candidate solution image y =
(yi). Here, mn is the total number of pixels and ȳ =∑mn

i=1 yi/(mn) is the average pixel intensity across the

image. Figure 2 shows the relative error as well as the

skewness of the deblurred image plotted against the iteration

number for the BB method applied to the least-squares

deblurring of the satellite test image with BSNR = 20dB.

As seen in Fig. 1, the error curve exhibits the familiar semi-

convergence behaviour, interrupted by spikes characteristic

of the BB method. The best reconstruction is obtained after

69 iterations. Regularization, e.g., by enforcing nonnegativ-

ity constraints, would be required in order to obtain further

improvements in solution quality. The skewness curve in

Fig. 2 exhibits the opposite behaviour. It increases initially,

but later decreases as the solution becomes increasingly

contaminated by noise. The same qualitative behaviour can

be observed for other test images and other PSFs as well,
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Figure 2. Relative error and skewness plotted against the iteration number
for the BB method applied to the least-squares deblurring of the satellite
image with BSNR = 20dB.

suggesting that nonnegativity constraints should be enforced

when a systematic decrease in skewness of the pixel intensi-

ties is observed. In contrast to the relative error value, which

is not observable in practice, the skewness can easily be

computed.

Our Barzilai-Borwein approach with infeasible iterates

(BBII) performs either BB or pBB steps with step sizes

according to Eq. (8). It chooses to project and thereby

enforce nonnegativity constraints if and only if in an iteration

all three of the following conditions hold:

1) The solution that has been generated in the gradient

descent step described by Eq. (4) is infeasible.

2) Its skewness is lower than the skewness observed in

the previous iteration.

3) No more than two increases in skewness have been

observed in the past eight iterations.

The third condition protects against noise in the skewness

and prevents the enforcement of the constraints solely due

to a spike in the step size. The parameters in it have been

obtained with a small amount of experimentation and are

not critical to the functioning of the algorithm.

IV. EVALUATION

We evaluate BBII using three test image/PSF pairs:

• the commonly used satellite image with a PSF mod-

elling atmospheric turbulence; the pair is available as

part of the RestoreTools package1

• an image of a gecko gliding in a wind tunnel, subject

to motion blur generated by linear motion by 24 pixels

with an angle of 60◦; the original image is courtesy of

T. Libby/UC Berkeley

1http://www.mathcs.emory.edu/˜nagy/RestoreTools

Figure 3. Satellite, gecko, and Irish moss test images before and after
blurring.

• an image of Irish moss (chondrus crispus), with a

disk shaped PSF of radius 8; the original image is

courtesy of A. Otteson/Adjunct Assistant Professor,

Dept. of Plant Sciences and Landscape Architecture,

UMD College Park.

Each test image is monochrome, consists of 256×256 pixels,

and has a black background. Test images before and after

blurring are shown in Fig. 3. For each case we create three

test instances by adding Gaussian white noise with blurred

signal to noise ratios of 20dB, 30dB, and 40dB. To each

of the nine test instances, we apply BBII as described in

Section III, BB, pBB with step size rule Eq. (8), and the

gradient projected conjugate gradients (GPCG) approach by

Moré and Toraldo [15] using an implementation based on

code by Bardsley that is available through [16]. All runs are

limited to 400 FFTs, and all algorithms are implemented in

Matlab.

Traces of all runs are shown in Fig. 4; the best solution

generated by BBII for each test instance is shown in Fig. 5.

It can be seen that BBII either performs comparably to

or outperforms both pBB and GPCG for all of the test

instances. The advantage of BBII over the other approaches

is particularly pronounced for the satellite test image as well

as for the lower noise cases of the Irish moss test image.

Comparing with the BB curves, it appears that BBII begins

to enforce the nonnegativity constraints in the vicinity of

the point where the quality of the BB solutions begins to

deteriorate, and that the “late” enforcement of the constraints

compared to pBB does not negatively affect the quality of

the solutions generated.

V. CONCLUDING REMARKS

We have presented a Barzilai-Borwein based non-mono-

tone gradient descent method with infeasible iterates for

the nonnegative least-squares deblurring of images. The

algorithm enforces the nonnegativity constraints only when
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Figure 4. Relative error plotted against the number of FFTs for BBII, BB, pBB, and GPCG. Test images are, from top to bottom, satellite, gecko, and
Irish moss. Blurred signal to noise ratios are, from left to right, 20dB, 30dB, and 40dB.
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Figure 5. Deblurred images. Shown are the best results obtained using
BBII for, from left to right, blurred signal to noise ratios of 20dB, 30dB,
and 40dB.

an observed decrease in the skewness of pixel intensities

across the image suggests that regularization is required

in order to generate further improvement in the solution.

Fast minimization of φ does not necessarily imply that

error values e behave favourably, but the experimental data

we have presented suggest that BBII may be a useful

alternative to other image restoration approaches, especially

in connection with images that require memory efficient

algorithms.

VI. ACKNOWLEDGEMENT

This research was supported by the Natural Sciences and

Engineering Research Council of Canada (NSERC).

REFERENCES

[1] P. C. Hansen, J. G. Nagy, and D. P. O’Leary, Deblurring
Images: Matrices, Sprectra, and Filtering. SIAM, 2006.

[2] P. C. Hansen, Discrete Inverse Problems: Insight and Algo-
rithms. SIAM, 2010.

[3] J. Barzilai and J. M. Borwein, “Two-point step size gradient
methods,” IMA Journal of Numerical Analysis, vol. 8, no. 1,
pp. 141–148, 1988.

[4] J. M. Bardsley, J. K. Merikoski, and R. Vio, “The stabilizing
properties of nonnegativity constraints in least-squares image
reconstruction,” International Journal of Pure and Applied
Mathematics, vol. 43, no. 1, pp. 95–110, 2008.

[5] P. Favati, G. Lotti, O. Menchi, and F. Romani, “Performance
analysis of maximum likelihood mathods for regularization
problems with nonnegativity constraints,” Inverse Problems,
vol. 26, no. 8, p. 085013, 2010.

[6] M. Hanke, J. G. Nagy, and C. Vogel, “Quasi-Newton approach
to nonnegative image restorations,” Linear Algebra and its
Applications, vol. 316, no. 1-3, pp. 223–236, 2000.

[7] J. G. Nagy and Z. Strakos, “Enforcing nonnegativity in
image reconstruction algorithms,” in Mathematical Modeling,
Estimation, and Imaging, D. C. Wilson et al., Eds. Society
of Photo Optical, 2000, pp. 182–190.

[8] M. Rojas and T. Steihaug, “Large-scale optimization tech-
niques for nonnegative image restorations,” in Proceedings of
SPIE, 4791, 2002, pp. 233–242.

[9] J. G. Nagy and K. M. Palmer, “Steepest descent, CG, and
iterative regularization of ill-posed problems,” BIT Numerical
Mathematics, vol. 43, pp. 1003–1017, 2003.

[10] Y. Wang and S. Ma, “Projected Barzilai-Borwein method for
large-scale nonnegative image restoration,” Inverse Problems
in Science and Engineering, vol. 15, no. 6, pp. 559–583, 2007.

[11] R. Fletcher, “On the Barzilai-Borwein method,” in Optimiza-
tion and Control with Applications, L. Qi et al., Eds. Springer
Verlag, 2005, pp. 235–256.

[12] K. van den Doel and U. Ascher, “The chaotic nature of faster
gradient descent methods,” Journal of Scientific Computing,
vol. 51, no. 3, pp. 560–581, 2012.

[13] H. Huang and U. Ascher, “Faster gradient descent and the ef-
ficient recovery of images,” Vietnam Journal of Mathematics,
2014, to appear.

[14] Y.-H. Dai and R. Fletcher, “Projected Barzilai-Borwein meth-
ods for large-scale box-constrained quadratic programming,”
Numerische Mathematik, vol. 100, no. 1, pp. 21–47, 2005.
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