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Determining effective control strategies and solutions for high degree-of-
freedom humanoid characters has been a difficult, ongoing problem. A con-
troller is only valid for a subset of the states of the character, known as the
domain of attraction (DOA). This paper shows how many states that are
initially outside the DOA can be brought inside it. Our first contribution
is to show how DOA expansion can be performed for a high-dimensional
simulated character. Our second contribution is to present an algorithm that
efficiently increases the DOA using random trees that provide denser cov-
erage than the trees produced by typical sampling-based motion planning
algorithms. The trees are constructed offline, but can be queried fast enough
for near real-time control. We show the effect of DOA expansion on getting
up, crouch-to-stand, jumping, and standing-twist controllers. We also show
how DOA expansion can be used to connect controllers together.
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1. INTRODUCTION

It is difficult to find control solutions for the motions of high
degree-of-freedom humanoid characters, as they form small, elu-
sive manifolds within a highly nonlinear motion domain. What is
worse is that they often lack robustness, e.g., the motions may fail
with the smallest push, and they can be difficult to sequence into
composite motions. As such, many potential control solutions are
not feasible or practical when applied to human motion synthesis.
Given a character with skills, e.g., balancing, jumping, rising, etc.,
a certain set of initial states can achieve the desired motion which
we assume is described in terms of goal states. We refer to the set
of initial states as the domain of attraction (DOA) and the set of
desirable states as the goal set. Skills that are invoked from states
outside the DOA do not achieve a desirable outcome. This paper
deals with the following question: how can skills be successfully
invoked from a much larger set of initial states? In other words,
how can we expand the DOA?

Inspired by Tedrake [Tedrake 2009], we present an algorithm to
do this using random trees. One contribution of this paper is to
show how DOA expansion can be performed for a 25 degrees-of-
freedom (underactuated) character, in contrast to previous work on
fully actuated systems with fewer degrees of freedom. Secondly,
we identify a major source of inefficiency in performing DOA ex-
pansion with typical sampling-based motion planning algorithms
such as Rapidly Exploring Random Trees (RRTs) [LaValle 1998].
In this work, we advocate for a new motion planning algorithm that
can broadly be characterized as a combination of random sampling
and iterative deepening. The algorithm biases the trees to grow in
breadth before depth, while RRTs are biased in the converse direc-
tion. The key intuition is that dense random trees make it easier to
steer states inside the DOA.

The goal of DOA expansion is to cover as large a portion as pos-
sible of a given domain of interest, i.e., to enlarge as much as is
required the set of states that can be brought to the goal set. As
in Tedrake’s work, we trade the aim of finding optimal policies,
which would be intractable, for the aim of finding policies that
are good enough, i.e., locally optimal. We perform DOA expan-
sion on a number of dynamic motions: getting up, crouch-to-stand,
jumping and standing-twist. Our controllers are obtained by opti-
mizing a time-indexed spline that provides proportional-derivative
(PD) target angles to achieve a final target state. The method could
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equivalently be applied to perform DOA expansion on other types
of initial controllers, e.g., [Coros et al. 2010; Abe et al. 2007]. The
trees are constructed offline, but can be queried quickly enough
for near real-time control. The queries use the character’s state to
find the appropriate time-indexed target PD-reference trajectory for
control.

2. RELATED WORK

Physics-based motion can be synthesized by optimizing a tra-
jectory, e.g., [Witkin and Kass 1988], [Mordatch et al. 2012],
[Al Borno et al. 2013] or by designing control laws for specific
movements, e.g., [Yin et al. 2007], [Hodgins et al. 1995], [Al Borno
et al. 2014]. In both of these categories, data-driven methods have
been explored to improve the realism of the synthesized motions,
e.g., [Lee et al. 2010; Liu et al. 2010]. Open-loop controllers usu-
ally have small or negligble DOAs, while closed-loop controllers
such as SIMBICON [Yin et al. 2007] can have large DOAs. Corre-
sponding to these categories are two general approaches for charac-
ter control. One is model predictive control (MPC), which re-plans
a new trajectory at each timestep from the current state. The other
is to pre-compute a control policy. The latter requires examining
a domain in state space and preparing actions for every state that
could be encountered. The former does not, making it attractive be-
cause the domain can be very large. This comes at the cost of more
easily falling into local minima.

Recent work by Tassa et al. [2012] and Hämäläinen
et al. [2014],[2015] are examples of MPC methods. The iLQG
method of Tassa et al. can have the character get up to a standing
position from arbitrary lying positions on the ground. However,
the character gets up with a single bounce, implying that large
torques are at play. In our own experiments, the character fails to
get up with the iLQG method when more conservative torques
limits are used, e.g., ±300 Nm. The multimodal sampling method
of Hämäläinen et al. [2014] can have the character balance and get
up from a wide variety of scenarios. In Hämäläinen et al. [2015],
multimodal sampling is combined with a Markov Random Field
factorization to enable the character to balance on a ball and
recover from disturbances in real-time. These MPC-based methods
fail to have the character get up or balance in some cases. It is for
such failure cases that offline pre-computation is necessary. We
discuss our results in relation to MPC methods in further detail
in Sec. 7.

Our work falls in the category of control policies that leverage of-
fline pre-computation. Wang et al. [2010] optimize the parameters
of single controller given a distribution of initial states, but the
method does not generalize well to states that are far away from
the motions for which the original controller was designed. Sok
et al. [2007] construct a control policy from optimized trajectories
that track motion capture data, but does not tackle the case of the
optimization falling in local minima. Our work shows how trajec-
tories can be connected together to avoid local minima, without
the use of prior motion data. Atkeson et al. [2008] demonstrate on
low-dimensional problems how to approximate the globally opti-
mal policy with local estimates of the value function. To make the
problem more tractable, Tedrake [Tedrake 2009] foregos the goal
of finding globally optimal policies for the goal of finding good-
enough policies instead. The principal idea is to use RRTs and
feedback controllers to cover a desired domain in state space. Tra-
jectory optimization (TOPT) is used to connect two states together.

Mordatch et al. [2012] and Al Borno et al. [2013] are recent TOPT
methods for offline motion synthesis.

Our work is inspired by Tedrake’s approach. The LQR-Trees algo-
rithm uses direct collocation to synthesize open-loop trajectories,
e.g., [Felis and Mombaur 2016], linear quadratic regulators (LQR)
for feedback control around these trajectories, and Lyapunov func-
tions for estimating the DOA. Our work uses the model-free shoot-
ing method of Al Borno et al. [2013] to synthesize trajectories,
stabilizes motions using PD controllers indexed by time, and em-
ploys forward dynamics to evaluate the DOA. The method pro-
vides a fundamentally different approach to the single-optimized-
trajectory that results from MPC; it develops a tree of reference tra-
jectories that is computed offline and then exploits this tree online.
While previous character animation papers have produced work-
able DOAs for given scenarios, they do not provide practical mech-
anisms for significantly growing the DOA. Our work does not cur-
rently use motion capture data, but their use is not precluded; they
could be used to guide our trajectory optimization towards realistic
solutions, e.g., [Ju et al. 2013].

An important and under-studied problem in character animation
and robotics is that of how to sequence controllers over time, i.e.,
how can a character chain skills such as getting up followed by a
standing-twist and a jump? Getting up motions are synthesized by
Lin et al. [2012], where motion capture data of the character get-
ting up from a given initial state is extended to new lying postures
by using physics simulation, producing a final motion that has both
physics-based and motion-capture-based segments. In contrast, the
motions resulting from the sequencing of the controllers that we
develop are entirely physically based, requiring no motion capture
stitching. In related work, Liu et al. [2012] and Ha et al. [2014]
use policy search to optimize for linear feedback matrices and
controller parameters to achieve very specific motion transitions.
Firmin et al. [2015] provide a control language for skill author-
ing, where the resulting DOA depends on the skill of the designer.
Faloutsos et al. [2001] solve a binary classification problem with
support vector machines to predict if controllers can be sequenced
together. These approaches are less generic in several respects than
the one we develop in this paper, wherein DOA expansion can be
used to achieve controller sequencing, among other capabilities.

3. DOMAIN OF ATTRACTION EXPANSION

Our goal is to perform DOA expansion on a given initial controller
in order to make it suitable for a larger set of initial states. The
main idea in the expansion process is to sample a state outside
the DOA, connect it with the current DOA using trajectory opti-
mization (TOPT), apply feedback control on the trajectory so that
a nearby region is now also inside the DOA, and repeat this pro-
cess by sampling again. In this section, we present algorithms to
construct random trees offline that cover as much as possible of a
domain of interest in state space. In Sec. 4, we describe the tech-
niques developed to implement the various operations in the algo-
rithms such as how to perform TOPT, obtain a feedback controller,
etc. We also show how the trees can be used in near real-time for
character control. In Sec. 5 and Sec. 6, we analyze the performance
of the algorithms on a low-dimensional canonical sytem (a pendu-
lum) and on a simulated character.

We now begin to outline the DOA expansion algorithms. Let Γ be
a tree of tuples (x,C, p, T ), where x is a state, C is a feedback
controller, p is a pointer to the parent node, and T is the duration
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of the edge. Let χ and Ω denote the current and desired DOAs.
We use the term xtarget to refer to a state inside the DOA of an
initial controller C0. A state is inside the DOA of a controller if
when using the controller from that state the character’s end state
is inside a given goal set, i.e., within an epsilon distance of a goal
state xgoal. We specify a single goal state for our controllers, but it
is possible to handle multiple goal states simply by checking if an
end state is within an epsilon distance of any one of a given list of
goal states. Let T0 denote the duration required to bring xtarget to
the goal set using C0.

Algorithm 1 RRTFC algorithm

1: Γ.add node(xgoal, NULL, NULL, 0)
2: p← pointer to the root
3: Γ.add node(xtarget, C0, p, T0)
4: for k = 0, . . . ,K do
5: Randomly sample a state xrand inside Ω
6: if xrand 6∈ χ then
7: Find the nearest neighbor xnear in Γ to xrand

8: Obtain state xnew by extending xrand towards xnear

9: Solve a TOPT to steer xnew to xnear

10: x1,x2, . . . ,xT ← full trajectory from the TOPT
11: if xT ∈ χ then
12: Obtain a feedback controller C
13: p← pointer to the node that has xT in its DOA
14: Γ.add node(x1, C, p, T )
15: Γ.add node(x2, C, p, T − 1)
16: . . .
17: Γ.add node(xT−1, C, p, 1)

return Γ

3.1 RRTFC Algorithm

We begin by presenting the main algorithm in Tedrake’s work,
which we call the RRT Feedback Coverage (RRTFC) algorithm
(see Algorithm 1). The main property of RRTs is to bias the trees
towards the unexplored regions in the domain. This is achieved by
sampling a random state xrand inside Ω, finding its closest state in
the tree and obtaining state xnew by interpolation, as illustrated in
Fig. 1. A naive random tree algorithm would have directly sampled
a random state near the tree. As shown in Lavalle et al. [2001], the
RRT is remarkably more efficient at finding a path to a target than
the naive random tree.

A TOPT problem is then solved to steer xnew towards its clos-
est state xnear in the tree. For high-dimensional, highly-nonlinear
problems, the TOPT often fails to steer xnew close enough to xnear

to be inside the DOA. In our experience, this is a major source of
inefficiency in performing DOA expansion because solving TOPT
problems is time-consuming. Note that the connection is success-
ful if the state at the end of the trajectory xT is inside the DOA of
any controller in the tree, not necessarily the DOA of the controller
associated with xnear (see Fig. 2). We do not test if the states at
all previous timesteps are inside the DOA because it would be too
expensive. If the connection is successful, the states at all timesteps
are added to the tree, even if they are not inside Ω. This increases
the likelihood of xT of a future attempt to land inside the DOA.

Fig. 1: DOA expansion with an RRT. An RRT starts by sampling a random
state in the domain xrand and finds its closest node xnear in the tree.
It then attempts to connect to xnear (green arrow) starting from a state
which is close and in the direction of xrand. The intuition behind DFC is
that attempting to connect to the dense parts of the tree is more likely to be
successful (orange arrow) even if it is slightly further away according to the
distance metric. The red and purple circles are the target and goal states,
and the arrow in between is the initial controller C0. The blue background
is the domain covered by the tree.

Fig. 2: Examples of Trajectory Optimization in a Sparse and Dense Tree.
The blue tubes illustrate the domain covered by edges of the tree. The or-
ange circle is a random state that we attempt to connect to its nearest state
in the tree with trajectory optimization. The dotted curves are the trajec-
tories followed when attempting the connection. The figures show that the
attempt is more likely to be successful in a dense tree (right figure) than in
a sparse tree (left figure).

3.2 DFC Algorithm

RRTs have the property of growing long branches quickly to effi-
ciently explore the domain and to find a path to a given state. This
property is less relevant in the context of DOA expansion, where the
objective is to find a path to every state in the domain as opposed
to a single state. This suggests that we can design a motion plan-
ning algorithm specifically to improve the efficiency of the DOA
expansion process. The algorithm should aim to construct a dense
tree since this increases the likelihood of xT being inside the DOA,
thereby reducing the number of failed connections (see Fig. 1). We
now present our approach to do this, which we call the Dense Feed-
back Coverage (DFC) algorithm (see Algorithm 2).

The idea is to cover the domain around xtarget with progressively
larger subsets Ω0 ⊂ Ω1 ⊂ . . . ⊂ Ω, where Ω0 denotes the DOA
of the initial controller (see left Fig. 3 and Sec. 4.3 for an exam-
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Algorithm 2 DFC algorithm

1: Γ.add node(xgoal, NULL, NULL, 0)
2: p← pointer to the root
3: Γ.add node(xtarget, C0, p, T0)
4: Divide the domain in sets Ω0 ⊂ Ω1 ⊂ Ω2 ⊂ . . . ⊂ ΩN , where

ΩN = Ω
5: for i = 1, . . . ,N do
6: for k = 0, . . . ,Ki do
7: Randomly sample a state xrand inside Ωi

8: if xrand 6∈ χ then
9: Find the nearest neighbor xnear in Γ∩Ωh to xrand,

where h < i
10: Solve a TOPT to steer xrand to xnear

11: x1,x2, . . . ,xT ← full trajectory from the TOPT
12: if xT ∈ χ then
13: Obtain a feedback controller C
14: p← pointer to the node that has xT in its DOA
15: Γ.add node(x1, C, p, T )
16: Γ.add node(x2, C, p, T − 1)
17: . . .
18: Γ.add node(xT−1, C, p, 1)

return Γ

ple of how to define the subsets). For each domain Ωi, the nearest
neighbor is constrained to be in a subset Ωh, h < i. A connec-
tion is successful as long as the state at the end of the TOPT lands
in a region Ωh that is covered by the tree. This is why it is much
easier to steer the character inside the DOA of a region occupied
with many nodes as opposed to a region occupied with very few
nodes. In DFC, each subsequent subset effectively sees a larger tar-
get area to perform new connections. This is similar to the growth
of the solution region in dynamic programming methods. To solve
the problem of bringing a state in a given domain inside the DOA,
we use the solutions of subproblems found for smaller subsets of
the domain that lie closer to the goal state.

The optimal number of subsets Ωk will depend on the problem.
Generally, choosing more subsets yields more samples that are al-
ready inside the DOA, while choosing to have fewer yields more
samples that fail to connect. We choose the maximum number of
iterations Ki to be roughly proportional to the fraction of the do-
main that is covered by the subset. The choice of the nearest neigh-
bor subset (line 9) will also depend on the problem. To some extent,
the smaller the subset, the more likely it is for the final state of the
TOPT to land inside the DOA. However, a subset that is too small,
i.e., too far away from xrand, will increase the likelihood of a failed
connection. One strategy is to choose the smallest subset such that
the distance between xrand and xnear is within a specified value.
We typically simply choose the nearest neighbor to be inside subset
Ωi−1 when expanding subset Ωi.

If the DOA of the initial controller is particularly small, it may be
inefficient to attempt to steer all the nearby states inside it. In other
words, when the current DOA is very small, it could be even harder
to steer the nearby states inside a subset of the DOA, which is the
strategy employed by DFC. In this case, we first perform a DOA
expansion on a subset of the desired domain using other methods,
e.g., by using RRTFC on Ω1. We then continue the DOA expansion
process on the entire domain with DFC. This strategy is used for the
pendulum. For the simulated character, we directly employ DFC on
the entire domain.

Fig. 3: (Left) DOA coverage with DFC. The DFC algorithm progressively
covers the domain around the target state (the red circle). Increasingly
larger subsets are illustrated in the figure. The orange circle is a random
state sampled on the largest subset. TOPT is used to steer the state to its
closest state in a smaller subset. (Right) Determining if a state is inside the
DOA. To determine if a state xr (the orange circle) is inside the DOA, we
perform simulation rollouts, starting from the controllers associated with
the closest states in the tree (the orange arrows illustrate the sequence of
controllers used for one closest state). We use PD controllers with targets
provided by time-indexed splines. A rollout consists of moving up the nodes
of a branch, until the root (the goal state) is reached.

A sample that fails to connect to the tree at a given subset can suc-
cessfully connect when resampled at the same or larger subset. The
difference would result from having a new nearest neighbor or from
the end state after a TOPT to be inside a region now covered by the
tree. This is why we sample from Ωi and not from Ωi\Ωi−1, i.e, we
do not exclude Ωi−1. However, it is possible to sample as a function
of the domain covered by the tree. For example, if the tree covers
95% of Ωi−1, we can have 5% of the samples in Ωi−1 and 95% in
Ωi. Sec. 4.8 describes how we can estimate the domain coverage.

4. TECHNIQUES

We now describe our implementations of the operations in the
RRTFC and DFC algorithms.

4.1 Trajectory Optimization and Feedback Control

We build on the method of Al Borno et al. [2013], which optimizes
a reference trajectory q̂1:T represented by a cubic B-spline. The
output motion x1:T = (q1:T , q̇1:T ) is computed by forward dy-
namics. The torque ut for a joint is determined by PD control:

ut = kp(q̂t − qt)− kdq̇t, (1)

where qt and q̂t are the current and reference values of the joint
angle. All joints have PD gain values of kp = 700 Nm/rad and
kd = 1 Nms/rad.

We use this TOPT method to steer the character to a desired state
xd = (qd, q̇d) in T timesteps, while minimizing a measure of
effort. The optimization problem is given by:

s∗ = arg min
s
w1dist(xT ,x

d) + w2

T∑
i=1

||ui||2, (2)

where s is the vector of spline knots, the distance metric dist is de-
fined in Sec. 4.4, u is the vector of joint torques, and w1 and w2

are weights. The optimization is performed with covariance matrix
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adaptation (CMA) [Hansen 2006] and is initialized with a kine-
matic interpolation between the start and desired poses. The spline
knots are spaced every 0.1s.

Note that this method returns both the trajectory and the closed-
loop controller (Eq. 1) in the RRTFC (lines 9 and 12) and DFC
(lines 10 and 13) algorithms. Although our joint-local PD con-
trollers are weak, i.e., have small DOAs, we can build robust con-
trollers by combining many weak ones together. Alternatively, one
could optimize these controllers to make them more robust, e.g.,
as in Liu et al. [2012]. In general, there exists a trade-off between
learning a small number of robust controllers or to instead develop
a control policy using many weak controllers.

A simple extension to the method of Al Borno et al. [2013] can
also allow for the optimization of the motion duration. We add a
time variable to the optimization and a time-cost objective that pe-
nalizes excessively slow movements. Specifically, we add a cost
term w3T to Eq. (2). However, optimizing the movement duration
every time the algorithm attempts to connect two states would be
prohibitively slow. For this reason, whenever the distance between
the initial and desired state is less then a chosen threshold, we use
a constant movement duration, e.g., 0.2s.

4.2 DOA modeling

We now describe how we determine if a state xr is inside the DOA
after a TOPT, which corresponds to line 11 in RRTFC and line 12
in DFC. We model the DOA in an implicit fashion by using mul-
tiple forward dynamics simulations, rather than an explicit model
as used in previous work [Tedrake 2009] and that does not cur-
rently scale to high dimensions. We begin by finding the V closest
states to xr . We then perform V simulation rollouts starting from
xr , using the controllers that were optimized in Sec. 4.1. The roll-
outs proceed until the root of the tree is reached (see right Fig. 3).
We then compare the V final states with the goal state. If at least
one of the states is within an epsilon ball of the goal state, then we
consider xr to be inside the DOA. Pseudo-code is given in Algo-
rithm 3. We consider the V closest states instead of the closest state
alone because the distance metric is in general imperfect. We often
find xr to be inside the DOA of a different node than the “closest”
node. We typically choose V ∈ [50, 250]. With a larger value, it is
more likely to find a path that leads to the goal set, but the DOA
expansion process is also more time-consuming.

4.2.1 Minimal Time. Note that Algorithm 3 halts with the first
rollout that leads to the goal set. One could continue performing
the remaining rollouts to not only find a path to the goal set, but a
path that minimizes some objective (time, energy, etc). Algorithm 4
minimizes a time objective. While this slows the DOA expansion
process, it noticeably improves the quality of the motions, as shown
in the accompanying video.

4.2.2 Using the Tree Online. Once the tree is constructed, Algo-
rithm 3 can be used online to control the character. When searching
for the nearest nodes in the tree, we only take those at timestep 1
(line 15 in Algorithm 2) into consideration because we know that
they are inside the desired domain Ω. This is also how we determine
if a randomly sampled state is inside the DOA in the tree construc-
tion process, which corresponds to line 6 in RRTFC and line 8 in
DFC. On a single core, Algorithm 3 runs in real-time on average
because only a few rollouts are usually required before finding a
solution. The rollouts should not be long for this method to achieve

interactive rates, e.g., 4 s. We have tried learning a nearest neigh-
bor classifier that maps a state to a controller, i.e., a branch in the
tree, to bypass the need to perform the rollouts. This required an
excessively high number of samples for a small domain, making it
poorly scalable.

Algorithm 3 [IsInside, Parent] = findStartState(xr)

1: IsInside← false
2: Parent← NULL
3: Find the V closest nodes to xr

4: for i = 1, . . . , V do
5: n← pointer to the i-th closest node
6: xf ← xr

7: while n 6= ROOT do
8: Do a rollout from xf with the nC controller
9: xf ← state at the end of the rollout

10: n← np (pointer to the parent node)
11: if dist(xf ,xgoal) < ε then
12: IsInside← true
13: Parent← pointer to the i-th closest node
14: break

Algorithm 4 [IsInside, Parent] = findBestStartState(xr)

1: IsInside← false
2: Parent← NULL
3: s←∞
4: Find the V closest nodes to xr

5: for i = 1, . . . , V do
6: t← 0
7: n← pointer to the i-th closest node to xr

8: xf ← xr

9: while n 6= ROOT do
10: Do a rollout from xf with the nC controller
11: xf ← state at the end of the rollout
12: n← np

13: t← t+ nT

14: if dist(xf ,xgoal) < ε then
15: IsInside← true
16: if t < s then
17: s← t
18: Parent← pointer to the i-th closest node

4.3 Sampling States

The DFC algorithm samples states in the progressively larger do-
mains Ω1, . . . ,ΩN . This is performed as follows for the getting-up
motions of the simulated character. We parameterize each actuated
joint in Euler angles and treat each axis independently for multi-
dimensional joints. For joint j with pose rj in the target state,
the pose of the generated state is sampled uniformly in the inter-
val [max(rj − αi/mj , lj),max(rj + αi/mj , uj)], where αi is a
scalar that parameterizes Ωi, mj is the mass of the associated body
link, and lj and uj are lower and upper joint limits. For instance,
α = 5 creates angle ranges of 27◦ for the hips, 46◦ for the knees
and 90◦ for the shoulders, subject to joint limits. The Euler angle
parametrization can lead to a non-uniform sampling of rotations
due to the singular configurations [Kuffner 2004]. Our joint lim-
its, however, avoid this issue. The root orientation of the character
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is parameterized with a quaternion. The orientation of the sampled
state is determined by spherical linear interpolation of a random
orientation and the target state orientation, where the interpolation
parameter is a function of αi. We then drop the character from the
air and wait for a short time duration. The state of the character ly-
ing on the ground is our random sample. For the other controllers
(crouch-to-stand, jumping, etc.), the states are sampled as follows
to increase the robustness to external disturbances. Starting from
the target state, we apply an external force in a random direction
on the character for a duration of 0.1s. The random sample is taken
as the state occurring immediately after the external force is ap-
plied. The magnitude of the force is chosen randomly on the inter-
val [0, κi], where the scalar κi parameterizes Ωi. The values of αi

and κi increase with i.

4.4 State Distance Metric

Given a random state xrand, the DOA expansion algorithms need
to find the nearest state in the tree. The metric used to measure the
distance between states x and x′ can have an important impact on
the efficiency of the algorithms, but it plays an even more critical
role in RRTFC because DFC is designed to reduce the importance
of the nearest neighbor. For simplicity, we use the weighted joint
angles metric:

dist(x,x′) =
∑
j

wj(rj − r′j) + w̃j(ṙj − ṙ′j), (3)

where the sum is over the joint angles and the root angle, wj is set
to the mass of the associated body link, and w̃j = 0.1wj .

4.5 Optimality Heuristic

After sampling a random state, the choice of its nearest neighbor
has an important effect on the quality of the motion. One possi-
ble heuristic for yielding improved motions is to choose N nearest
neighbors instead of one, and solve for N TOPTs. Of the success-
ful connections, we then select the one with the minimal duration
to the target. This approach slows down the DOA expansion pro-
cess proportionally to N . In the supplemental video, we compare
the results achieved for N = 1 and N = 10.

4.6 Connecting Controllers

An important application of DOA expansion is its ability to se-
quence different controllers. If the terminal state of a controller is
close to the DOA of the second controller, then DOA expansion can
be directly applied on the second controller for the connection. The
only difference in Algorithm 2 is that the samples are now chosen
randomly from the distribution of the states at the end of the first
controller. If the first state is too far from the DOA, then we start
by synthesizing a transition controller (see Sec. 4.1) that steers it as
close as possible to the DOA. We then perform DOA expansion on
the transition controller, again with the random samples taken from
the distribution of states at the end of the first controller.

4.7 Hybrid of Offline and Online Optimization

The method described thus far requires pre-specifying a controller
for every possible state that could be encountered in the desired
domain, which is generally very large due to the dimensionality

of the character. MPC methods, on the other hand, do not require
this pre-computation, but more easily fall into local minima. We
now present a hybrid approach that attempts to get the best of
both worlds, i.e., combine MPC methods with some offline pre-
computation to avoid both the curse of dimensionality and the local
minima. The core idea is to do offline construction of a small tree
that sketches the general path to arrive at the goal state. Online op-
timization is then used to track a branch in the tree. This hybrid
approach is slower than the pure offline optimization approach be-
cause it requires some online optimization.

To determine if a state xr is inside the DOA in the hybrid of offline
and online optimization (lines 8 and 12 in Algorithm 2), we first
find its nearest state in the tree xnear . We then perform an online
trajectory optimization to steer xr towards xgoal, instead of per-
forming rollouts with the controllers of the closest nodes (line 10
in Algorithm 4). For the simulated character, we perform 100 CMA
iterations of 30 short rollouts (e.g., 0.7 s) in the method described
in Sec. 4.1, which runs at about 5% real-time on a machine with 8
logical cores. Fewer iterations would be required for longer rollouts
or different methods could be used, e.g., [Hämäläinen et al. 2014].
The cost function used is Eq. 2, with xd = xgoal. At each timestep
t, the control torque in the rollouts is determined by ut = ung

t +u∗t,
where ung

t is the control torque determined from the PD controllers
associated with the branch from xnear to xgoal, and u∗t is the newly
optimized portion of the control torque (i.e., determined from Eq. 1
with the new reference trajectory). We found that this technique re-
turns a better solution (measured in terms of the cost function) than
to simply initialize the new trajectory optimization with its near-
est neighbor’s solution. In one experiment, this approach returns a
better solution 9 times out of 10 when xr is sampled near xnear

using the approach described in Sec. 4.3 with κ = 0.5. When xr

is sampled further away from xnear (e.g., by using κ = 2.5), both
approaches have comparable performances.

4.8 DOA Volume

To estimate the proportion of the domain that is covered by the
tree, we sample a large number of states inside the domain and
determine if they are inside the DOA by using the tree online
(Sec. 4.2.2). The proportion of samples inside the domain provides
the estimate of domain coverage.

5. PLANAR PENDULUM

We first perform DOA expansion on a simple system to compare
the efficiency of RRTFC and DFC. The system is a planar pen-
dulum in the vertical plane with state x = [θ, θ̇], where θ is the
joint position. The mass of the pendulum is 3.10 kg and the torque
limits are ±200 Nm. The goal is to stabilize the pendulum to its
unstable equilibrium [π, 0], i.e., the upright position, from all the
initial states in the domain Ω = [0, 0] × [2π, 0]. We consider
that the pendulum has reached the equilibrium if x ∈ Ω0, where
Ω0 = {∀x : ||x − [π, 0]||2< 0.01}. We solve the TOPT with
the method of Sec. 4.1, where we limit the number of CMA iter-
ations to 20 and the number of samples to 12. For the DFC algo-
rithm, we divide the domain in 4 subsets Ωk, defined as follows:
Ωk = [π(1 − αk), 0] × [π(1 + αk), 0], where αk = k/4, and
k = 1, . . . , 4. When using the DFC algorithm, we perform a DOA
expansion on Ω1 using RRTFC because Ω0 is too small to be used
as a target for all the nearby states.
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We compare RRTFC (on the entire domain) and DFC for an aver-
age of 10 runs, where the entire domain is probabilistically covered,
i.e., 200 consecutive random samples are inside the DOA. Given
that determining if a state is inside the DOA is much less expensive
than a TOPT, the main factors that will affect the efficiency of the
algorithms are the number of samples that fail to be added to the
tree, nf , and the number of samples that are successfully added,
ns. RRTFC has nf = 38 and ns = 13, while DFC has nf = 13
and ns = 16. In this case, DFC reduces the number of failed con-
nections by about 65%, but requires 23% more nodes to cover the
domain. Overall, DFC is more efficient since it reduces the total
number of TOPTs by 44%. We obtain similar results when divid-
ing the domain in 8 or 16 subsets. Similarly, we compared the algo-
rithms on a double pendulum with state x = [θ1, θ2, θ̇1, θ̇2], where
each link has mass 3.10 kg. For the TOPT, we limit the number of
CMA iterations to 50 and the number of samples to 25. Covering
the domain Ω = [π − 0.2, π − 0.2, 0, 0]× [π + 0.2, π + 0.2, 0, 0]
required RRTFC nf = 950 and ns = 25, and DFC nf = 132 and
ns = 25, which corresponds to an 84% difference in efficiency.

6. SIMULATED CHARACTER

We perform DOA expansion on getting up, crouch-to-stand, jump-
ing, and standing-twist controllers for a simulated character. The
getting up controllers express different strategies (see Fig. 6). Our
initial controllers are synthesized by manually specifying between
1 and 3 key-frames as targets in a TOPT problem (Sec. 4.1) with the
last key-frame corresponding to the desired end state, and by spec-
ifying the durations between poses. The goal of DOA expansion is
to increase the set of initial states from which the controllers can be
used. We also regulate the final global orientation of the character,
i.e., it must get up, twist, etc., with a given facing direction, which
makes the problem harder.

6.1 Full Branch Rollouts

Performing DOA expansion on the crouch-to-stand, jumping and
standing-twist controllers proved to be more challenging than the
getting up controllers, likely because momentum effects are more
present. The initial controllers have very small DOAs, making it
difficult to steer any state inside them. For this reason, we modify
the TOPT method as follows. Let C denote an arbitrary controller
that steers the character from state x1 to xgoal. When performing
a TOPT to connect a randomly sampled state to the DOA of C,
we previously attempted to minimize the distance of the state at the
end of the rollout to x1. For the modified case, our TOPTs will min-
imize the distance to xgoal, using C after a short time interval of
0.2 s elapses in the rollouts. In other words, the TOPT optimizes the
torques used in the preliminary time interval; the following torques
are specified by C. This significantly slows down the TOPT since
we are now performing rollouts for the entire duration of the branch
of the tree instead of the edge only (see Fig. 4). Once the DOA of
the tree grows sufficiently large, it is no longer necessary to perform
the full branch rollouts.

6.2 Facing Direction Invariance

The task of our getting up controllers is to have the character reach
standing balance with a desired facing direction. Removing the fac-
ing direction constraint simplifies the problem. One way to build a
rising controller with a large DOA is to supply a single prone or

Fig. 4: Full Branch Rollouts. In this figure, we attempt to connect the or-
ange node to its nearest node in the tree. The typical approach when per-
forming a TOPT is to steer the node as close as possible to the nearest node
(the dotted orange arrow) to enter its DOA. In some problems (crouch-to-
stand, jumping, standing-twist), we were not able to make any successful
connection this way. We modify the TOPT by including the controllers asso-
ciated with the closest branch in the rollouts of the TOPT (orange arrows).
The objective of the TOPT is to steer the character as close as possible to
the goal state. This optimization is less expensive and more likely to succeed
than searching for a direct path to the goal state (green arrow).

Fig. 5: The Size of the Tree. The figure plots the size of the tree in log scale
required to cover a subset for the “Getting Up 1” and the “Getting Up 2”
controllers. The subsets are parametrized by α, which is defined in Sec. 4.3.
In the plot, the value of α is shown in the Subset-axis.

supine target pose for the character to achieve, which should not be
difficult because of the facing direction invariance, and wait until
the motion comes largely to rest. The target pose provides a con-
venient repeatable starting state from which to then apply a fixed,
known rising strategy, thus avoiding the need for DOA expansion.
In the accompanying video, we illustrate that this heuristic method
does not work with our controllers. The character never exactly
reaches the designated target pose and the resulting errors typically
make the controllers fail. Our experiments show that a small tree,
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GETTING UP 1

GETTING UP 2

GETTING UP 3

Fig. 6: Getting Up Controllers. The figure is divided into three pairs of sequences. For each pair, the top sequence illustrates an initial
getting up controller and the bottom sequence illustrates how DOA expansion steers the character to the target (the state in the first frame of
the top sequence). The yellow arrow points to the desired facing direction for the final pose of the character. The red character is the pose of
the currently active node.

e.g., 80 nodes, is sufficient to obtain a robust rising controller that
is invariant with respect to the facing direction.

6.3 Implementation Details

In the TOPT step of the DFC algorithm (line 10), we use a maxi-
mum of 600 CMA iterations and 150 samples. For our simulations,
we use the MuJoCo physics engine [Todorov et al. 2012] with a
0.01 s timestep, a coefficient of friction of 1, and torque limits of
±150 Nm. Our simulated character has a mass of 40.5 kg, a height
of 1.61 m, and 25 degrees-of-freedom.

7. RESULTS

DOA expansion on the getting up, crouch-to-stand and standing-
twist controllers were performed offline. The offline-online ap-
proach (Sec. 4.7) was used for the jumping controller. A standing
controller with a similar approach to Hämäläinen et al. [2014] is
used when the character is near the last standing pose. Performing
DOA expansion on an initial motion effectively extends it to new
initial states. If the goal is to get up from an arbitrary lying position,
the method does not attempt to discover how to get up from scratch.
Instead, it attempts to find a path to a state where a getting up strat-
egy is available. In the accompanying video, we show that the char-
acter can get up with the desired facing direction from a large set of
initial states (see Fig. 6). The strategies employed show the char-
acter moving from prone to supine (and vice versa), and rotating
itself on the ground to regulate its global orientation. Similarly, it
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CROUCH-TO-STAND

Fig. 7: Crouch-to-Stand Controller. The top sequence consists of key-frames of the crouch-to-stand controller. The bottom sequence illus-
trates how DOA expansion steers the character to the target (the state in the first frame of the top sequence). The blue line on the first frame
is an external force applied on the head. The red character is the pose of the currently active node.

Fig. 8: Exploration regions. The sequence shows typical states (orange character) in progressively larger subsets for the target states (the
red character) associated with the “Getting Up 1” and the crouch-to-stand controllers. The subsets are α = 1, α = 5, and α = 10 for the
first three figures, and κ = 100 Nm, κ = 400 Nm, and κ = 1000 Nm for the last three figures.

is shown how the character can successfully perform crouch-to-
stand, jumping and standing-twist motions when force impulses on
the order of 7.5 Ns, 10 Ns and 12.5 Ns are applied in random di-
rections on the character (see Fig. 7). The results are compared to
controllers without DOA expansion. The accompanying and sup-
plemental videos contain examples of how DOA expansion can be
used to connect controllers together. We show how a crouch-to-
stand controller can be connected to a jumping controller, using a
standing-twist transition controller. We also show how jumping and
stand-crouch controllers can be used repeatedly in a sequence.

The number of nodes required to cover a given subset depends on
the controller. This can be seen in Fig. 5, where we plot the total
number of nodes required to cover progressively larger subsets for
some of our controllers. Intuitively, we would expect the rate of
growth of the tree to increase with larger subsets. The plot suggests
that the trees grow exponentially with the subset parameter (the ver-
tical axis is in log scale). In Fig. 9, we plot some of the nodes in the
trees for the “Getting Up 3” and the crouch-to-stand controllers to
help visualize the expansion process. Table I provides some statis-
tics on the trees constructed for our controllers. The trees are con-
structed by increasing α and κ by increments of 0.25-1 and 25 Nm,
respectively. The values are chosen so that the distance between
two states in subsequent subsets would not be too difficult for the
TOPT. The trees required between 1 and 3 days of computation on
a desktop computer.

8. COMPARISONS

The discovered solutions with DOA expansion include the char-
acter taking a step or leaning on its knee to maintain balance and
perform the motion. In contrast, the Sequential Monte Carlo (SMC)
method of Hämäläinen et al. [2014] fails to have the character get
up under certain prone and supine postures. The same comment ap-
plies to the method of Tassa et al. [2012] when more realistic torque
limits are used. In the supplemental video, we show how the iLQG
provided in MuJoCo and our implementation of the SMC method
fall into local minima when attempting to steer the character inside
the DOA of the standing-twist controller. More extensive searches
allow offline methods to avoid some of these local minima. In one
experiment, we use the SMC method to steer randomly sampled
initial states to the DOA of a getting up controller. The method
succeeds 9, 4, and 2 times out of 10 trials when the sampled states
are inside the subsets α = 2, 6, 8, respectively. After performing
DOA expansion, we succeed 10, 10, and 9 times for the same sub-
sets. The failure case in the DOA method is due to not performing
enough iterations offline or failing to find the node that leads the
state inside the DOA online (Sec. 4.2.2). For the SMC method, we
implemented Algorithm 1 in Hämäläinen et al. [2014] since our
problem does not have a dynamically changing environment, and
we compute the torques by PD control instead of their actuation
approach, which is specific to the Open Dynamics Engine physics
simulator. DOA expansion can be used to steer the “failure” states
inside the DOA of these MPC methods.

The quality of the trajectory optimizer, i.e., how closely can it steer
the character towards the target, has an important impact on the ef-
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Fig. 9: Visualizing the nodes in the Tree. The first three figures shows the DOA Tree with 1, 10 and 40 nodes for the “Getting Up 2”
controller. The last three figures shows the DOA Tree with 1, 10 and 40 nodes for the crouch-to-stand controller. These nodes are sampled
from Ω. The difference in velocities between the nodes cannot be visualized.

Controller Size Height Depth Subset
Getting Up 1 1377 14 7.3 α = 8

Getting Up 2 751 12 5.4 α = 8.5

Getting Up 3 277 41 19.3 α = 10

Crouch-to-stand 193 4 2.1 κ = 75N
Standing-Twist 177 4 2.1 κ = 125N
Jumping 489 4 1.9 κ = 100N

Table I. : Tree Statistics. The table provides information on the trees for
our controllers. The “Size” field gives the number of nodes in the tree, the
“Height” field gives the height of the tree, the “Depth” field gives the aver-
age depth of the nodes, the “Subset” field gives the largest subset parameter
reached during the DOA expansion process.

Number of Samples 500 1000 2500 5000 30000

# TOPTs RRTFC 57 32 29 24 19
# TOPTs DFC 22 18 19 19 13
Reduction 61% 44% 35% 21% 32%

Table II. : RRTFC vs DFC. The table compares the efficiency of RRTFC and
DFC when performing DOA expansion on the domain α = 0.5 for one of
our getting up controllers. We give the number of TOPTs necessary to cover
the domain, averaged over 3 runs. We use increasingly better trajectory
optimizers that are obtained by increasing the total number of samples in
CMA. The “Reduction” field gives the percentage of fewer TOPTs when
using DFC over RRTFC.

ficiency of DOA expansion. Intuitively, we expect that the less ac-
curate the optimizer is, the more beneficial it will be to have a dense
tree. We perform the following experiment to test this hypothesis.
We construct 5 CMA optimizers of increasing quality that are ob-
tained by increasing the total number of samples in the rollouts. The
optimizers are then used to perform DOA expansion on the domain
α = 0.5 for one of our getting up controllers (Getting-Up-2). Ta-
ble II provides the number of TOPTs (ns+nf in Sec. 5) required to
cover the domain as averaged over 3 runs. The duration of the roll-
outs is set to 0.2 s so that the TOPTs are equally costly. The data
indicates that DFC is more computationally efficient than RRTFC,
particularly when it is difficult to connect two states together with
TOPT. We also compared RRTFC and DFC when covering a larger
domain, namely α = 10, using the CMA optimizer with 500 sam-
ples. The DFC method required 562 TOPTs, as opposed to 4763 for
RRTFC, which constitutes an 88% reduction in the computational
cost of DOA expansion. For this problem, we found that only 5 out
of 40 successful TOPTs actually connect the random sample xnew

to the target node xnear (see Sec. 3.1); the rest connect to other
nodes in the tree.

9. DISCUSSION

RRTs have the property to first grow towards the unexplored re-
gions of the domain and then to fill the regions in between branches.
It is in the first stage that DOA expansion with an RRT is particu-
larly inefficient. Once the exploration stage is over, the RRT pro-
gressively becomes more dense and, consequently, more effective.
For instance, using the tree constructed for one of the getting up
controllers, we note that only 1 out of 10 TOPTs succeed when the
tree has only 2 nodes, while 7 out of 10 TOs succeed when the tree
has 80 nodes. The difference between the DFC and the RRTFC be-
comes more pronounced with larger domains because they imply a
longer exploration stage.

In this work, we use a shooting method for the TOPT and PD con-
trol for feedback, but other methods could have been employed. As
pointed out by Tedrake [Tedrake 2009], the core DOA expansion al-
gorithms are compatible with a number of methods, some of which
will be better suited for certain applications than others. It would be
valuable to compare the efficiency of the expansion process when
using different methods, for example, LQR control instead of PD
control.

Our synthesized motions do not always look natural. Nonetheless,
DOA expansion is a computationally tractable way to bring states
inside the DOA when they were previously outside. We now dis-
cuss current avenues of research to achieve more natural results.
The first is to use a motion capture database to guide the TOPTs to
more human-like solutions. The second is to perform DOA expan-
sion on a set of controllers instead of a single controller. Humans do
not have a single way to perform a motion, yet it is the assumption
made when performing DOA expansion on a single controller. The
last avenue is to better determine movement duration in TOPT, i.e.,
how long should it take for the character to move from one state to
another? In this work, we use a constant movement duration when-
ever the distance between the states is within a threshold. It would
be valuable to develop a method that either efficiently optimizes for
a cost of time objective term or estimates the movement duration
from prior data.

It is possible to modify the DFC algorithm to perform DOA expan-
sion on states that are more likely to occur in practice by changing
the sampling distribution we describe in Sec. 4.3. It may, however,
be useful to sample states that are unlikely to occur to then bring
other states inside the DOA. One possible approach is to sample
states that are unlikely to occur if they are in the direction of fur-
ther, but more likely states. As was pointed out by Glassman et
al. [2010], metrics such as dist (Sec. 4.4) can be very inefficient be-
cause they not take the dynamics and constraints of the system into
account. Investigating alternative metrics remains a topic for future
work. It would also be valuable to thoroughly experiment more ad-
vanced density estimation techniques and different sampling strate-
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gies in Sec. 4.3, e.g., quasi-random or MCMC, as was pointed out
in Branicky et al. [2001]. The controllers in this paper are all time-
indexed, which are known to lack robustness. It would be valuable
to develop a method that efficiently transforms our time-indexed
controllers into robust state-based controllers (e.g., [Grizzle et al.
2010],[Kolter et al. 2008]).

DOA expansion could play an important role in having simulated
characters perform skills from a large number of situations and
transition between different skills. While previous work in this area
was limited to low-dimensional problems, we have shown how it
can be performed efficiently for a high-dimensional simulated char-
acter. We hope that our work will stimulate future research on DOA
expansion so that it becomes a common tool in control design.
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