CSC 120 (R Section) - Quiz \#3 with answers

No books, notes, or calculators are allowed. You have 30 minutes to write this quiz.
Question 1: [30 Marks] In the three blank areas below, write what R will output at that point if the commands shown are typed into the R console window. Note that the " $>$ " and + characters shown at the beginnings of lines are the R command prompts, not something typed.

```
> x <- 11
> y <- 12
> z <- 13
> funny <- function (x, y) {
+ a <- 2*x + 3*y + z
+ y <- 1000
+ a * y
+ }
> x <- 4
> y <- 20
> z <- 1
>
> funny (8, 3)
[1] 26000
> funny (z, x)
[1] 15000
> 2*x + 3*y + z
[1] }6
```

Question 2: [30 Marks] Consider a function called mystery defined as follows:

```
mystery <- function (x) {
    if (any (is.na(x))) {
        if (all (is.na(x) | x<=0))
                x[is.na(x)] <- 0
            else
                x[is.na(x)] <- mean (x [!is.na(x) & x>0])
    }
    x
}
```

Below are three calls of this function. Write after them what R will output as a result of these calls.

```
> mystery (c(9,5,-3))
[1] 9 5 -3
> mystery (c(8,NA,1,-2,3,NA))
[1] }8\quad4\quad1\quad-2 3 4 4
> mystery (c(-3,NA,NA,-2,-7,NA))
[1] -3 0 0 -2 -7 0
```

Question 3: [10 Marks] Write a definition of a function called F_to_C that takes a vector of numbers as its argument, which are interpreted as temperatures in degrees Farenheit, and returns a vector of numbers that are the corresponding temperatures expressed in degrees Celsius. Recall that the Celsius equivalent of a temperature, T, measured in degrees Farenheit is $(T-32) \times(5 / 9)$. Here is an example call of this function:

```
\(>\) F_to_C \(\left.^{(c}(23,32,50)\right)\)
[1] -5 010
```

Solution: F_to_C <- function (T) (T-32) * 5 / 9

Question 4: [30 Marks] We would like to have a function called convert_US_temps that takes as its argument a data frame with variables (columns) city, country, min_temp, and max_temp (and perhaps others as well), and returns as its value a data frame like its argument except that for rows with country equal to "US", the min_temp and max_temp variables are converted by calling the F_to_C function from Question 3 (since only the US measures temperature in Farenheit.) Here is an example of the use of this function:

> data				
	city	country		max_temp
1	Paris	France	7	17
2	Chicago	US	50	68
3	Toronto	Canada	10	14
4	Boston	US	32	59
> convert_US_temps(data)				
city country min_temp max_temp				
1	Paris	France	7	17
2	Chicago	US	10	20
3	Toronto	Canada	10	14
4	Boston	US	0	15

a) Write a definition for convert_US_temps that changes one value in the data frame at a time, and uses a loop.

```
convert_US_temps <- function (df) {
    for (i in 1:nrow(df)) {
        if (df$country[i] == "US") {
            df$min_temp[i] <- F_to_C (df$min_temp[i])
            df$max_temp[i] <- F_to_C (df$max_temp[i])
        }
    }
    df
}
```

b) Write a definition for convert_US_temps without a loop, using logical vector indexes.

```
convert_US_temps2 <- function (df) {
    US_cities <- df$country == "US"
    df$min_temp[US_cities] <- F_to_C (df$min_temp[US_cities])
    df$max_temp[US_cities] <- F_to_C (df$max_temp[US_cities])
    df
}
```

