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T h e  R A M ,  an abstract  mode l  for a r a n d o m  access compute r ,  is in t roduced.  A u n i q u e  
feature of  the  mode l  is tha t  the  execut ion t ime of  an  ins t ruc t ion  is defined in t e rms  of  
l(n), a func t ion  of  the  size of  the  n u m b e r s  man ipu la t ed  by the  ins t ruct ion.  T h i s  mode l  
has  a fixed p rogram,  bu t  it is shown  tha t  the  c o m p u t i n g  speeds  of  this  mode l  and  a 
s to r ed -p rog ram mode l  can differ by no more  than  a cons tant  factor. It  is p roved  tha t  
a T(n) t i m e - b o u n d e d  T u r i n g  mach ine  can be s imula ted  by an O(T(n) �9 l(T(n))) t ime-  
b o u n d e d  R A M ,  and  tha t  a T(n) t i m e - b o u n d e d  R A M  can be s imula ted  by  a T u r i n g  
mach ine  whose  execut ion  t ime  is b o u n d e d  by (T(n)) a if l(n) is constant ,  or  (T(n)) ~ if  

l(n) is logari thmic.  
T h e  ma in  resul t  states tha t  if T~(n) is a funct ion  such  tha t  there  is a R A M  tha t  

c o m p u t e s  T2(n) in t ime  O(T2(n)), and if Tx(n) is any  funct ion  such  tha t  

Tl(n) 
l im inf  = O, 

.+~ T,(n) 

t h en  there  is a set S tha t  can be recognized by  some  R A M  in t ime O(T2(n)), b u t  no  
R A M  recognizes S in t ime  O(Tx(n)). T h i s  is a sharper  diagonal resul t  t han  has  been  
ob ta ined  for T u r i n g  machines .  

T h e  proofs  of  mos t  of  the  above resul ts  are construct ive  and  are aided by  t h e  
in t roduc t ion  of an A L G O L - l i k e  p r o g r a m m i n g  language  for R A M ' s .  

In this paper we introduce a formal model for random access computers and 
argue that the model is a good one to use in the theory of computational complexity. 
In the past, general results concerning the time and storage needed to solve com- 
putational problems have often been quoted in terms of multitape Turing machines, 
even though such machines are not much like any existing computers that would 
actually carry out the computations. Even when an algorithm intended for a "real" 
computer is analyzed, it is often not made explicit what arithmetic operations must 
be available to the machine and what idealizations concerning unlimited storage, 
word length, etc., must be assumed. We believe it is often desirable to make these 
points explicit when quoting positive results about specific algorithms, and essential 
to make them explicit when quoting general complexity results such as lower time 
bounds or hierarchy theorems. 
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The model we develop involves a number of hard choices concerning which 
arithmetic operations to make primitive, and what assumptions to make concerning 
unlimited storage and word length. Our choices are partly justified by experience 
with formalizing algorithms, and partly by the naturalness of the theorems presented 
in this paper. A further discussion of these points is presented in [2]. Our model 
includes addition as primitive, but not multiplication, since the latter can be rapidly 
simulated by addition, and multiplication is not needed for the algorithms presented 
here. The random access storage is unlimited, and the word length is unlimited, 
although we propose making a time charge roughly equal to the logarithm of the 
magnitude of each number placed in storage. This is like charging for the number 
of words required to store a high precision number on a fixed wordsize machine. 

One of our theorems compares our fixed program computer model with a stored 
program model. A second result compares the run times for executing algorithms 
using our random access model and multitape Turing machines, and shows that 
the run times do not differ greatly. The main result, Theorem 3, shows the existence 
of a time complexity hierarchy which is finer than is known to exist for any standard 
abstract computer model. The proofs of the theorems make use of an ALGOL-like 
programming language introduced for our random access machines. 

1. RANDOM ACCESS MACHINES 

A random access machine (RAM) consists of a finite program operating on an infinite 
sequence of registers. Each register can hold an arbitrary integer (positive, negative, 
or zero). The contents of the registers is denoted by the sequence X0, X1, X~ ..... 
Associated with the machine is the function l(n) which, roughly speaking, denotes 
the time required to store the number n. The most natural values for l(n) are (1) 
take l(n) identically one, and (2) take l(n) approximately log In I. For the results 
stated here, if the value of l(n) is not given explicitly, we need only assume l(n) is 
positive, nondecreasing on the positive integers, symmetric (l(n)-----l(--n)), and 
subadditive (l(n + m) ~ l(n) + l(m)). 

The possible instructions, together with their execution time in terms of l(n), 
are given in Table I. Here i, j, k, are any nonnegative integers. The effect of most 
of the instructions should be evident. For example, Xi *- C causes X~ to assume 
the value C, while Xi * - X j  + X k causes Xi to assume the value X~ + X k . The 
instruction TR Am if Xj > 0 causes control to be transferred to line m of the program 
if Xj > 0. Normally control is transferred from one line to the next. READ Xi causes 
Xi to take on the value of the next input number, and PRINT Xi causes X i to be 
printed on the output tape. 

The indirect instruction Xi +--Xxj causes register number Xj to be copied into 
register number i, provided X~ >/0.  The instruction Xx~ +- X~ has an analogous 
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TABLE I 

RAM Instructions and Execution Times 

Instruction Execution time 

X~ +- C, C any integer 1 

x, ~- x~ + x~ z(x3 + l(X~) 

x ,  ,-- x~ - x~  z (x3  + t(x~) 

x, ~- xx~ z(xx) + z(x~) 

Xx, +- x ,  z(x,) + t(_x%.) 

T R A m  if X ;  > 0 I(Xj) 
READ Xi  /(input) 

P R I N T  X~ I(X,) 

meaning. T h e  indirect instructions are necessary in order for a fixed program to 
access an unbounded number  of registers as the inputs vary. 

A RAM program is started at the first instruction, with all registers initially zero, 
and it halts when a transfer is made to a line with no instructions, or when a negative 
indirect address is encountered. 

We propose the following value for the function l(n): 

l(n) = t [l~ In  I1 if In  [ >~ 2 
(1 if [ n l  < 2  

(Here Ix] is the least integer ~x . )  We will call this the logarithmic function. 
Briefly, the reason for taking l(n) logarithmic instead of constant is that each 

register is allowed to hold arbitrarily large integers. Thus  any fixed word length 
machine simulating our RAM would require about log n registers to store the number  n 
held in a single RAM register (where the base of the logarithm is the largest number  
that  can be stored in a single register). A more extensive argument is given in [2], 
along with motivation for our choice of instructions. 

We are interested in the time required for a RAM to recognize a set A of strings 
on a finite alphabet S = {~1 ,..., o~}. A string w = oq~;= "'" oi, will be presented to 
the machine as the sequence of integers i I , i S ,..., in,  0, where 0 indicates the end 
of the string. T h e  machine must  execute a sequence of n + 1 Read instructions to 
acquire the string. The  machine accepts w by printing a 1 and halting (in a computation 
with input w) and rejects w by printing a 2 and haking. The  computation time is 
the sum of the execution times of all steps in the computation as given by the second 
column of Table  I. We say the machine M recognizes a set A of strings within time 
T(n) iff for every string w on Z, M halts on input w within time T([ w [) and accepts w 
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if w ~ A and rejects w if w q~ A. We are interested only in the rate of growth of run 
times as a function of the size of the input, which accounts for the fact that the 
execution times in Table I may differ from their "proper" value by a constant factor. 

2. THE PROGRAMMING LANGUAGE 

Since the proofs of the results reported here require construction of lengthy RAM 
programs, it is convenient to introduce a programming language called RAM-ALGOL, 
which is a subset of ALGOL 60 as described in the revised ALGOL Report [3]. 
The main difference between RAM-ALGOL and ALGOL 60 are: 

I. Real numbers have bccn eliminated. 

2. The only arithmetic operators arc + and --. 

3. Procedures and switches arc not allowed to bc rccursivc. 

4. Arrays arc one-dimensional and infinite. 

These differences are described in more detail in [I]. 
In order for RAM-ALGOL to bc useful for proving theorems about time bounds, 

it is necessary to implement RAM-ALGOL on a RAM in such a way that the 
execution time of a RAM "object program" can bc determined (to within a constant 
multiple) by inspection of the RAM-ALGOL "source program." This type of 
implemcntion can be done in a relatively straightforward way, and is described in 
detail in [I]. 

The most interesting feature of the language to implement is arrays. The declaration 

integer array A; 

declares A to be an infinite array of integers: 

A[0], A[1], A[2],.. . .  

A R A M - A L G O L  program can contain many arrays, but since there is no recursion, 
a fixed program P references at most a fixed number of arrays, say k of them�9 We 
can then interleave the storage for these k arrays and the scalars and temporaries 
of P as follows: 

array A a is stored in RAM registers 

X1 , X(/c+l)+l , X2(k+l)+1 ,�9149149 
array A 2 is stored in RAM registers 

X 2 ,  X(k+l)+2 , X2(k+l)+2 ,... 

array Ak is stored in RAM registers 

X k  , X(k+l)+/c , X2(/c+l)+/c ,... 
scalars of P are stored in RAM registers 

X o  , Xk+l  , X2(k+i) , . . .  
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so that in general, the value of Ai[j] is found in RAM register Xj(z+l)+~. The 
accessing of elements of arrays can now be implemented as follows. Suppose, for 
example, that we want to implement the RAM-ALGOL statement Y : =  A[Z] on 
a RAM. Assume that the integers Y and Z are stored in the RAM registers X r and 
X z , respectively, that A is the ith of k arrays in program P, and that Xtemp is a 
temporary register. Then we have the following implementation: 

Program Timing 

Xtem p ~ i 

t Xtemp ~- Xtomp + Xz  
k + 1 times 

Xtemp *-" Xtemp + Xz 

Xr  ~- Xx,emp 

Since k and i are fixed, and l(n) is subadditive, the total execution time of this statement 
is O(l(Z)+ I(A[Z])). Storing into an array is implemented in an analogous way, 
so that the execution time of A[Z] : =  Y is O(l(Z) + l(Y)). 

Since we are not concerned with constant factors in the timing analysis, the other 
features of ALGOL can generally be implemented in the most obvious way. Since 
procedures are not allowed to be recursive, we can actually replace each procedure 
statement by its procedure body (as described in the revised ALGOL Report [3]), 
and translate the resulting procedureless program into RAM instructions. 

Appendix A to this paper contains an example of a RAM-ALGOL program 
and its timing analysis used in the proof of Theorem 1. Complete RAM-ALGOL 
programs are given for most of the proofs in [1]. 

1 

l(i) + I(Z) 

l(kZ + i) + I(Z) 

l((k + 1)Z + i) + l(A[Z]) 

3. STORED PROGRAM MACHINES 

The RAM model described in Sec. 1 has a fixed program. Since most existing 
computers are stored program devices, it is worthwhile asking whether the stored 
program feature adds to the computation speed. The Random Access Stored-Program 
Machine (RASP) described here is similar to the RASP's described by Hartmanis [4]. 
The specific machine RASPI described by Hartmanis is essentially the same as 
our RASP with indirect addressing and with l(n) identically one. Our machine has 
an accumulator (AC), which holds an arbitrary integer, an instruction counter (IC), 
which holds a nonnegative integer, and an infinite sequence of memory registers 
Xo, X1, X2 ,..., each of which can hold an arbitrary integer. The instructions for 
our RASP, along with their timings, are given in Table II. 

An instruction is stored in two consecutive memory registers. The first register 
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TABLE II 

RASP Instructions and Execution Times 

359 

Operation Mnemonic 

Description 
Operation of the 

code operation 
Execution 

time 

load LOD,j  1 AC +--j; 
constant IC *--IC + 2 

add ADD, j 2 AC *-- AC + X~ ; 
IC ~-IC + 2 

subtract SUB, j 3 AC *-- AC -- Xj ; 
IC *- IC + 2 

store STO, j 4 Xj +-- AC; 
IC *- IC + 2 

branch on BPA,j 5 if AC > 0 then 
positive IC ~--j; otherwise 
accumulator IC ~- IC + 2 

read RD,j  6 Xj *-- next input; 
IC *-- IC + 2 

print PRI,j  7 output Xj ; 
IC ~ IC + 2 

halt HLT -- co to 0 stop 
and 

8to co 

l(IC) + l(j) 

/(IC) + l(j) + 
I(AC) + l(Xj) 

l(IC) + Z(j) + 
/(AC) + l(Xj) 

/(IC) + l(j) + 
l(AC) 

/(IC) + l(j) + 
l(AC) 

/(IC) + l(j) + 
/(input) 

/(IC) + l(j) + 
t(X~) 

/(IC) + 
/(X~c) 

Note" 
The machine halts if 

a. The operation code (Xic) is not between 1 and 7, or 
b. The parameterj (i.e., XIc+I) is negative for operations 2 through 7. 

contains an operation code (shown in the third column of Table II), and the second 

contains the parameter of the instruction, j ,  which is either an address or an integer 

constant. Note that since indirect addressing is not provided for by the instruction 

set, RASP programs must modify themselves in order to access an unbounded number  

of registers. Normally a RASP program consists of a finite number  of instructions 

(the first of which is stored in registers X 0 and X1) and data words, stored in certain 

specified memory registers. All other memory registers and the AC and IC are initially 

set to zero. Execution of an instruction consists of retrieving an operation code from 

register Xic and (provided the operation code does not specify a halt operation) 
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the parameter j from register X I C + I  . The appropriate operation is then performed 
as indicated in the fourth column of Table II, and the cycle is repeated until an 
illegal operation code or parameter is encountered, at which time the machine halts. 

As with the RAM, RASP execution times are weighted by a cost function l(n). 
The execution times of the various RASP instructions are listed in the last column 
of Table II. Contrary to the RAM instruction timings, the processing of addresses 
and constants is explicitly charged for on a RASP. This is reasonable, since by 
modifying itself, a RASP program can generate instructions with arbitrarily large 
addresses and constants and then execute them. We also charge for the value of 
the instruction counter at the time of execution of each instruction, since the IC 
may also grow arbitrarily large during execution. 

Note that the inclusion of statements for indirect addressing could increase the 
computation speed by no more than a constant factor. For example, if we had 
included LDI, j (load indirect) meaning AC ~ Xx~, its cost would have been 
I(IC) + l(j) + l(Xj) + l(Xxj ). But this can be simulated by the sequence: 

LOD, 0 

ADD, j 

STO, a + 1 

LOD, 0 

a ADD, 0. 

This sequence has execution time O(/(IC) + l(j) + l(X~) + l(Xxj)). 

TI~EOREM 1. For each function T(n) ~ n, a set A is recognizable by a RAM in 
time O(T(n)) if and only if A is recognizable by a RASP in time O(T(n)). 

The proof that a RAM can simulate a RASP program P in a proportional amount 
of time consists of exhibiting the RAM that does the simulation. This RAM program 
is given in Appendix A, written in RAM-ALGOL. It uses an array, MEMORY, 
to hold the contents of P's memory. It first initializes the first p elements of the 
MEMORY array, where p is the length of P. This initialization takes a fixed amount 
of time. It then simulates the execution of P by retrieving the instructions from 
the MEMORY array and executing them interpretively. Appendix A shows that 
the time required to simulate the execution of an instruction of P is proportional 
to the execution time for that instruction in P. We can then conclude that if P halts 
within time O(T(n)), the RAM halts within time O(T(n)). 

Simulation of a RAM by a RASP is accomplished by replacing each RAM instruction 
by an equivalent sequence of RASP instructions. Since part of the RASP storage 
is needed for the program, all of the registers used (explicitly or by indirect reference) 
by the RAM must be offset by a fixed constant in the simulation. We illustrate by 



TIME BOUNDED MACHINES 361 

giving in Table I I I  the sequence of RASP instructions which would replace the 
RAM instruction Xx~ +- X~. Here p is a bound on the total length of the RASP 
program. 

Since it takes at most six RASP instructions to simulate a single RAM instruction, 
the bound p can be taken to be 12 �9 m, where m is the number of RAM instructions. 
In fact, all components of the execution times given in Table I I I ,  such as I(IC), 
l(a + 1), l(i + p), are bounded by a constant depending only on the RAM program. 

TABLE III 

Simulation of Xx, "-- X~ 

RASP code Execution time 

LOD, p t(IC) + l(p) 
ADD, (i + p) /(IC) + I(i + p) + l(p) + I(Xi) 
STO, (a + 1) /(IC) + l(a + 1) + I(Xi + p) 
LOD, 0 I(IC) + l(O) 

ADD, (j + p) I(IC) + l(j + p) + l(O) + l(X~) 
a STO, 0 /(IC) + l(X, + p) + l(Xj) 

Thus the time required to simulate Xx~ ~ Xj  is O(I(X~) + I(Xj)), which is propor- 
tional to the RAM execution time of the instruction. A similar statement can be 
made for each instruction simulated. Thus the simulation time is bounded by a 
constant times the original execution time. 

4. TURING MACHINES AND RAM's 

Since the multitape Turing machine is the standard computer model used in 
complexity literature, it is interesting to compare its computing power with that 
of RAM's. The result shows they are not as different as one might expect. 

THEOREM 2. (a) I f  a set A is recognized by a RAM P within time T(n) > n, and 

(i) i f  P has l(n) logarithmic, then A is recognized by some multitape Turing machine 
within time (T(n)) 2, and 

(ii) i f  P has l(n) identically constant, then 2t is recognized by some multitape Turing 
machine within time (T(n)) 3. 

(b) Conversely, if some Turing machine recognizes _/t within time T(n) >/n, then 
some RAM (with arbitrary cost function l(n)) recognizes A within time O(T(n) " l(T(n))). 
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The proof of (b) is straightforward. The simulating RAM simply stores the 
contents of the Turing machine's k tapes in 2k arrays, one tape symbol per array 
element, with one array for the left half of each tape, and one array for the right 
half. The finite control of the Turing machine is handled by the simulating program 
in a fixed amount of time per Turing machine step, except for accessing of the tape 
arrays. Since a head of the Turing machine can move at most T(n) squares away 
from the starting position in T(n) steps, the time it takes the RAM to access this 
farthest tape square is O(l(T(n))). 

The proof of (a) is a bit more subtle. The problem is that the Turing machine 
needs an efficient way to simulate the random access storage and the instructions 
of a RAM. Our simulating machine M will use one of its work tapes to hold the 
contents of P ' s  memory in the following format: 

$*a  I • el*a, 2 ~:~ c~ "" *a t # eft  

Here the a~ (i = 1, 2,...,j) are the addresses of the registers of P that have been 
stored into thus far in the computation. The a i are represented in binary and are 
arranged in increasing order. The c~ (i = 1, 2,...,j) are the contents of the corre- 
sponding registers, also stored in binary. 

LEMMA. The nonblank portion of the above work tape contains O(T(n)) squares 
in case l(n) is logarithmic, and O((T(n)) 2) squares in case l(n) is constant. 

For the proof, suppose first that l(n) is logarithmic. After each RAM instruction 
is executed, at most one register is altered, and the number stored in that register 
has a number of bits bounded by a constant times the RAM cost of executing that 
instruction. The number of bits in the address of that register is also bounded by 
a constant times the cost of the instruction. Since the total RAM cost of the computa- 
tion is bounded by T(n), the length of the work tape will never exceed a constant 
times T(n). 

If  l(n) is constant, the argument is similar, except the bound on the length of 
each register and address is O(T(n)). This is because (except for loading constants) 
the maximum of the numbers in the registers can at most double after each RAM 
instruction is executed. Thus in T(n) steps the maximum is O(2r~n~), and the binary 
length of this is O(T(n)). Since at most T(n) registers can be accessed in T(n) steps, 
the total length of the work tape is O((T(n))2), as stated in the lemma. 

The theorem follows readily from the lemma. Each RAM instruction can be 
simulated by the Turing machine by a small fixed number of passes down the work 
tape described above, with the help of other work tapes. Each pass requires time 
O(T(n)) or O((T(n))~), depending on l(n). Since the RAM executes at most T(n) 
instructions before halting, the total simulation time is bounded by O((T(n)) z) or 
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O((T(n))S). Since Turing machines have linear speedup and since (T(n))2 > n, 
there is a Turing machine which simulates P in time ((T(n)) 2 (if l(n) is logarithmic) 
or (T(n)) 3 (if l(n) is constant). (See [I] for more details.) 

5. THE RAM COMPLEXITY CLASSES 

DEFINITION. A function T(n) on the positive integers is time constructable (with 
respect to a cost function l(n)) iff there is some RAM program P (with cost function 
l(n)) such that for all n, P reads n, calculates and stores T(n) in some register, and 
halts within time O(T(n)). 

We note that "time constructable" is similar to "real-time countable" for Turing 
machines, and is the analog for time of "constructable" (as defined in [5]) for storage. 

THEOREM 3. 1.[ l(n) = 1 or l(n) is logarithmic, and i f  T2(n ) ~ nl(n) is time con- 
structable with respect to l(n), then there is a set A C_ {1, 2}* such that some RAM 
program recognizes A within time O(Tz(n)) , but for any function Tl(n ) satisfying 

l iminf Tl(n) --  0 (1) 
,~ oo T2(n ) 

no RAM program recognizes A within time O(Tl(n)). 

We note that Hennie and Stearns [6] prove a similar result for multitape Turing 
machines, but their result is weaker in that the numerator in Eq. (1) is Tl(n ) log Tl(n ) 
instead of Tl(n ). In fact, we know of no argument in the literature proving a result 
as strong as Theorem 3 for a class of abstract computing machines. 

The proof of Theorem 3 is straightforward for l(n) =: 1, but is rather subtle for 
l(n) logarithmic. The trouble in the latter case stems from the necessity of estimating 
the logarithmic function l(n) sufficiently rapidly after each step of computation so 
that the diagonalizing machine recognizing A can shut itself off within time O(T2(n)). 

RAM instructions can be encoded on the alphabet {1, 2) according to Table IV. 
Note that numbers are represented in unary notation. A RAM program P can be 
encoded by concatenating the encodings of its instructions to form the string we.  
For w E{1, 2}*, we use Pw to denote the longest program whose encoding is an 
initial segment of w. Note the identity Pwp, = P'. Also, for any program R and all 
sufficiently large integers l, there is a string w of length l such that Pw " " R. 

We can now describe the set A in the statement of Theorem 3 with the help of 
a function k( ) mapping RAM programs P to real numbers k(P). (The specific choice 
of k( ) will be given later.) 

If Pw with input w halts within time k(P~) �9 Tz(n), then w E A iff Pw does not 

57 x/7/4-3 
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TABLE IV 

RAM Program Codes 

RAM instruction Encoding on {1, 2} 

1. Xi ~-- c 121i21c2 

2. X~ ~-- Xj + Xk 1221~21J21k2 

3. Xi ~--X~ -- Xk 1321i21J21k2 

4. Xi  +'- Xxj 1421i21J2 

5. Xx  i *- X~ 1521~21J2 

6. TRAm IF X~ > 0 1~21~21J2 

7. READ X~ 1721i2 

8. PRINT Xi 1821t2 

Notes: repeated n times 

1. 1" denotes the string 

l 2 " c  if c ~ 0  
2. ~ =  --2 c - - 1  if c < 0  

accept w. When Pw with input w does not halt within time k(P~)" T2(n ), we do 
not care whether w ~ A or not. 

For l(n) = 1, k(P~) = l, and A = {w [ P,w with input w halts within time T2( ] w [) 
without accepting w), but for l(n) logarithmic, k(Pw) may be very small for large Pw.  

The  proof that no RAM recognizes A in time O(Ta(n)) is now easy, for suppose 
P '  recognizes A in time c �9 Tl(n ). Then  by Eq. (1) there is a long string w formed 
from Wp, by adding suitably many 2's to the right such that law = P'  and cTt( t w [) < 
k (P ' ) .  7'2(I w ]). Thus  Pw with input w halts within time k(Pw) �9 T2( [ w ]), so by 
our description of the set A, w 6 A iff Pw does not accept w. But this contradicts 
our assumption that P '  recognizes A, since P'  ~ Pw.  Thus no such P '  can exist. 

The proof that some RAM program M recognizes A within time O(Tz(n)) is 
constructive. Complete R A M - A L G O L  programs for M are given in [1]. We will 
describe the programs here in sufficient detail to convince the knowledgeable reader 
that they can be written and will execute within the stated times. After describing 
M and showing that it operates within time O(T2(n)), we will show how to choose 
the coefficients k(Pw) so that M recognizes the set A described above. M consists 
of two parts: a preprocessor and a simulator. 

The  preprocessor first reads the input string w and stores it in the array W. The  
value of n z [ w [ is also accumulated. The  program Pw encoded by w is then obtained 
from W and stored in the four arrays opcode, operandi,  operand2, and operand3. 
The  operation code of the pth instruction of Pw is stored in opcode[p], and its operands 
are stored in operandi[p],  operand2[p], and operand3[p]. For example, if the 13th 
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instruction of Pw is X 4 ~-- X17 --  X32x, then opcode[13] = 3, operandi[13] = 4, 
operand2[13] ---- 17, and operand3[13] = 321. The  execution t ime of the preprocessor 
is O(n "l(n)) = O(T2(n)), since O(n) steps are taken, and each takes t ime O(l(n)). 

T h e  simulator first sets a t iming counter to T2(n ). This  step takes time O(T2(n)). 
T h e  simulator then runs the program Pw, as stored in the arrays, interpretively with 
the string w as input. It  uses another array to represent the registers used by Pw. 
I f  P~o runs for too long, the simulation is halted anyway, and w is rejected. I f  1" w 
halts on input w within time k(Pw) " T2(n), then M accepts w iff Pw does not accept w. 

If  l(n) = 1, it is clear that M can simulate T2(n ) steps of Pw on input w, taking 
no more than some fixed constant amount of time to simulate each step. Hence, 
in this case, the simulation takes time O(T~(n)), and the total running time for M 
is O(n) + O(T2(n)) = O(T~(n)). 

For l(n) logarithmic, two problems arise. First, the straightforward way of keeping 
track of the simulation time is too slow. The  cost of updating the timer in the ordinary 
way is O(l(T2(n)) ) at each step, so that the total execution time of the simulation 
would be O(To(n).l(Tz(n))). We circumvent this problem by storing the bits of 
the binary representation of the time remaining for the simulation in an array called 
time. This  requires that the number  T2(n ) initially be converted to binary. T h e  
conversion can easily be done in time O((log T2(n)) ~) by using the standard method 
of generating and storing powers of two up to Tz(n ) and, starting with the highest 
power, successively subtracting off those powers which leave a nonnegative difference. 

During simulation, after each step of the input program has been simulated, 
an estimate for the time required to simulate that step is subtracted from the time 
array. I f  this difference is negative, simulation is terminated and the input w is rejected. 
Th i s  subtraction is carried out by a R A M - A L G O L  procedure called updatetime. 
As explained below, the time estimate for each step is always a power of two, so 
its binary notation consists of a single one bit followed by zeroes. The  total time 
required to perform all the subtractions can be estimated as follows. 

Let b o , b 1 ,..., b k be the bits of the time array, so that initially 

k 

b, • 2 i = T2(n ). 
i=o 

Each time a number  is subtracted from the time array, one or more bits (because 
of "borrows")  is changed in the array. But each time the bit b i is changed, the value 
represented by the array is decremented by at least 2 i. Since the sum of all the 
decrements cannot exceed 2 ~+l, it follows that during the entire simulation b i is 
changed at most 2 k-i+l times. Since the cost for changing bit b i is O(logi),  i > /2 ,  
it follows that the total cost of all subtractions is 

k o(;logi 
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Since the infinite series 27 log i/2 i is convergent (say, by the ratio test), the above 
time is bounded by O(2 k) ---- O(T2(n)). 

T h e  second problem for the logarithmic case is that we know of no way to compute 
the logarithmic l(n) in time O(l(n)). The  solution we adopt is to use an estimate 
of l(n) which is relatively easy to compute. First we define the norm of a number  
as follows: 

norm(n) = 0, if ] n[ < 2 

= [tog2 logs [ n [], if [ n [ > /2 .  

T h e  norm has the following two properties: 

l(n) ~ 2 n~ < 2 .l(n) (2) 

norm(m • n) ~ norm(max([ m [, In  1)) + 1. (3) 

T h e  first property means that 2 n~ is a good estimate for l(n), since it is never 
off by more than a factor of 2. The  second property means that if we know the norms 
of m and n, we can easily obtain an upper  bound for the norms of m + n and m - -  n. 

In  order to compute norms, we need a function to compute powers of two. In  
order to save computing time, the powers that have already been computed are 
stored in an array. Thus  each power of two is computed (by doubling the next lower 
power of two) only once. We can estimate the total t ime A spent during the simulation 
computing powers of two as follows. Suppose 2 ~ is the highest power computed. 
Then  the cost of generating 2 ~ 21,..., 2 ~ by successive doublings will be proportional 
to the cost of storing these numbers,  and since l(n) is logarithmic, we have 

A = O(1 + 2 + "" + e) O(e~). 

But the Norm procedure (discussed below) never needs a power of two which exceeds 
twice the largest number  N ever appearing in a register of the RAM being simulated. 

Appendix B shows that N < 2 4'/r~--~-f~), roughly speaking because the largest number  

can be at most doubled at each step. Thus  2 ~ < 2 4~/r--~-i+l, and e < 4 X/T2(n ) -}- 1, 
and A = O(T2(n)). 

A R A M - A L G O L  procedure to compute norms is shown in Fig. 1. We assume 
it has access to a second procedure two-to-the(n) which returns 2% T h e  procedure 
two-to-the(n) checks the array of powers to see whether 2 n has already been computed.  
I f  so, the value 2 n is copied from the array, and if not, the array is filled in by successive 
doublings as described above. 

T h e  procedure Norm(k, Y) in Fig. 1 returns norm(Y),  provided either k = - -1  or 

I YI  ~ 2 2~+~. (4) 
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The procedure will never be called unless one of these two conditions holds. Note 
that if (4) is satisfied, k + 1 serves as an upper bound for norm(Y), and the procedure 
uses this fact to save time. In either case, the method of computing norm(Y) depends 

Procedure N o r m  

R A M - A L G O L  statements Timing 

integer procedure Norm(k,  Y); 

value k, O(l(k)) 
Y; O(l(Y)) 

integer k, 
Y; 

begin 

comment This  procedure  computes  the no rm of Y as follows: 

(1) I f k  > 0, we assume I YI < 2 z~§ and compute  norm(Y)  in 
t ime 0 (2  ~) as described in the text. 

(2) I f k  = - -1 ,  we compute  norm(Y)  in t ime 
O(I(Y) �9 norm(Y)) -- O((l(Y))2) ; 

if Y < 0 then Y : =  - - Y ;  O(I(Y)) 

if Y > 2 then O(l(Y)) 

begin 

if  k ~ 0 then O(l(k)) 

begin 

k : =  k + 1; O(l(k)) 
comment two-to-the(n) is a procedure  which returns 2"; 
for k : =  k - -  I while 

two-to-the(two-to-the(k))  > Y do; 

N o r m  : =  k + 1 

end 

else 

begin 

N o r m  : =  - -1 ;  O(1) 

for  N o r m  : =  N o r m  + 1 while O(l(Norm)) 

two- to- the( two- to- the(Norm))  < Ydo; 0( l ( I0 )  

end 

end 

else 

N o r m  : =  0 O(1) 

end Norm;  

O(l(k)) 

O(k + 2" + I(Y)) 

O(l(k)) 

FmUR~ 1 
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on the fact that norm(Y) is the least integer m such that ] Y I ~ 2 2~'- If (4) is satisfied, 
the total time spent in the for loop is 

O(/(22k) + l(2 ak-1) + . . .  + I(22~ 

= o (2~  + 2 ~-~ + -.. + 2 o) = o(2~) .  

This does not count the time required by the function two-to-the(n) to generate 
new powers of two, but we argued above that during the entire simulation this time 
is O(T2(n)). 

It is easy to see that if k = --1, the time for Norm(k, Y) is O((l(Y))2). We can 
summarize the timing as follows: 

IO((I(y))2), if k = - - 1  
Time for Norm(k, Y) is ~O(2k) ' otherwise. (5) 

We can now describe the method of simulation for the logarithmic case. Throughout 
the simulation, the current contents Xo, X 1 , X 2 ,... of the registers of the simulated 
program are stored in an array X[0], X[1], X[2],.... In addition, the current norms 
of the register values are stored in a second array norm[0], norm[l], norm[2],.... 
Thus norm[i] = norm(X[/]) during the simulation. Before simulation, the pre- 
processor, described earlier, decodes the program P~o to be simulated into four arrays. 
During simulation, Pw is simulated instruction by instruction, and the X, norm, 
and time arrays are updated appropriately. In Fig. 2 we present as an example the 
section of RAM-ALGOL code for the simulation of one type of instruction; namely 
X i  ~ X j  + X k . Here the variable code has been assigned the code number of the 
instruction type (see Table IV), and the variables opl, op2, op3 have been assigned 
the three operands for the instruction; in this case, i, j, and k. Notice how the norm 
array is updated, using max(norm(Xj), norm(Xk) ) for the value of k when calling 
the procedure Norm(k, Y). This is justified by the inequality (3). The procedure 
updatetime(n) causes the value 2 n to be subtracted from the binary time array. (Recall 
that this array stores the amount of simulation time remaining.) In the present case, 
the number �9 = 2 n~ + 2 n~ + 2 Nu is subtracted from the time array. 
Here Nu has been assigned norm(u) at the start of simulation, where u is the length 
of we~ (i.e., the length of the part of the input w which codes a program). The number ~" 
is a suitable estimate for the time needed to simulate the instruction X i +-- X j  + Xk  �9 

A similar section of code can be written for the remaining seven instruction types. 
There remain only two difficult points which must be examined for the logarithmic 

case. First, that the simulator does in fact run in time O(T2(n)) and, second, that 
k(Pw) can be chosen in such a way that if the input program halts within time 
k(Pw) " 7'2(I w I), then simulation will be completed before the time array goes negative 
(which automatically termines the simulator). If the simulation is completed, of 
course, the simulator will accept the input w iff Pw does not accept w. 
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Section of Code Used to Simulate X, -,- Xj  + Xk 

1L4M-ALGOL Instructions 

else if code = 2 then 

begin 

comment Xi +- X~ + Xk ; 

X[opl] := X[op2] + X[op3]; 
n2 := norm[op2]; 
n3 := norm[op3]; 
temp := if n2 > n3 then n2 else n3; 
norm[opl] := Norm(temp, X[opl]); 

updatetime(n2); 
updatetime(n3); 
updatetime(Nu) 

end 

Timing 

o(1) 

O(l(i) + l(j) + l(k) + l(Xj) + l(X,)) 
O(l(j) + l(loglog X~)) 
O(l(h) + l(loglog Xk)) 
O(l(loglog Xj) + l(loglog Xk)) 
O(l(i) + l(Xj) + l(X~)) 

* T i m e  required to upda te  the  coun te r  is accounted  for elsewhere.  

FIGURE 2 

Concerning the first point, we reason as follows. We have already argued that 
all calls to the procedure updatetime and the generation of powers of two require only 
time O(T2(n)). Hence we need only make sure that sufficiently large values are 
subtracted from the time array after each instruction is simulated. Precisely, it is 
sufficient to find an absolute constant K such that the simulation time for each 
instruction is at most K times the number subtracted from the time array after that 
instruction is simulated. Table V shows the actual amount subtracted from the time 
array for each type of instruction. 

Note that by Eq. (2), 2 n~ ~ l(n). Also Nu = norm (] w e  [) and [ Wv~ I is 
an upper bound on the indices i, j,  k appearing in the instructions and the constants C 
appearing in Xi ~--C. From this it is not hard to verify that the simulation time 
for each instruction (see Fig. 2, for example) exceeds the number in the right hand 
column of Table V by at most a small constant factor K. The only worry is that 
the time required to compute norm(X) for a new value of X stored in a register 
would be too great. To see this is not so, note that only four instruction types require 
computing a new value of norm(X); namely Xi  +-- C, X i +- X j  • Xk  , and READ Xi  . 
For the first, according to our estimate (5), the time to compute norm(C) is O((l(C))~), 
and (/(C)) 2 is less than the entry 22"N~ in Table V. For Xi  +-- X~ • X k ,  the simulating 
routine calculates norm(X/) by calling Norm(m, Xi), where 

m ~- max(norm(Xi), norm(Xk) ). 

Again, our estimate (5) shows the time spent in the Norm procedure is O(2"), and 
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in this case 2 m is less than the right hand entry in Table V. Finally, for READ Xi ,  
norm(X~) = 0, since the only possible inputs are 0, 1, and 2. 

To complete the proof of Theorem 3, it remains to find a constant k(P~) such 
that if Pw halts within time k(P,~) �9 T2([ w I), the simulation will be completed before 
the time array goes negative. But the time array initially has the value T~(I zo I), 
and the values subtracted are the values in the right hand column of Table V, after 

TABLE V 

Ins t ruc t ion  A m o u n t  sub t rac ted  f rom the  t ime array 

X~ "~--C 

x , ~ x ~ + x ~  

x ,  o- x j  - x~ 

Xx,  ~ x j  

T R A m I F X j  > 0 

READ X~ 

PRINT X~ 

22.Nu 

2 n~ -F- 2 n~ + 2 Nu 

2 n~ -k 2 n~ + 2 Nu 

2n~ + 2n~ + 2 N~ 

2n~ ~ + 2norm~X0 + 2 Nu 

2n~ + 2 Nu 

2Nu 

2norm(XO + 2 Nu 

Note:  N u  = norm(I wp w [) and  [ wp, o [ is an upper  b o u n d  on all constants  and  addresses 
appear ing  in Pw �9 

each instruction is simulated. According to Eq. (2) and the execution times shown 
in Table I, these values exceed the execution times for the instructions by at most 
a factor of 2, plus 22"n". An upper bound for the amount subtracted for the ith 
instruction is thus (2 + 22~r t~, where t~ is the execution time of the ith instruction. 
Hence we have 

(2 + 22Nu)E > T2( [ w [), (6) 

where E is the execution time of that portion of the computation of P~, which is 
simulated before the time array goes negative. 

From (6) we have E >~ 1/(2-1-22N~)'T2(I w I), so we can choose k(Pw)-= 

1/(2 + 22u"). 
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APPENDIX A: RAM-ALGOL PROGRAM TO SIMULATE RASP PaOGRAM P 

RAM-ALGOL Statements 

begin 

comment Declarations for program R; 
integer array MEMORY; 
integer dummy, 

AC, 
IC, 

J; 
Boolean simulating; 

comment The first thing we do is to initialize the 
first p elements of MEMORY, so as to mimic 
the initial configuration of P; 

MEMORY[0] : =  initial value o ; 

MEMORY[I] : =  initial value 1 ; 

MEMORY[p - -  1] : =  initial valu%_ 1 ; 

AC : =  IC : =  0; 

comment The main part of the simulator is the 
following loop, which is executed once for each 
instruction simulated. If ti is the execution time 
of a single instruction of P, then the pass through 
this loop simulating the execution of that 
instruction takes time O(ti). Thus if l(n) is the 
number of instructions executed by P on 
inputs of length n, then 

l ( n )  

T(n) = ~ t i ,  
i=1 

and the execution time of R is 

, , . ,  

2 0 ( t i )  = 0 t, = O(T(n)); 
i=l  i=l  

simulating : =  true; 
for dummy : =  0 

while simulating do 

timing 

0(1) 
0(1) 

0(1) 
0(1) 

o(1) 
o(1) 
o(1) 
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begin 

integer opcode; 
opcode : =  MEMORY[IC]; 
i f  opcode ~ 0 v opcode ~> 8 then 

simulating : =  false 

else begin 

j : =  MEMORY[IC + 1]; 
IC : =  IC + 2; 
i f  opcode = 1 then begin 

comment The execution time of 
LOD, j is I(IC) + l(j); 

AC : = j  
end else i f  opcode = 2 then begin 

comment The execution time of 
ADD,j  is I(IC) + l(j) + I(AC) + I(Xj); 

i f  j < 0 then simulating : =  false 
else AC : =  AC + MEMORY[j] 

end else i f  opcode = 3 then begin 
comment The execution time of 

SUB,j  is l(IC) § l(j) + I(AC) + I(Xj); 
i f  j < 0 then simulating : =  false 
else AC : =  AC -- MEMORY[j] 

end else i f  opcode = 4 then begin 
comment The execution time of 

STO,j  is I(IC) + l(j) + I(AC); 
i f  j < 0 then simulating : =  false 
else MEMORY[j] :=  AC 

end else if  opcode = 5 then begin 
comment The execution time of 

BPA, j is I(IC) + l(j) + I(AC); 
i f  j < 0 then simulating : =  false 
else i f  AC > 0 then IC : =  j 

end else i f  opcode = 6 then begin 
comment The execution time of 

RD, j  is I(IC) + l(j) +/(input); 
i f  j < 0 then simulating : =  false 
else read(MEMORY[j]) 

end else begin 
comment The execution time of 

PRI , j  is I(IC) + l(j) + I(Xj); 

O(I(IC) + l(opeode)) 
O(l(opcode)) 
0(1) 

O(I(IC) + l(j)) 
O(l(IC)) 
0(I) 

O(l(j)) 
0(1) 

O(l(j)) 
O(l(j) + I(AC) + l(X3) 
0(I) 

O(l(j)) 
O(l(j) + I(AC) + I(Xj)) 
O(1) 

O(l(j)) 
O(l(j) + l(AC)) 
O0) 

O(l(j)) 
O(l(j) -{- I(AC)) 
O(1) 

O(l(j)) 
O(l(j) +/(input)) 
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if j < 0 then simulating : =  false 
else pr in t (MEMORY[j] )  

end 
end 

end of the simulation loop; 
end of program R; 

O(l(j)) 
O(l(j) + I(Xj)) 
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A P P E N D I X  B 

We wish to obtain an upper  bound on the largest number  computable by a RAM 
program (for a RAM with logarithmic cost function) as a function of execution 
time. We must  add some restrictions, however, since for any integer C there is a 
RAM program with execution time l that computes C, namely, X o +-- C. But the 
length of our encoding of this program on {1, 2} grows linearly with C. Also the short 
program READ X 0 can "compute"  the number  2 r in t ime T by reading in a large 
input. T o  circumvent these two problems we define M(T, n) to be the largest number  
appearing in any register after a computation of duration T or less by any RAM 
program (with logarithmic cost function) whose encoding has length no greater 
than n, provided the inputs are 0, l, or 2. This  restriction on the inputs corresponds 
to the restrictions in Theorem 3. 

THEOREM. For n > O, M(T, n) < n �9 2 ~'~/~, and M(T, O) = O. 

Proof. The  proof will proceed by induction on the number  of instruction execu- 
tions during the computation. In order to facilitate breaking the proof  down into 
cases, we define Mi(T, n) to be the largest number  computable in t ime T by a program 
of length no greater than n, where the last instruction executed is an instruction 
of type i. We note that M(T, n) ~ maxl<i<.8 MI(T, n), so that to prove M(T, n) .< 
n �9 2 ~'~/~, it will suffice to show that for i = 1,..., 8, Mi(T, n) < n �9 22'~/~. As the 
basis of our induction, it is trivially true that M(T, O) = M(O, n) = O, since nothing 
can be computed with no program or with no time. (Recall our convention that 
a RAM computation begins with all registers set to zero.) Thus  n > 0 :> M(0, n) 

0 < n ~ n - 2 0 =  n"  2 ~'v~. As induction hypothesis, assume that for all t < T, 

M(t, n) < n �9 22"'/~. We will now show that Mi(T, n) < n �9 22.47 for i ---- 1,..., 8, 

and thus that M(T, n) < n �9 22"'/F, completing the induction. 

Case 1. Last instruction executed is X i +-- C. Execution time of the last instruction 
is 1. Either the last instruction produced the largest number,  or it did not. Therefore 

MI(T,n) = m a x ( M ( T - -  1, n ) , C ) < n ' 2 2 " ~ / 7 ,  since C < n  and M ( T - -  1, n) < 
n �9 22. ~/T---~ < n �9 2 ~'~/~.  
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Case 2. Last instruction executed is X i +--Xj + X k . Execution time of the 

last instruction is l(Xs) + l(Xk). To prove that M2(T, n) < n" 22"'/7, we will assume 

that M2(T, n) >/n  �9 22"VF and derive a contradiction. The largest number that could 
have been computed prior to the last instruction is M ( T  -- (I(Xj) + l(Xk)), n), and 
from the induction hypothesis we know that 

M ( T  -- (I(Xj) + I(X~)), n) < n-22"r )). 

Since MS(T, n) >/n"  22"r M2(T, n) > M ( T  -- (I(Xj) + l(Xk)), n), so MS(T, n) 
must have been computed in the last step. 

(*) Thus X~ + Xk = M2(T, n) > / n .  22"VF. 
But since X~ and Xk must have been computed before the last step, we know that 

X~ + X~ < 2 �9 n �9 22"vr-(~lx,)+~txk )). 

Combining these inequalities, we get 

n �9 22"v'~ < 2 �9 n �9 22"vr-i"x~)+"xk )) 

2" v / T  -<  1 + 2 .  "v/T -- (l(Xj) + l(Xlc)), 

canceling n and taking logs 

=> 4" r < 1 -{- 4" V/T  --  (l(Xs) + l(X~)) + 4" T -- 4 .(l(Xs) + l(Xk)), 

squaring both sides 

4 .  (l(Xj) + l(X~)) < 1 + 4 .  v / r  --  (l(Xj) + l(Xk)), 

transposing and canceling 4 �9 T 

4 .(l(X~) + l(Xk)) < 1 + 4 .  VT,, 

I(Xj) + l(Xk) < �88 + V ~ ,  

:~ l(X,  + Xe) < �88 + v/T,, 

log2(X j + X~) < �88 + ~/T,, 

x ;  + x ~  < 21t 4.  2 '/~, 

:~ n �9 22"~/y < 21/4 - 2 e l ,  

=~ n ' 2 V~ < 2 t/4, 

: ~ n = 0 o r n =  1 a n d T  = 0 ,  

since T > T -- (I(X~) -1- l(Xk)) 

since 4 > 0 

by subadditivity 

since log~ x <~ l(x) 

exponentiating both sides 

combining with (*) 

canceling 2 ' / i  

since 1 < 21/4 < 2. 

But we have assumed that both n > 0 and T > 0, so we have a contradiction. 
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Thus  MS(T, n) ,< n"  23. v'7. 

Case 3. X i +-- X j  --  X k . The  analysis for this case is identical to Case 2. 

Case 4. X i  *--Xx~.  This  instruction computes no new values, so 

Case 5. 

Case 6. 

Case 7. 
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M ' ( T ,  n) ~ M ( T  - -  l ,  n) < n . 22"V~ 

Xx ,  +-- X~.  Again, no new value is computed, so 

M4(T, n) < n �9 22"q~. 

T R A m  IF  X~ > 0. No new value, so M6(T, n) < n �9 22"~/~. 

READ X i .  Since the input value is 0, 1, or 2, /(input) = 1. Thus  

MT(T, n) = m a x ( M ( T  - -  1, n), 2) < n"  2 ~''/~. 

Case 8. P R I N T  X i .  No new value, so MS(T, n) < n �9 2 2'v'7. This  completes 
the induction step, and the theorem is proved. II 

In  the text, we refer to N = M(T2(n), n). Since n <~ T2(n), and since log:(T2(n)) < 
2"  V' T2(n), we get 

N = M(T~(n), n) < n .  22"~/V~ (") 

21og2 n . 22"~/T=(n) 

2a'VTT(n). 
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