
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 7, 354--375 (1973)

Time Bounded Random Access Machines

STEPHEN A. COOK AND ROBERT A. RECKHOW

Department of Computer Science, University of Toronto, Toronto, MSS 1A7, Ontario

Received A u g u s t 3, 1972

T h e R A M , an abstract mode l for a r a n d o m access compute r , is in t roduced. A u n i q u e
feature of the mode l is tha t the execut ion t ime of an ins t ruc t ion is defined in t e rms of
l(n), a func t ion of the size of the n u m b e r s man ipu la t ed by the ins t ruct ion. T h i s mode l
has a fixed p rogram, bu t it is shown tha t the c o m p u t i n g speeds of this mode l and a
s to r ed -p rog ram mode l can differ by no more than a cons tant factor. It is p roved tha t
a T(n) t i m e - b o u n d e d T u r i n g mach ine can be s imula ted by an O(T(n) �9 l(T(n))) t ime-
b o u n d e d R A M , and tha t a T(n) t i m e - b o u n d e d R A M can be s imula ted by a T u r i n g
mach ine whose execut ion t ime is b o u n d e d by (T(n)) a if l(n) is constant , or (T(n)) ~ if

l(n) is logari thmic.
T h e ma in resul t states tha t if T~(n) is a funct ion such tha t there is a R A M tha t

c o m p u t e s T2(n) in t ime O(T2(n)), and if Tx(n) is any funct ion such tha t

Tl(n)
l im inf = O,

.+~ T,(n)

t h en there is a set S tha t can be recognized by some R A M in t ime O(T2(n)), b u t no
R A M recognizes S in t ime O(Tx(n)). T h i s is a sharper diagonal resul t t han has been
ob ta ined for T u r i n g machines .

T h e proofs of mos t of the above resul ts are construct ive and are aided by t h e
in t roduc t ion of an A L G O L - l i k e p r o g r a m m i n g language for R A M ' s .

In this paper we introduce a formal model for random access computers and
argue that the model is a good one to use in the theory of computational complexity.
In the past, general results concerning the time and storage needed to solve com-
putational problems have often been quoted in terms of multitape Turing machines,
even though such machines are not much like any existing computers that would
actually carry out the computations. Even when an algorithm intended for a "real"
computer is analyzed, it is often not made explicit what arithmetic operations must
be available to the machine and what idealizations concerning unlimited storage,
word length, etc., must be assumed. We believe it is often desirable to make these
points explicit when quoting positive results about specific algorithms, and essential
to make them explicit when quoting general complexity results such as lower time
bounds or hierarchy theorems.

354
Copyright �9 1973 by Academic Press, Inc.
All rights of reproduction in any form reserved.

TIME BOUNDED MACHINES 355

The model we develop involves a number of hard choices concerning which
arithmetic operations to make primitive, and what assumptions to make concerning
unlimited storage and word length. Our choices are partly justified by experience
with formalizing algorithms, and partly by the naturalness of the theorems presented
in this paper. A further discussion of these points is presented in [2]. Our model
includes addition as primitive, but not multiplication, since the latter can be rapidly
simulated by addition, and multiplication is not needed for the algorithms presented
here. The random access storage is unlimited, and the word length is unlimited,
although we propose making a time charge roughly equal to the logarithm of the
magnitude of each number placed in storage. This is like charging for the number
of words required to store a high precision number on a fixed wordsize machine.

One of our theorems compares our fixed program computer model with a stored
program model. A second result compares the run times for executing algorithms
using our random access model and multitape Turing machines, and shows that
the run times do not differ greatly. The main result, Theorem 3, shows the existence
of a time complexity hierarchy which is finer than is known to exist for any standard
abstract computer model. The proofs of the theorems make use of an ALGOL-like
programming language introduced for our random access machines.

1. RANDOM ACCESS MACHINES

A random access machine (RAM) consists of a finite program operating on an infinite
sequence of registers. Each register can hold an arbitrary integer (positive, negative,
or zero). The contents of the registers is denoted by the sequence X0, X1, X~
Associated with the machine is the function l(n) which, roughly speaking, denotes
the time required to store the number n. The most natural values for l(n) are (1)
take l(n) identically one, and (2) take l(n) approximately log In I. For the results
stated here, if the value of l(n) is not given explicitly, we need only assume l(n) is
positive, nondecreasing on the positive integers, symmetric (l(n)-----l(--n)), and
subadditive (l(n + m) ~ l(n) + l(m)).

The possible instructions, together with their execution time in terms of l(n),
are given in Table I. Here i, j, k, are any nonnegative integers. The effect of most
of the instructions should be evident. For example, Xi *- C causes X~ to assume
the value C, while Xi * - X j + X k causes Xi to assume the value X~ + X k . The
instruction TR Am if Xj > 0 causes control to be transferred to line m of the program
if Xj > 0. Normally control is transferred from one line to the next. READ Xi causes
Xi to take on the value of the next input number, and PRINT Xi causes X i to be
printed on the output tape.

The indirect instruction Xi +--Xxj causes register number Xj to be copied into
register number i, provided X~ >/0. The instruction Xx~ +- X~ has an analogous

356 COOK AND RECKHOW

TABLE I

RAM Instructions and Execution Times

Instruction Execution time

X~ +- C, C any integer 1

x, ~- x~ + x~ z(x3 + l(X~)

x , ,-- x~ - x~ z (x3 + t(x~)

x, ~- xx~ z(xx) + z(x~)

Xx, +- x , z(x,) + t(_x%.)

T R A m if X ; > 0 I(Xj)
READ Xi /(input)

P R I N T X~ I(X,)

meaning. T h e indirect instructions are necessary in order for a fixed program to
access an unbounded number of registers as the inputs vary.

A RAM program is started at the first instruction, with all registers initially zero,
and it halts when a transfer is made to a line with no instructions, or when a negative
indirect address is encountered.

We propose the following value for the function l(n):

l(n) = t [l~ In I1 if In [>~ 2
(1 if [n l < 2

(Here Ix] is the least integer ~x .) We will call this the logarithmic function.
Briefly, the reason for taking l(n) logarithmic instead of constant is that each

register is allowed to hold arbitrarily large integers. Thus any fixed word length
machine simulating our RAM would require about log n registers to store the number n
held in a single RAM register (where the base of the logarithm is the largest number
that can be stored in a single register). A more extensive argument is given in [2],
along with motivation for our choice of instructions.

We are interested in the time required for a RAM to recognize a set A of strings
on a finite alphabet S = {~1 ,..., o~}. A string w = oq~;= "'" oi, will be presented to
the machine as the sequence of integers i I , i S ,..., in, 0, where 0 indicates the end
of the string. T h e machine must execute a sequence of n + 1 Read instructions to
acquire the string. The machine accepts w by printing a 1 and halting (in a computation
with input w) and rejects w by printing a 2 and haking. The computation time is
the sum of the execution times of all steps in the computation as given by the second
column of Table I. We say the machine M recognizes a set A of strings within time
T(n) iff for every string w on Z, M halts on input w within time T([w [) and accepts w

TIME BOUNDED MACHINES 357

if w ~ A and rejects w if w q~ A. We are interested only in the rate of growth of run
times as a function of the size of the input, which accounts for the fact that the
execution times in Table I may differ from their "proper" value by a constant factor.

2. THE PROGRAMMING LANGUAGE

Since the proofs of the results reported here require construction of lengthy RAM
programs, it is convenient to introduce a programming language called RAM-ALGOL,
which is a subset of ALGOL 60 as described in the revised ALGOL Report [3].
The main difference between RAM-ALGOL and ALGOL 60 are:

I. Real numbers have bccn eliminated.

2. The only arithmetic operators arc + and --.

3. Procedures and switches arc not allowed to bc rccursivc.

4. Arrays arc one-dimensional and infinite.

These differences are described in more detail in [I].
In order for RAM-ALGOL to bc useful for proving theorems about time bounds,

it is necessary to implement RAM-ALGOL on a RAM in such a way that the
execution time of a RAM "object program" can bc determined (to within a constant
multiple) by inspection of the RAM-ALGOL "source program." This type of
implemcntion can be done in a relatively straightforward way, and is described in
detail in [I].

The most interesting feature of the language to implement is arrays. The declaration

integer array A;

declares A to be an infinite array of integers:

A[0], A[1], A[2],.. . .

A R A M - A L G O L program can contain many arrays, but since there is no recursion,
a fixed program P references at most a fixed number of arrays, say k of them�9 We
can then interleave the storage for these k arrays and the scalars and temporaries
of P as follows:

array A a is stored in RAM registers

X1 , X(/c+l)+l , X2(k+l)+1 ,�9149149
array A 2 is stored in RAM registers

X 2 , X(k+l)+2 , X2(k+l)+2 ,...

array Ak is stored in RAM registers

X k , X(k+l)+/c , X2(/c+l)+/c ,...
scalars of P are stored in RAM registers

X o , Xk+l , X2(k+i) , . . .

358 COOK AND RECKHOW

so that in general, the value of Ai[j] is found in RAM register Xj(z+l)+~. The
accessing of elements of arrays can now be implemented as follows. Suppose, for
example, that we want to implement the RAM-ALGOL statement Y : = A[Z] on
a RAM. Assume that the integers Y and Z are stored in the RAM registers X r and
X z , respectively, that A is the ith of k arrays in program P, and that Xtemp is a
temporary register. Then we have the following implementation:

Program Timing

Xtem p ~ i

t Xtemp ~- Xtomp + Xz
k + 1 times

Xtemp *-" Xtemp + Xz

Xr ~- Xx,emp

Since k and i are fixed, and l(n) is subadditive, the total execution time of this statement
is O(l(Z)+ I(A[Z])). Storing into an array is implemented in an analogous way,
so that the execution time of A[Z] : = Y is O(l(Z) + l(Y)).

Since we are not concerned with constant factors in the timing analysis, the other
features of ALGOL can generally be implemented in the most obvious way. Since
procedures are not allowed to be recursive, we can actually replace each procedure
statement by its procedure body (as described in the revised ALGOL Report [3]),
and translate the resulting procedureless program into RAM instructions.

Appendix A to this paper contains an example of a RAM-ALGOL program
and its timing analysis used in the proof of Theorem 1. Complete RAM-ALGOL
programs are given for most of the proofs in [1].

1

l(i) + I(Z)

l(kZ + i) + I(Z)

l((k + 1)Z + i) + l(A[Z])

3. STORED PROGRAM MACHINES

The RAM model described in Sec. 1 has a fixed program. Since most existing
computers are stored program devices, it is worthwhile asking whether the stored
program feature adds to the computation speed. The Random Access Stored-Program
Machine (RASP) described here is similar to the RASP's described by Hartmanis [4].
The specific machine RASPI described by Hartmanis is essentially the same as
our RASP with indirect addressing and with l(n) identically one. Our machine has
an accumulator (AC), which holds an arbitrary integer, an instruction counter (IC),
which holds a nonnegative integer, and an infinite sequence of memory registers
Xo, X1, X2 ,..., each of which can hold an arbitrary integer. The instructions for
our RASP, along with their timings, are given in Table II.

An instruction is stored in two consecutive memory registers. The first register

T I M E B O U N D E D M A C H I N E S

TABLE II

RASP Instructions and Execution Times

359

Operation Mnemonic

Description
Operation of the

code operation
Execution

time

load LOD,j 1 AC +--j;
constant IC *--IC + 2

add ADD, j 2 AC *-- AC + X~ ;
IC ~-IC + 2

subtract SUB, j 3 AC *-- AC -- Xj ;
IC *- IC + 2

store STO, j 4 Xj +-- AC;
IC *- IC + 2

branch on BPA,j 5 if AC > 0 then
positive IC ~--j; otherwise
accumulator IC ~- IC + 2

read RD,j 6 Xj *-- next input;
IC *-- IC + 2

print PRI,j 7 output Xj ;
IC ~ IC + 2

halt HLT -- co to 0 stop
and

8to co

l(IC) + l(j)

/(IC) + l(j) +
I(AC) + l(Xj)

l(IC) + Z(j) +
/(AC) + l(Xj)

/(IC) + l(j) +
l(AC)

/(IC) + l(j) +
l(AC)

/(IC) + l(j) +
/(input)

/(IC) + l(j) +
t(X~)

/(IC) +
/(X~c)

Note"
The machine halts if

a. The operation code (Xic) is not between 1 and 7, or
b. The parameterj (i.e., XIc+I) is negative for operations 2 through 7.

contains an operation code (shown in the third column of Table II), and the second

contains the parameter of the instruction, j , which is either an address or an integer

constant. Note that since indirect addressing is not provided for by the instruction

set, RASP programs must modify themselves in order to access an unbounded number

of registers. Normally a RASP program consists of a finite number of instructions

(the first of which is stored in registers X 0 and X1) and data words, stored in certain

specified memory registers. All other memory registers and the AC and IC are initially

set to zero. Execution of an instruction consists of retrieving an operation code from

register Xic and (provided the operation code does not specify a halt operation)

360 COOK AND RECKHOW

the parameter j from register X I C + I . The appropriate operation is then performed
as indicated in the fourth column of Table II, and the cycle is repeated until an
illegal operation code or parameter is encountered, at which time the machine halts.

As with the RAM, RASP execution times are weighted by a cost function l(n).
The execution times of the various RASP instructions are listed in the last column
of Table II. Contrary to the RAM instruction timings, the processing of addresses
and constants is explicitly charged for on a RASP. This is reasonable, since by
modifying itself, a RASP program can generate instructions with arbitrarily large
addresses and constants and then execute them. We also charge for the value of
the instruction counter at the time of execution of each instruction, since the IC
may also grow arbitrarily large during execution.

Note that the inclusion of statements for indirect addressing could increase the
computation speed by no more than a constant factor. For example, if we had
included LDI, j (load indirect) meaning AC ~ Xx~, its cost would have been
I(IC) + l(j) + l(Xj) + l(Xxj). But this can be simulated by the sequence:

LOD, 0

ADD, j

STO, a + 1

LOD, 0

a ADD, 0.

This sequence has execution time O(/(IC) + l(j) + l(X~) + l(Xxj)).

TI~EOREM 1. For each function T(n) ~ n, a set A is recognizable by a RAM in
time O(T(n)) if and only if A is recognizable by a RASP in time O(T(n)).

The proof that a RAM can simulate a RASP program P in a proportional amount
of time consists of exhibiting the RAM that does the simulation. This RAM program
is given in Appendix A, written in RAM-ALGOL. It uses an array, MEMORY,
to hold the contents of P's memory. It first initializes the first p elements of the
MEMORY array, where p is the length of P. This initialization takes a fixed amount
of time. It then simulates the execution of P by retrieving the instructions from
the MEMORY array and executing them interpretively. Appendix A shows that
the time required to simulate the execution of an instruction of P is proportional
to the execution time for that instruction in P. We can then conclude that if P halts
within time O(T(n)), the RAM halts within time O(T(n)).

Simulation of a RAM by a RASP is accomplished by replacing each RAM instruction
by an equivalent sequence of RASP instructions. Since part of the RASP storage
is needed for the program, all of the registers used (explicitly or by indirect reference)
by the RAM must be offset by a fixed constant in the simulation. We illustrate by

TIME BOUNDED MACHINES 361

giving in Table I I I the sequence of RASP instructions which would replace the
RAM instruction Xx~ +- X~. Here p is a bound on the total length of the RASP
program.

Since it takes at most six RASP instructions to simulate a single RAM instruction,
the bound p can be taken to be 12 �9 m, where m is the number of RAM instructions.
In fact, all components of the execution times given in Table I I I , such as I(IC),
l(a + 1), l(i + p), are bounded by a constant depending only on the RAM program.

TABLE III

Simulation of Xx, "-- X~

RASP code Execution time

LOD, p t(IC) + l(p)
ADD, (i + p) /(IC) + I(i + p) + l(p) + I(Xi)
STO, (a + 1) /(IC) + l(a + 1) + I(Xi + p)
LOD, 0 I(IC) + l(O)

ADD, (j + p) I(IC) + l(j + p) + l(O) + l(X~)
a STO, 0 /(IC) + l(X, + p) + l(Xj)

Thus the time required to simulate Xx~ ~ Xj is O(I(X~) + I(Xj)), which is propor-
tional to the RAM execution time of the instruction. A similar statement can be
made for each instruction simulated. Thus the simulation time is bounded by a
constant times the original execution time.

4. TURING MACHINES AND RAM's

Since the multitape Turing machine is the standard computer model used in
complexity literature, it is interesting to compare its computing power with that
of RAM's. The result shows they are not as different as one might expect.

THEOREM 2. (a) I f a set A is recognized by a RAM P within time T(n) > n, and

(i) i f P has l(n) logarithmic, then A is recognized by some multitape Turing machine
within time (T(n)) 2, and

(ii) i f P has l(n) identically constant, then 2t is recognized by some multitape Turing
machine within time (T(n)) 3.

(b) Conversely, if some Turing machine recognizes _/t within time T(n) >/n, then
some RAM (with arbitrary cost function l(n)) recognizes A within time O(T(n) " l(T(n))).

362 COOK AND RECKHOW

The proof of (b) is straightforward. The simulating RAM simply stores the
contents of the Turing machine's k tapes in 2k arrays, one tape symbol per array
element, with one array for the left half of each tape, and one array for the right
half. The finite control of the Turing machine is handled by the simulating program
in a fixed amount of time per Turing machine step, except for accessing of the tape
arrays. Since a head of the Turing machine can move at most T(n) squares away
from the starting position in T(n) steps, the time it takes the RAM to access this
farthest tape square is O(l(T(n))).

The proof of (a) is a bit more subtle. The problem is that the Turing machine
needs an efficient way to simulate the random access storage and the instructions
of a RAM. Our simulating machine M will use one of its work tapes to hold the
contents of P ' s memory in the following format:

$*a I • el*a, 2 ~:~ c~ "" *a t # eft

Here the a~ (i = 1, 2,...,j) are the addresses of the registers of P that have been
stored into thus far in the computation. The a i are represented in binary and are
arranged in increasing order. The c~ (i = 1, 2,...,j) are the contents of the corre-
sponding registers, also stored in binary.

LEMMA. The nonblank portion of the above work tape contains O(T(n)) squares
in case l(n) is logarithmic, and O((T(n)) 2) squares in case l(n) is constant.

For the proof, suppose first that l(n) is logarithmic. After each RAM instruction
is executed, at most one register is altered, and the number stored in that register
has a number of bits bounded by a constant times the RAM cost of executing that
instruction. The number of bits in the address of that register is also bounded by
a constant times the cost of the instruction. Since the total RAM cost of the computa-
tion is bounded by T(n), the length of the work tape will never exceed a constant
times T(n).

If l(n) is constant, the argument is similar, except the bound on the length of
each register and address is O(T(n)). This is because (except for loading constants)
the maximum of the numbers in the registers can at most double after each RAM
instruction is executed. Thus in T(n) steps the maximum is O(2r~n~), and the binary
length of this is O(T(n)). Since at most T(n) registers can be accessed in T(n) steps,
the total length of the work tape is O((T(n))2), as stated in the lemma.

The theorem follows readily from the lemma. Each RAM instruction can be
simulated by the Turing machine by a small fixed number of passes down the work
tape described above, with the help of other work tapes. Each pass requires time
O(T(n)) or O((T(n))~), depending on l(n). Since the RAM executes at most T(n)
instructions before halting, the total simulation time is bounded by O((T(n)) z) or

TIME BOUNDED MACHINES 363

O((T(n))S). Since Turing machines have linear speedup and since (T(n))2 > n,
there is a Turing machine which simulates P in time ((T(n)) 2 (if l(n) is logarithmic)
or (T(n)) 3 (if l(n) is constant). (See [I] for more details.)

5. THE RAM COMPLEXITY CLASSES

DEFINITION. A function T(n) on the positive integers is time constructable (with
respect to a cost function l(n)) iff there is some RAM program P (with cost function
l(n)) such that for all n, P reads n, calculates and stores T(n) in some register, and
halts within time O(T(n)).

We note that "time constructable" is similar to "real-time countable" for Turing
machines, and is the analog for time of "constructable" (as defined in [5]) for storage.

THEOREM 3. 1.[l(n) = 1 or l(n) is logarithmic, and i f T2(n) ~ nl(n) is time con-
structable with respect to l(n), then there is a set A C_ {1, 2}* such that some RAM
program recognizes A within time O(Tz(n)) , but for any function Tl(n) satisfying

l iminf Tl(n) -- 0 (1)
,~ oo T2(n)

no RAM program recognizes A within time O(Tl(n)).

We note that Hennie and Stearns [6] prove a similar result for multitape Turing
machines, but their result is weaker in that the numerator in Eq. (1) is Tl(n) log Tl(n)
instead of Tl(n). In fact, we know of no argument in the literature proving a result
as strong as Theorem 3 for a class of abstract computing machines.

The proof of Theorem 3 is straightforward for l(n) =: 1, but is rather subtle for
l(n) logarithmic. The trouble in the latter case stems from the necessity of estimating
the logarithmic function l(n) sufficiently rapidly after each step of computation so
that the diagonalizing machine recognizing A can shut itself off within time O(T2(n)).

RAM instructions can be encoded on the alphabet {1, 2) according to Table IV.
Note that numbers are represented in unary notation. A RAM program P can be
encoded by concatenating the encodings of its instructions to form the string we.
For w E{1, 2}*, we use Pw to denote the longest program whose encoding is an
initial segment of w. Note the identity Pwp, = P'. Also, for any program R and all
sufficiently large integers l, there is a string w of length l such that Pw " " R.

We can now describe the set A in the statement of Theorem 3 with the help of
a function k() mapping RAM programs P to real numbers k(P). (The specific choice
of k() will be given later.)

If Pw with input w halts within time k(P~) �9 Tz(n), then w E A iff Pw does not

57 x/7/4-3

364 COOK AND RECKHOW

TABLE IV

RAM Program Codes

RAM instruction Encoding on {1, 2}

1. Xi ~-- c 121i21c2

2. X~ ~-- Xj + Xk 1221~21J21k2

3. Xi ~--X~ -- Xk 1321i21J21k2

4. Xi +'- Xxj 1421i21J2

5. Xx i *- X~ 1521~21J2

6. TRAm IF X~ > 0 1~21~21J2

7. READ X~ 1721i2

8. PRINT Xi 1821t2

Notes: repeated n times

1. 1" denotes the string

l 2 " c if c ~ 0
2. ~ = --2 c - - 1 if c < 0

accept w. When Pw with input w does not halt within time k(P~)" T2(n), we do
not care whether w ~ A or not.

For l(n) = 1, k(P~) = l, and A = {w [P,w with input w halts within time T2(] w [)
without accepting w), but for l(n) logarithmic, k(Pw) may be very small for large Pw.

The proof that no RAM recognizes A in time O(Ta(n)) is now easy, for suppose
P ' recognizes A in time c �9 Tl(n). Then by Eq. (1) there is a long string w formed
from Wp, by adding suitably many 2's to the right such that law = P' and cTt(t w [) <
k (P ') . 7'2(I w]). Thus Pw with input w halts within time k(Pw) �9 T2([w]), so by
our description of the set A, w 6 A iff Pw does not accept w. But this contradicts
our assumption that P ' recognizes A, since P' ~ Pw. Thus no such P ' can exist.

The proof that some RAM program M recognizes A within time O(Tz(n)) is
constructive. Complete R A M - A L G O L programs for M are given in [1]. We will
describe the programs here in sufficient detail to convince the knowledgeable reader
that they can be written and will execute within the stated times. After describing
M and showing that it operates within time O(T2(n)), we will show how to choose
the coefficients k(Pw) so that M recognizes the set A described above. M consists
of two parts: a preprocessor and a simulator.

The preprocessor first reads the input string w and stores it in the array W. The
value of n z [w [is also accumulated. The program Pw encoded by w is then obtained
from W and stored in the four arrays opcode, operandi, operand2, and operand3.
The operation code of the pth instruction of Pw is stored in opcode[p], and its operands
are stored in operandi[p], operand2[p], and operand3[p]. For example, if the 13th

T I M E BOUNDED MACHINES 365

instruction of Pw is X 4 ~-- X17 -- X32x, then opcode[13] = 3, operandi[13] = 4,
operand2[13] ---- 17, and operand3[13] = 321. The execution t ime of the preprocessor
is O(n "l(n)) = O(T2(n)), since O(n) steps are taken, and each takes t ime O(l(n)).

T h e simulator first sets a t iming counter to T2(n). This step takes time O(T2(n)).
T h e simulator then runs the program Pw, as stored in the arrays, interpretively with
the string w as input. It uses another array to represent the registers used by Pw.
I f P~o runs for too long, the simulation is halted anyway, and w is rejected. I f 1" w
halts on input w within time k(Pw) " T2(n), then M accepts w iff Pw does not accept w.

If l(n) = 1, it is clear that M can simulate T2(n) steps of Pw on input w, taking
no more than some fixed constant amount of time to simulate each step. Hence,
in this case, the simulation takes time O(T~(n)), and the total running time for M
is O(n) + O(T2(n)) = O(T~(n)).

For l(n) logarithmic, two problems arise. First, the straightforward way of keeping
track of the simulation time is too slow. The cost of updating the timer in the ordinary
way is O(l(T2(n))) at each step, so that the total execution time of the simulation
would be O(To(n).l(Tz(n))). We circumvent this problem by storing the bits of
the binary representation of the time remaining for the simulation in an array called
time. This requires that the number T2(n) initially be converted to binary. T h e
conversion can easily be done in time O((log T2(n)) ~) by using the standard method
of generating and storing powers of two up to Tz(n) and, starting with the highest
power, successively subtracting off those powers which leave a nonnegative difference.

During simulation, after each step of the input program has been simulated,
an estimate for the time required to simulate that step is subtracted from the time
array. I f this difference is negative, simulation is terminated and the input w is rejected.
Th i s subtraction is carried out by a R A M - A L G O L procedure called updatetime.
As explained below, the time estimate for each step is always a power of two, so
its binary notation consists of a single one bit followed by zeroes. The total time
required to perform all the subtractions can be estimated as follows.

Let b o , b 1 ,..., b k be the bits of the time array, so that initially

k

b, • 2 i = T2(n).
i=o

Each time a number is subtracted from the time array, one or more bits (because
of "borrows") is changed in the array. But each time the bit b i is changed, the value
represented by the array is decremented by at least 2 i. Since the sum of all the
decrements cannot exceed 2 ~+l, it follows that during the entire simulation b i is
changed at most 2 k-i+l times. Since the cost for changing bit b i is O(logi), i > /2 ,
it follows that the total cost of all subtractions is

k o(;logi

366 COOK AND RECKHOW

Since the infinite series 27 log i/2 i is convergent (say, by the ratio test), the above
time is bounded by O(2 k) ---- O(T2(n)).

T h e second problem for the logarithmic case is that we know of no way to compute
the logarithmic l(n) in time O(l(n)). The solution we adopt is to use an estimate
of l(n) which is relatively easy to compute. First we define the norm of a number
as follows:

norm(n) = 0, if] n[< 2

= [tog2 logs [n [], if [n [> /2 .

T h e norm has the following two properties:

l(n) ~ 2 n~ < 2 .l(n) (2)

norm(m • n) ~ norm(max([m [, In 1)) + 1. (3)

T h e first property means that 2 n~ is a good estimate for l(n), since it is never
off by more than a factor of 2. The second property means that if we know the norms
of m and n, we can easily obtain an upper bound for the norms of m + n and m - - n.

In order to compute norms, we need a function to compute powers of two. In
order to save computing time, the powers that have already been computed are
stored in an array. Thus each power of two is computed (by doubling the next lower
power of two) only once. We can estimate the total t ime A spent during the simulation
computing powers of two as follows. Suppose 2 ~ is the highest power computed.
Then the cost of generating 2 ~ 21,..., 2 ~ by successive doublings will be proportional
to the cost of storing these numbers, and since l(n) is logarithmic, we have

A = O(1 + 2 + "" + e) O(e~).

But the Norm procedure (discussed below) never needs a power of two which exceeds
twice the largest number N ever appearing in a register of the RAM being simulated.

Appendix B shows that N < 2 4'/r~--~-f~), roughly speaking because the largest number

can be at most doubled at each step. Thus 2 ~ < 2 4~/r--~-i+l, and e < 4 X/T2(n) -}- 1,
and A = O(T2(n)).

A R A M - A L G O L procedure to compute norms is shown in Fig. 1. We assume
it has access to a second procedure two-to-the(n) which returns 2% T h e procedure
two-to-the(n) checks the array of powers to see whether 2 n has already been computed.
I f so, the value 2 n is copied from the array, and if not, the array is filled in by successive
doublings as described above.

T h e procedure Norm(k, Y) in Fig. 1 returns norm(Y), provided either k = - -1 or

I YI ~ 2 2~+~. (4)

TIME BOUNDED MACHINES 367

The procedure will never be called unless one of these two conditions holds. Note
that if (4) is satisfied, k + 1 serves as an upper bound for norm(Y), and the procedure
uses this fact to save time. In either case, the method of computing norm(Y) depends

Procedure N o r m

R A M - A L G O L statements Timing

integer procedure Norm(k, Y);

value k, O(l(k))
Y; O(l(Y))

integer k,
Y;

begin

comment This procedure computes the no rm of Y as follows:

(1) I f k > 0, we assume I YI < 2 z~§ and compute norm(Y) in
t ime 0 (2 ~) as described in the text.

(2) I f k = - -1 , we compute norm(Y) in t ime
O(I(Y) �9 norm(Y)) -- O((l(Y))2) ;

if Y < 0 then Y : = - - Y ; O(I(Y))

if Y > 2 then O(l(Y))

begin

if k ~ 0 then O(l(k))

begin

k : = k + 1; O(l(k))
comment two-to-the(n) is a procedure which returns 2";
for k : = k - - I while

two-to-the(two-to-the(k)) > Y do;

N o r m : = k + 1

end

else

begin

N o r m : = - -1 ; O(1)

for N o r m : = N o r m + 1 while O(l(Norm))

two- to- the(two- to- the(Norm)) < Ydo; 0(l (I0)

end

end

else

N o r m : = 0 O(1)

end Norm;

O(l(k))

O(k + 2" + I(Y))

O(l(k))

FmUR~ 1

368 COOK AND RECKHOW

on the fact that norm(Y) is the least integer m such that] Y I ~ 2 2~'- If (4) is satisfied,
the total time spent in the for loop is

O(/(22k) + l(2 ak-1) + . . . + I(22~

= o (2~ + 2 ~-~ + -.. + 2 o) = o(2~) .

This does not count the time required by the function two-to-the(n) to generate
new powers of two, but we argued above that during the entire simulation this time
is O(T2(n)).

It is easy to see that if k = --1, the time for Norm(k, Y) is O((l(Y))2). We can
summarize the timing as follows:

IO((I(y))2), if k = - - 1
Time for Norm(k, Y) is ~O(2k) ' otherwise. (5)

We can now describe the method of simulation for the logarithmic case. Throughout
the simulation, the current contents Xo, X 1 , X 2 ,... of the registers of the simulated
program are stored in an array X[0], X[1], X[2],.... In addition, the current norms
of the register values are stored in a second array norm[0], norm[l], norm[2],....
Thus norm[i] = norm(X[/]) during the simulation. Before simulation, the pre-
processor, described earlier, decodes the program P~o to be simulated into four arrays.
During simulation, Pw is simulated instruction by instruction, and the X, norm,
and time arrays are updated appropriately. In Fig. 2 we present as an example the
section of RAM-ALGOL code for the simulation of one type of instruction; namely
X i ~ X j + X k . Here the variable code has been assigned the code number of the
instruction type (see Table IV), and the variables opl, op2, op3 have been assigned
the three operands for the instruction; in this case, i, j, and k. Notice how the norm
array is updated, using max(norm(Xj), norm(Xk)) for the value of k when calling
the procedure Norm(k, Y). This is justified by the inequality (3). The procedure
updatetime(n) causes the value 2 n to be subtracted from the binary time array. (Recall
that this array stores the amount of simulation time remaining.) In the present case,
the number �9 = 2 n~ + 2 n~ + 2 Nu is subtracted from the time array.
Here Nu has been assigned norm(u) at the start of simulation, where u is the length
of we~ (i.e., the length of the part of the input w which codes a program). The number ~"
is a suitable estimate for the time needed to simulate the instruction X i +-- X j + Xk �9

A similar section of code can be written for the remaining seven instruction types.
There remain only two difficult points which must be examined for the logarithmic

case. First, that the simulator does in fact run in time O(T2(n)) and, second, that
k(Pw) can be chosen in such a way that if the input program halts within time
k(Pw) " 7'2(I w I), then simulation will be completed before the time array goes negative
(which automatically termines the simulator). If the simulation is completed, of
course, the simulator will accept the input w iff Pw does not accept w.

TIME BOUNDED MACHINES 369

Section of Code Used to Simulate X, -,- Xj + Xk

1L4M-ALGOL Instructions

else if code = 2 then

begin

comment Xi +- X~ + Xk ;

X[opl] := X[op2] + X[op3];
n2 := norm[op2];
n3 := norm[op3];
temp := if n2 > n3 then n2 else n3;
norm[opl] := Norm(temp, X[opl]);

updatetime(n2);
updatetime(n3);
updatetime(Nu)

end

Timing

o(1)

O(l(i) + l(j) + l(k) + l(Xj) + l(X,))
O(l(j) + l(loglog X~))
O(l(h) + l(loglog Xk))
O(l(loglog Xj) + l(loglog Xk))
O(l(i) + l(Xj) + l(X~))

* T i m e required to upda te the coun te r is accounted for elsewhere.

FIGURE 2

Concerning the first point, we reason as follows. We have already argued that
all calls to the procedure updatetime and the generation of powers of two require only
time O(T2(n)). Hence we need only make sure that sufficiently large values are
subtracted from the time array after each instruction is simulated. Precisely, it is
sufficient to find an absolute constant K such that the simulation time for each
instruction is at most K times the number subtracted from the time array after that
instruction is simulated. Table V shows the actual amount subtracted from the time
array for each type of instruction.

Note that by Eq. (2), 2 n~ ~ l(n). Also Nu = norm (] w e [) and [Wv~ I is
an upper bound on the indices i, j, k appearing in the instructions and the constants C
appearing in Xi ~--C. From this it is not hard to verify that the simulation time
for each instruction (see Fig. 2, for example) exceeds the number in the right hand
column of Table V by at most a small constant factor K. The only worry is that
the time required to compute norm(X) for a new value of X stored in a register
would be too great. To see this is not so, note that only four instruction types require
computing a new value of norm(X); namely Xi +-- C, X i +- X j • Xk , and READ Xi .
For the first, according to our estimate (5), the time to compute norm(C) is O((l(C))~),
and (/(C)) 2 is less than the entry 22"N~ in Table V. For Xi +-- X~ • X k , the simulating
routine calculates norm(X/) by calling Norm(m, Xi), where

m ~- max(norm(Xi), norm(Xk)).

Again, our estimate (5) shows the time spent in the Norm procedure is O(2"), and

370 COOK AND RECKHOW

in this case 2 m is less than the right hand entry in Table V. Finally, for READ Xi ,
norm(X~) = 0, since the only possible inputs are 0, 1, and 2.

To complete the proof of Theorem 3, it remains to find a constant k(P~) such
that if Pw halts within time k(P,~) �9 T2([w I), the simulation will be completed before
the time array goes negative. But the time array initially has the value T~(I zo I),
and the values subtracted are the values in the right hand column of Table V, after

TABLE V

Ins t ruc t ion A m o u n t sub t rac ted f rom the t ime array

X~ "~--C

x , ~ x ~ + x ~

x , o- x j - x~

Xx, ~ x j

T R A m I F X j > 0

READ X~

PRINT X~

22.Nu

2 n~ -F- 2 n~ + 2 Nu

2 n~ -k 2 n~ + 2 Nu

2n~ + 2n~ + 2 N~

2n~ ~ + 2norm~X0 + 2 Nu

2n~ + 2 Nu

2Nu

2norm(XO + 2 Nu

Note: N u = norm(I wp w [) and [wp, o [is an upper b o u n d on all constants and addresses
appear ing in Pw �9

each instruction is simulated. According to Eq. (2) and the execution times shown
in Table I, these values exceed the execution times for the instructions by at most
a factor of 2, plus 22"n". An upper bound for the amount subtracted for the ith
instruction is thus (2 + 22~r t~, where t~ is the execution time of the ith instruction.
Hence we have

(2 + 22Nu)E > T2([w [), (6)

where E is the execution time of that portion of the computation of P~, which is
simulated before the time array goes negative.

From (6) we have E >~ 1/(2-1-22N~)'T2(I w I), so we can choose k(Pw)-=

1/(2 + 22u").

TIME BOUNDED MACHINES 371

APPENDIX A: RAM-ALGOL PROGRAM TO SIMULATE RASP PaOGRAM P

RAM-ALGOL Statements

begin

comment Declarations for program R;
integer array MEMORY;
integer dummy,

AC,
IC,

J;
Boolean simulating;

comment The first thing we do is to initialize the
first p elements of MEMORY, so as to mimic
the initial configuration of P;

MEMORY[0] : = initial value o ;

MEMORY[I] : = initial value 1 ;

MEMORY[p - - 1] : = initial valu%_ 1 ;

AC : = IC : = 0;

comment The main part of the simulator is the
following loop, which is executed once for each
instruction simulated. If ti is the execution time
of a single instruction of P, then the pass through
this loop simulating the execution of that
instruction takes time O(ti). Thus if l(n) is the
number of instructions executed by P on
inputs of length n, then

l (n)

T(n) = ~ t i ,
i=1

and the execution time of R is

, , . ,

2 0 (t i) = 0 t, = O(T(n));
i=l i=l

simulating : = true;
for dummy : = 0

while simulating do

timing

0(1)
0(1)

0(1)
0(1)

o(1)
o(1)
o(1)

372 COOK AND RECKHOW

begin

integer opcode;
opcode : = MEMORY[IC];
i f opcode ~ 0 v opcode ~> 8 then

simulating : = false

else begin

j : = MEMORY[IC + 1];
IC : = IC + 2;
i f opcode = 1 then begin

comment The execution time of
LOD, j is I(IC) + l(j);

AC : = j
end else i f opcode = 2 then begin

comment The execution time of
ADD,j is I(IC) + l(j) + I(AC) + I(Xj);

i f j < 0 then simulating : = false
else AC : = AC + MEMORY[j]

end else i f opcode = 3 then begin
comment The execution time of

SUB,j is l(IC) § l(j) + I(AC) + I(Xj);
i f j < 0 then simulating : = false
else AC : = AC -- MEMORY[j]

end else i f opcode = 4 then begin
comment The execution time of

STO,j is I(IC) + l(j) + I(AC);
i f j < 0 then simulating : = false
else MEMORY[j] := AC

end else if opcode = 5 then begin
comment The execution time of

BPA, j is I(IC) + l(j) + I(AC);
i f j < 0 then simulating : = false
else i f AC > 0 then IC : = j

end else i f opcode = 6 then begin
comment The execution time of

RD, j is I(IC) + l(j) +/(input);
i f j < 0 then simulating : = false
else read(MEMORY[j])

end else begin
comment The execution time of

PRI , j is I(IC) + l(j) + I(Xj);

O(I(IC) + l(opeode))
O(l(opcode))
0(1)

O(I(IC) + l(j))
O(l(IC))
0(I)

O(l(j))
0(1)

O(l(j))
O(l(j) + I(AC) + l(X3)
0(I)

O(l(j))
O(l(j) + I(AC) + I(Xj))
O(1)

O(l(j))
O(l(j) + l(AC))
O0)

O(l(j))
O(l(j) -{- I(AC))
O(1)

O(l(j))
O(l(j) +/(input))

TIME BOUNDED MACHINES

if j < 0 then simulating : = false
else pr in t (MEMORY[j])

end
end

end of the simulation loop;
end of program R;

O(l(j))
O(l(j) + I(Xj))

373

A P P E N D I X B

We wish to obtain an upper bound on the largest number computable by a RAM
program (for a RAM with logarithmic cost function) as a function of execution
time. We must add some restrictions, however, since for any integer C there is a
RAM program with execution time l that computes C, namely, X o +-- C. But the
length of our encoding of this program on {1, 2} grows linearly with C. Also the short
program READ X 0 can "compute" the number 2 r in t ime T by reading in a large
input. T o circumvent these two problems we define M(T, n) to be the largest number
appearing in any register after a computation of duration T or less by any RAM
program (with logarithmic cost function) whose encoding has length no greater
than n, provided the inputs are 0, l, or 2. This restriction on the inputs corresponds
to the restrictions in Theorem 3.

THEOREM. For n > O, M(T, n) < n �9 2 ~'~/~, and M(T, O) = O.

Proof. The proof will proceed by induction on the number of instruction execu-
tions during the computation. In order to facilitate breaking the proof down into
cases, we define Mi(T, n) to be the largest number computable in t ime T by a program
of length no greater than n, where the last instruction executed is an instruction
of type i. We note that M(T, n) ~ maxl<i<.8 MI(T, n), so that to prove M(T, n) .<
n �9 2 ~'~/~, it will suffice to show that for i = 1,..., 8, Mi(T, n) < n �9 22'~/~. As the
basis of our induction, it is trivially true that M(T, O) = M(O, n) = O, since nothing
can be computed with no program or with no time. (Recall our convention that
a RAM computation begins with all registers set to zero.) Thus n > 0 :> M(0, n)

0 < n ~ n - 2 0 = n" 2 ~'v~. As induction hypothesis, assume that for all t < T,

M(t, n) < n �9 22"'/~. We will now show that Mi(T, n) < n �9 22.47 for i ---- 1,..., 8,

and thus that M(T, n) < n �9 22"'/F, completing the induction.

Case 1. Last instruction executed is X i +-- C. Execution time of the last instruction
is 1. Either the last instruction produced the largest number, or it did not. Therefore

MI(T,n) = m a x (M (T - - 1, n) , C) < n ' 2 2 " ~ / 7 , since C < n and M (T - - 1, n) <
n �9 22. ~/T---~ < n �9 2 ~'~/~.

374 COOK AND RECKHOW

Case 2. Last instruction executed is X i +--Xj + X k . Execution time of the

last instruction is l(Xs) + l(Xk). To prove that M2(T, n) < n" 22"'/7, we will assume

that M2(T, n) >/n �9 22"VF and derive a contradiction. The largest number that could
have been computed prior to the last instruction is M (T -- (I(Xj) + l(Xk)), n), and
from the induction hypothesis we know that

M (T -- (I(Xj) + I(X~)), n) < n-22"r)).

Since MS(T, n) >/n" 22"r M2(T, n) > M (T -- (I(Xj) + l(Xk)), n), so MS(T, n)
must have been computed in the last step.

(*) Thus X~ + Xk = M2(T, n) > / n . 22"VF.
But since X~ and Xk must have been computed before the last step, we know that

X~ + X~ < 2 �9 n �9 22"vr-(~lx,)+~txk)).

Combining these inequalities, we get

n �9 22"v'~ < 2 �9 n �9 22"vr-i"x~)+"xk))

2" v / T -< 1 + 2 . "v/T -- (l(Xj) + l(Xlc)),

canceling n and taking logs

=> 4" r < 1 -{- 4" V/T -- (l(Xs) + l(X~)) + 4" T -- 4 .(l(Xs) + l(Xk)),

squaring both sides

4 . (l(Xj) + l(X~)) < 1 + 4 . v / r -- (l(Xj) + l(Xk)),

transposing and canceling 4 �9 T

4 .(l(X~) + l(Xk)) < 1 + 4 . VT,,

I(Xj) + l(Xk) < �88 + V ~ ,

:~ l(X, + Xe) < �88 + v/T,,

log2(X j + X~) < �88 + ~/T,,

x ; + x ~ < 21t 4. 2 '/~,

:~ n �9 22"~/y < 21/4 - 2 e l ,

=~ n ' 2 V~ < 2 t/4,

: ~ n = 0 o r n = 1 a n d T = 0 ,

since T > T -- (I(X~) -1- l(Xk))

since 4 > 0

by subadditivity

since log~ x <~ l(x)

exponentiating both sides

combining with (*)

canceling 2 ' / i

since 1 < 21/4 < 2.

But we have assumed that both n > 0 and T > 0, so we have a contradiction.

TIME BOUNDED MACHINES

Thus MS(T, n) ,< n" 23. v'7.

Case 3. X i +-- X j -- X k . The analysis for this case is identical to Case 2.

Case 4. X i *--Xx~. This instruction computes no new values, so

Case 5.

Case 6.

Case 7.

375

M ' (T , n) ~ M (T - - l , n) < n . 22"V~

Xx , +-- X~. Again, no new value is computed, so

M4(T, n) < n �9 22"q~.

T R A m IF X~ > 0. No new value, so M6(T, n) < n �9 22"~/~.

READ X i . Since the input value is 0, 1, or 2, /(input) = 1. Thus

MT(T, n) = m a x (M (T - - 1, n), 2) < n" 2 ~''/~.

Case 8. P R I N T X i . No new value, so MS(T, n) < n �9 2 2'v'7. This completes
the induction step, and the theorem is proved. II

In the text, we refer to N = M(T2(n), n). Since n <~ T2(n), and since log:(T2(n)) <
2" V' T2(n), we get

N = M(T~(n), n) < n . 22"~/V~ (")

21og2 n . 22"~/T=(n)

2a'VTT(n).

REFERENCES

1. STEPHEN A. COOK AND ROBERT A. RECKHOW, Diagonal Theorems for Random Access
Machines, Technical Report No. 42, Department of Computer Science, University of
Toronto, June 1972.

2. STEPHEN A. COOK, Linear Time Simulation of Deterministic Two-way Pushdown Automata,
Proceedings of IFIP Congress 71, Foundations of Information Processing.

3. PETER NAUR (ed.), Revised Report on the Algorithmic Language A L G O L 60, C.A.C.M. 6, 1
(1963), 1-17.

4. J. HARTMANIS, Computational complexity of random access stored program machines,
Mathematical Systems Theory 5, 3 (1971), 232-245.

5. JOHN HOPCROFT AND JEFFREY ULLMAN, "Formal Languages and their Relation to Automata,"
Addison-Wesley, 1969.

6. F. C. HENNIE AND R. n. STEARNS, Two-tape simulation of multi-tape turing machines,
J.A.C.M. 13, 4 (1966), 533-546.

