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Propositional Proof Systems

A proof system is a polytime map

f : {0, 1}∗ onto−→ {tautologies}

If f (x) = A, then x is a proof of A.

The system is polybounded iff for some polynomial p(n), every
tautology of length n has a proof of length at most p(n).

Simple Fact

NP = co-NP iff there exists a polybounded proof system.

Conjecture

NP 6= co-NP (i.e. there is no polybounded proof system).

Activity: Try to prove specific proof systems are not super.
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Frege Systems for Propositional Calculus
(Hilbert Style systems)

Finitely many axiom schemes and rule schemes.

Must be implicationally complete.

Example for connectives ∨,¬
I Axiom scheme: ¬A ∨ A

I Rules:
A

B ∨ A

A ∨ A

A

(A ∨ B) ∨ C

A ∨ (B ∨ C )

A ∨ B ¬A ∨ C

B ∨ C

All Frege systems p-simulate each other.

Definition

Proof system f p-simulates proof system g if ∃ polytime T such that

f (T (x)) = g(x)

Gentzen’s propositional LK is p-equivalent to every Frege system.
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Are Frege systems polybounded?

To disprove this, we need a family of hard tautologies.

Possible example:

Pigeonhole Principle:

If n + 1 pigeons are placed in n holes, some hole has at least 2 pigeons.

Atoms pij , i ∈ [n + 1], j ∈ [n] (pigeon i placed in hole j)

¬PHPn+1
n is the conjunction of clauses:

1 (pi1 ∨ ... ∨ pin), i ∈ [n + 1] (pigeon i placed in some hole)

2 (¬pik ∨ ¬pjk), i < j ∈ [n + 1], k ∈ [n] (pigeons i , j not both in hole k)

¬PHPn+1
n is unsatisfiable

O(n3) clauses
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Conjecture (C. 1979)

The tautologies {PHPn+1
n } do not have polysize Frege proofs.

Milestone Result:

Theorem (Haken 1985)

{¬PHPn+1
n } do not have polysize resolution refutations.

Theorem (Buss 1987)

{PHPn+1
n } have polysize Frege proofs
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Theorem (Buss 1987)

{PHPn+1
n } have polysize Frege proofs

Proof.

Counting is in NC1 (i.e. polynomial formula size).

Define Countn,k(p1, ..., pn)↔ Exactly k of p1, ..., pn are true.

Family 〈Countn,k〉 has poly formula size (nO(1))

Hence there are polysize formulas

Ak( ~pij) ≡ “Pigeons 1, ..., k occupy at least k holes”

Prove if no two pigeons occupy same hole, then

A1 → A2 → ...→ An+1

to get a contradiction.
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So the tautologies {PHPn+1
n } are not hard for Frege systems.

The question of whether Frege systems are polybounded remains wide
open.

Later we will give tautology families that might be hard for Frege
systems.

Thesis

If a hard tautology family (for Frege systems) comes from a combinatorial
principle, then that principle should not be provable using NC1 concepts.

This motivates associating a first-order theory VC with a complexity
class C. The theorems of VC are those that can be proved using
concepts from C.

Associated with VC is a propositional proof system CFrege.

Each universal theorem of VC can be translated to a tautology family
with polysize proofs in CFrege.
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The three-way connection

1 C is a complexity class.

2 VC is a theory whose proofs use concepts from C.

3 CFrege is a propositional proof system such that the lines in a
CFrege-proof express concepts from C.

Note that NC1Frege is the same as Frege.

Example triple: {NC1,VNC1,Frege}
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Theories for Polytime reasoning:

PV [C. 75] Equational theory with function symbols for all polytime
functions f : Nk → N. Inspired by Skolem’s Primitive Recursive
Arithmetic (1923).

PV functions introduced via Cobham’s 1963 characterization of
polytime functions:

I The least class containing initial functions and closed under
composition and limited recursion on notation.

I The axioms and rules include recursive defining equations for
eachfunction symbol and

I Rule: Equational Induction on (binary) notation

f (0) = g(0), {f (xi) = hi (x , f (x)), g(xi) = hi (x , g(x)) : i = 0, 1}
f (x) = g(x)
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The first-order version of PV

PV Nowadays
I a first-order theory with polytime function symbols as before, and
I universal axioms based on Cobham’s theorem, but
I the rule induction on notation is replaced by the axiom scheme

induction on notation:[
ϕ(0) ∧ ∀x

(
ϕ(x) ⊃

(
ϕ(x0) ∧ ϕ(x1)

))]
⊃ ∀yϕ(y)

where ϕ(x) is a quantifier-free formula.
I Note that an induction proof of ϕ(x) can be unwound in just |x | steps,

where |x | is the binary length of x .

First-order PV is a conservative extension of equational PV.

Theorem (Dowd)

PV proves the induction scheme for open formulas ϕ:[
ϕ(0) ∧ ∀x

(
ϕ(x) ⊃ ϕ(x + 1)

)]
⊃ ∀yϕ(y)

But this induction proof of ϕ(x) requires 2|x | steps to unwind.
Dowd’s theorem is proved using binary search.
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PV Witnessing Theorem

If PV ` ∀~x∃yϕ(~x , y), where ϕ is open (i.e. expresses a polytime
predicate) then there is a polytime f such that

PV ` ∀~xϕ(~x , f (~x))

Proof.

Since PV is a universal theory, this is an easy consequence of the
Herbrand Theorem.

S1
2 [Buss 86]: Finitely axiomatizable first-order theory, including

induction on notation for NP formulas, associated with class P.
Theorem [Buss 86]. PV and S1

2(PV) prove the same ∀∃ϕ
theorems, where ϕ expresses a polytime predicate.
A function f (x) is provably total in a theory T if

T ` ∀x∃yϕ(x , y)

where ϕ(x , y) is a Σb
1 formula expressing y = f (x).

The provably total functions of PV (and of S1
2) are the polytime

functions.
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PV is a ROBUST MINIMAL THEORY for P.

13 / 32



Observations: (‘Polytime proof’ means PV proof.)

1 ‘Natural’ polytime algorithms usually have polytime correctness
proofs.

2 Combinatorial theorems of interest in computer science often have
polytime proofs.

I Kuratowski’s Theorem
I Hall’s Theorem
I Menger’s Theorem
I Linear Algebra (Cayley-Hamilton, properties of determinants,...)
I Extended Euclidean Algorithm

Possible counter-example to 1 : Primes in P. [AKS 04]

The correctness statement implies

¬Prime(n) ∧ n ≥ 2 ⊃ ∃d(1 < d < n ∧ d |n)

If PV proves this, then by the Witnessing Theorem, the divisor d can
be computed from n in polytime, so this implies a polytime integer
factoring algorithm.
(The same reasoning applies to any polytime algorithm for Primes.)
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Theses: (‘Polytime proof’ means PV proof.)

1 ‘Natural’ polytime algorithms usually have polytime correctness
proofs.

2 Combinatorial theorems of interest in computer science often have
polytime proofs.

Possible counter-example to 2 :

Fermat’s Little Theorem:

Prime(n) ∧ 1 ≤ a < n → an−1 ≡ 1(modn)

Contrapositive:

∀a, n∃d < n(an−1 6≡ 1(modn) → d 6= 1 ∧ d |n)

Thus if PV proves this then by the Witnessing Theorem, d can be
found from a, n in time polynomial in |n|.
This leads to a probabilistic polytime algorithm for factoring.
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Propositional proof system associated with P?

Recall: Frege systems are associated with NC1

A problem is in NC1 iff it can be solved by a uniform polysize family
of Boolean formulas.

A Frege proof consists of a sequence of Boolean formulas, where each
formula is an axiom or follows from earlier formulas by simple rules.

NOTE: A problem is in P iff it can be solved by a uniform polysize
family of Boolean circuits.

So a proof for a polytime propositional proof system should be a
sequence of Boolean circuits, with axioms and rules as for Frege
systems.

A Boolean circuit can be described by a straight line program in which
each line defines the value of a gate in terms of previous gate values.

So we abbreviate circuit outputs by introducing new extension
variables defined by formulas.
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Extended Frege Systems
(EFrege systems, or “P-Frege Systems”)

Extend Frege systems by allowing new extension variables and their
definitions:

p ↔ A

for any atom p and formula A, provided p does not occur in A, or
earlier in the proof, or in the conclusion.

p may occur in a later formula A′.
This allows lines in a Frege proof to be massively abbreviated.

p1 ↔ A1, p2 ↔ A2(p1), . . . , pn ↔ An(p1, . . . , pn−1)

Lines in an Extended Frege proof are like Boolean circuits. (The new
atoms are like gates in the circuit.)
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Historical Notes

Extended Resolution (ER) introduced by G.S. Tseitin in 1966.
I ER extends the resolution proof system by allowing clauses defining

new variables.
I For example, to introduce p so that p ↔ (q ∨ r), add clauses

p ∨ q ∨ r , p ∨ q, p ∨ r

(C. 75) Introduced PV and indicated that theorems of PV can be
translated into polysize families of ER proofs.

(C. 75) also outlined a proof that PV proves the soundness of ER
(reflection principle).

(C.-Reckhow 74 and 79) Introduced ‘Frege Systems’ and EFrege
systems and pointed out the latter are p-equivalent to ER.
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Recall the three-way connection

C is a complexity class.

VC is a theory whose proofs use concepts from C.

CFrege is a propositional proof system such that the lines in a
CFrege-proof express concepts from C.

NC1Frege is the same as Frege. PFrege is the same as EFrege.

Example triples

{NC1,VNC1,Frege}
{P,PV,EFrege}

Theorem

VC proves soundness of CFrege

If VC proves the soundness of proof system S, then CFrege
p-simulates S.
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Recall Historical Notes

Extended Resolution (ER) introduced by G.S. Tseitin in 1966.

(C. 75) Introduced PV and indicated that theorems of PV can be
translated into polysize families of ER proofs.

(C. 75) also outlined a proof that PV proves the soundness of ER
(reflection principle).

(C.-Reckhow 74 and 79) Introduced ‘Frege Systems’ and EFrege
systems and pointed out the latter are p-equivalent to ER.

(Clote 90) ‘ALOGTIME and a conjecture of S. A. Cook’ introduced
first theory ALV for NC1 with translations to Frege systems.

(Arai 91, 00) ‘A bounded arithmetic AID for Frege systems’ Showed
his system AID is equivalent to Clote’s ALV, and proves soundness of
Frege using a result of Buss.

(Kraj́ıček 95) ‘Bounded Arithmetic, Propositional Logic, and
Complexity Theory’ expounded the three way connection.
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Complexity Classes

(Google: Complexity Zoo)

AC0 ⊂ AC0(m) ⊆ TC0 ⊆ NC1 ⊆ NC2 ⊆ P

Defined by uniform polysize Boolean circuit families

AC0 – bounded-depth circuits with unbounded fanin ∧,∨
(Immerman’s FO)

AC0(m) – Allow mod m gates (p1 + p2 + ... + pk) mod m in above
circuits.

TC0 – Allow threshold gates (counting class)

NC1 – polynomial formula size

NC2 – polysize log2 depth families of Boolean circuits (contains
matrix inverse, determinant, etc)

P – polysize families of Boolean circuits
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Complexity Classes

AC0 ⊂ AC0(m) ⊆ TC0 ⊆ NC1 ⊆ NC2 ⊆ P

Open question: P = NP?

Also open: AC0(6) = NP?

Theorem (Razborov-Smolensky 87)

AC0(pk) ( TC0, for every k ≥ 1 and prime p.
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AC0 ⊂ AC0(m) ⊆ TC0 ⊆ NC1 ⊆ NC2 ⊆ P

[C.-Nguyen 2010] presents a unified way to define a first-order theory VC
(over a two-sorted language) corresponding to a complexity class C,
including all of the above classes.

In particular:

VNC1 is a simplified version of Clote’s ALV and Arai’s AID.

VP is a finitely axiomatized theory for polynomial time.

VPV is the two-sorted version PV, with function symbols for all
polytime functions.

VPV is a conservative extension of VP.

Also the book describes propositional translations of the theories to the
corresponding proof systems.
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Two-sorted theories cont’d

The base theory V0 (= VAC0) corresponds to AC0.

The pigeonhole principle PHP(n,X ) is expressed by the following
two-sorted formula where X is a bit-array, and X (i , j) means that
pigeon i is mapped to hole j :

∀i ≤ n∃j < nX (i , j)→ ∃i , k ≤ n∃j < n(i < k ∧ X (i , j) ∧ X (k , j))

For each constant n, This translates into a propositional formula
equivalent to PHPn+1

n

Each bit X (i , j) translates to a Boolean variable pXij .

Bounded quantifiers ∃i ≤ n and ∀i ≤ n translate to

n∨
i=1

n∧
i=1

respectively.

Does V0 prove PHP(n,X )?
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What is the proof system AC0-Frege?

Answer: Restrict formulas in a Frege proof to have depth ≤ d , for
some constant d .

Theorem (Ajtai 88)

There are no polysize AC0-Frege proofs of {PHPn+1
n }

Since ΣB
0 theorems of V0 translate to polysize families of AC0-Frege

proofs, we answer our earlier question:

Corollary

V0 does not prove PHP(n,X ).
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VTC0 corresponds to TC0 (the counting class), so it is easy to see
that

VTC0 ` PHP(n,X )

Since VTC0 ⊆ VNC1, if follows that VNC1 ` PHP(n,X ), so we
obtain Buss’s Theorem that {PHPn+1

n } has polysize Frege proofs as a
corollary.

(Recall that NC1-Frege = Frege.)
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We can associate propositional systems with other
classes

AC0(m)-Frege

TC0-Frege Has polysize proofs of {PHPn+1
n }

NC1-Frege = Frege

NC2-Frege

PFrege = EFrege (Extended Frege):
I Allows introduction of new variables by definition, corresponding to

gates in a circuit
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Surprising open question

Is AC0(2)Frege polybounded?

This is open, despite the [Razborov-Smolensky 87] proof that
AC0(p) 6⊆ TC0 for any prime p.

Conjecture

PHPn+1
n do not have polysize AC0(2)Frege proofs.

A weaker conjecture:
VAC0(2) 6` PHP(n,X )

but this is also open.
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Hard tautology families for Frege systems?

Consider the ‘hard matrix identity’

AB = I → BA = I

where A,B are n × n matrices.

If the entries are in GF (2) (or even in Z or Q) this translates into a
polysize family {ϕn} of tautologies.

Proofs of these identities seem to require tools from linear algebra,
such as Gaussian Elimination, or the Cayley-Hamilton Theorem.

Note that computing matrix inverses (over finite fields or Z or Q) can
be done in NC2, but apparently not in NC1.

Conjecture (e.g. [Soltys-C. 04])

{ϕn} do not have polysize Frege proofs.

This conjecture remains open.
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Hard matrix tautologies cont’d

AB = I → BA = I

where A,B are n × n matrices.

In [Solys-C. 04] we develop formal theories for linear algebra.
Although the standard linear algebra operators are in NC2, proving
their properties seems to require VP rather than VNC2.

Question: Do these matrix identies have polysize NC2-Frege proofs?
Answer: [Hrubeš -Tzameret 2011]: Yes, and they have quasi-polysize
Frege proofs.

But [Hrubeš -Tzameret] leave open the question of whether the
theory VNC2 proves the identities.
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What about hard tautologies for EFrege systems?

It’s difficult to think of interesting universal combinatorial theorems
involving polytime functions, which cannot be proved in VPV.

However mathematical logic suggests consistency statements.

We know [Gödel 31] con(VPV) is universal sentence not provable in
VPV.

It seems plausible to conjecture that the corresponding tautology
family does not have polysize EFrege proofs.

For that matter what about con(PA), or con(ZF)?

Let [con(ZF)]n be a propositional tautology asserting ZF has no
proof of 0 6= 0 of length n or less.

It’s hard to imagine how the family
{

[con(ZF)]n
}

could have polysize

EFrege proofs, unless EFrege is polybounded.
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Concluding thought

Given the extreme difficulty of proving lower bounds even for simple
proof systems (such as AC0(2)Frege), perhaps we should
contemplate the possibility

NP = coNP

This might surprise complexity-theorists, but would not otherwise
have the potentially earth-shaking consequences of

P = NP
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