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Abstract—The goal of this study is to present a scalable
and robust approach to spatial downscaling of climate
variables. We explore the ability of artificial neural
networks (ANN) to downscale a climate variable to a
given location of interest. We illustrate our proposed
method in a downscaling application of monthly mean
air temperature and precipitations at twelve stations
located across the topographically complex province of
British Columbia, Canada. Our method generalizes well
to different locations and leads to high downscaling
accuracy. The performance of the models is measured
based on four statistical metrics, including the coefficient
of determination, and the root mean square error.

I. INTRODUCTION

Complete and accurate climate datasets are not readily
available in many regions around the world. They are
especially lacking in the areas most sensitive to climate
change [1], due, in part, to the complex topography of
such regions, where it is difficult to install and maintain
weather stations. As a result, some of the regions most
affected by climate change are unable to obtain detailed
climate data needed to understand impacts and develop
adaptation plans for future climate change [2].

To address this problem, scientists often rely on
gridded reanalysis products as a replacement for obser-
vational data [3]. These datasets are produced by using
the available station observations to constrain a physics-
based simulation that then fills in the missing data points
to provide a complete, physically realistic gridded data
product [4]. However, gridded products for remote areas
are typically coarse resolution, and do not capture small-
scale climatic characteristics associated with regional
topographic features, such as mountain ranges or lakes.
For this reason, it is usually necessary to re-process these
data sets to a finer scale, in a way that accounts for such
features, but does not introduce additional errors and
biases. This process is referred to as downscaling. This
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can be done using a high resolution regional dynamical
model, but is computationally demanding. Statistical
downscaling instead relies on statistical or empirical
relationships between the large-scale predictor field from
the model simulations and the variables of interest,
at the location of interest. Statistical downscaling is
challenging where there is insufficient historical data to
derive robust relationships. Several recent papers review
the spatial interpolation methods used for downscaling
in meteorology and climatology [5], [6], [7].

We present a novel statistical downscaling method that
learns from gridded reanalysis data and local station
data. Our method learns a mapping between a low-
resolution reanalysis dataset and the climate at specific
locations, using an ANN model. It can be used for
locations with available historical time-series (task 1) as
well as locations where no historical data is available
(task 2), a case where existing downscaling methods
perform poorly.

II. MODEL DEVELOPMENT

For each task, we investigate the use of an ANN
model. The theoretical background for the algorithm
is provided in [8]. The predictand of our models is
the expected value of a given climate variable at a
specific location and time. We have tested the method for
two variables: monthly mean temperature and monthly
mean precipitation. Our predictors from the reanalysis
dataset include monthly means of: cloud forcing net
longwave flux; upward and downward solar radiation
fluxes; u-wind and v-wind; relative humidity; and sea
level pressure.

In the first task, we downscale the gridded reanalysis
data to a location for which past observations are
available. In this scenario, the historical values recorded
at the station were used as the predictand, and the
reanalysis data at 16 grid points around the station were
used as model predictors, selected such that the location
of the station of interest is at the center grid cell of
a 4 x 4 sub-grid or square. We refer to these 16 grid
points as the station’s neighborhood. The studies in [9],



MOUATADID, EASTERBROOK, ERLER

£ ernduondl VVOIKSIHop On wiimndle imiorimducs

( )
:\ @ I / September 20-22, 2017

\
201 7 Hosted by the National Center for Atmospheric Research in Boulder, CO

[4] showed that the sixteen grid points around a station

of interest all supply relevant information to the model.

In the second task, the goal was to explore how a
gridded dataset can be downscaled to locations where no
past observational record is available. The methodology
used here is similar to [9], where the focus was on
predicting solar energy over a spatial grid by developing
a support vector machine model for each individual
cell of a gridded dataset. We develop a model for a
location of interest, using the information available
from that location’s neighbourhood. Again, we use
the square formed by the nine grid cells (i.e., 16 grid
points) as the location’s neighborhood. As there is no
data for the location of interest, we use other stations
within the given neighborhood. For the training set,
the input variables are the reanalysis values from the
sixteen grid points surrounding these stations along with
each stations’ coordinates (i.e., latitude, longitude and
elevation), and the output variables are the observations

recorded at the stations that fall within the neighborhood.

To test the method, we select one station as the
location of interest, and exclude its data from the training
set. The output variable in our tests corresponds to
the observational data recorded at this location, and
the input variables are the reanalysis values from the
sixteen grid nodes around said location, and the location
coordinates. During the training phase, the model has
not been fed any value related to the location of
interest, and during the testing phase, the model’s only
input is the information from the reanalysis dataset,
and the location’s coordinates. Figure 1 illustrates the
construction of a test set for a model used to downscale
to a location of interest (s1) with three neighbouring
stations (s9, s11 and s12) used for training. Following
this methodology, the models can be used to downscale
to any location (any latitude, longitude, elevation),
whether or not it is in the testing set.

III. APPLICATION AND EXPERIMENTS

This section presents the experimental results when
applying our method on monthly mean air temperature
and precipitation datasets for British Columbia. The
station data used as target in our study consists of the
observed values of monthly mean air temperatures and
precipitation. These were obtained for twelve stations
that are part of the Environment and Climate Change
Canada network [10]. The reanalysis data used as the
models’ predictors (inputs) are from the NCEP/NCAR
(National Centers for Environmental Prediction/National

Center for Atmospheric Research) reanalysis dataset.

NCEP/NCAR dataset is a combination of physical
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Fig. 1: Development of models’ datasets for task 2.

process and model forecast gridded data at the 2.5°x
2.5%spatial resolution. Details regarding this dataset’s
development can be found in [11]. The data used
extended over a 56-year period from 1960 to 2015.

The predictand and predictor data were standardized
to fall within a range of [0, 1]. By standardizing the
variables and recasting them into dimensionless units,
the arbitrary effect of similarity between objects is
removed. The data was partitioned into a training and
testing set. Parameter tuning was achieved through
cross-validation. In all cases, 10% of the available data
was used to test the models. In order to compare the
developed models’ performance, the following measures
of goodness of fit were used: the root mean square error
(RM SFE), the mean absolute error (M AF), the mean
absolute deviation (M AD) as well as the coefficient of
determination (R?).

A. Results and discussion

The results show that overall, the monthly mean air
temperature and precipitations were predicted with high
accuracy. In general, the results for the monthly air tem-
perature models are more accurate than the precipitation
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results. In fact, for the monthly air temperature target,
the R? values, at test time, range between 0.980 and
0.998 for the first task and between 0.987 and 0.997
for the second task. When it comes to the monthly
precipitations variable, the R? values, at test time, range
between 0.616 and 0.893 and between 0.390 and 0.916
for the first and second tasks respectively.

Regarding the first task, downscaling to locations
where past observations are available, the results in
table I show that the stations where the downscaling
accuracy was highest are station 8 for the monthly
temperature variable and station 7 for the monthly
precipitation target. The worst performance was obtained
for station 2 and station 5 for the monthly air temperature
and monthly precipitations respectively. The relatively
lower R? values for both stations 2 and 5 can be
explained by their proximity to large bodies of water
(i.e., Atlin Lake and Stuart Lake).

When it comes to the second task, where the objective
is to downscale to locations with no past observational
records, the stations with the highest downscaling
accuracy are station 11 for the monthly air temperature

and station 4 for the monthly precipitation (see Table II).

These results confirm our intuition that one of the
key factors impacting the downscaling accuracy is the
number of stations in the neighbourhood or square
surrounding the station of interest. In fact, station 11 is
surrounded by three neighbouring stations (i.e., stations
1, 3 and 4) and station 4 is surrounded by stations 3 and
11. It’s also interesting to look at how the performance
changes with respect to elevation. Interestingly, the best
downscaling accuracy, with respect to each task and
climate variable, was obtained for stations 4, 7, 8 and
11 which are located at low elevation at 7, 6, 41 and
18m respectively. The worst performance was obtained
at stations 2, 5 and 9 located at higher elevations of
674, 686 and 297m.

2

Finally, when it comes to the impact of the models
structure on the performance of the machine learning
techniques, we noticed that the performance only slightly
changes as the number of hidden neurons varied (the
results for all the developed models are not shown
here due to space constraints). In general, networks
with a smaller number of hidden neurons gave poorer
performance, and so did networks with a high number
of hidden neurons, as they resulted in underfitting and
overfitting respectively. Overall, the best performances
were obtained when the number of hidden neurons varied
between a minimum of 7 and a maximum of 17.
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TABLE I: Results of the best models at test time for

task 1.
Station Neurons in Air temperature Precipitation
layers RMSE R? RMSE R?
sl (144-17-1) 1.119 0.991 0.576 0.860
s2 (144-7-1) 0.327 0.980 1.299 0.827
s3 (144-17-1) 1.814 0.987 0.538 0.749
s4 (144-17-1) 1.949 0.997 0.199 0.856
s5 (144-17-1) 0.494 0.994 0.673 0.616
s6 (144-7-1) 0.498 0.995 0.625 0.619
s7 (144-17-1) 0.725 0.994 0.335 0.893
s8 (144-17-1) 0.945 0.998 0.160 0.807
s9 (144-7-1) 0.427 0.995 0.647 0.624
s10 (144-7-1) 0.848 0.988 0.896 0.649
s11 (144-7-1) 0.810 0.997 0.299 0.888
s12 (144-7-1) 0.329 0.992 0.750 0.829

TABLE II: Results of the best models at test time for

task 2.
Station Neurons in Air temperature Precipitation
layers RMSE R? RMSE R?
sl (144-17-1) 0.444 0.994 1.051 0.888
s2 (144-7-1) 1.093 0.987 0.456 0.581
s3 (144-17-1) 0.371 0.994 1.427 0.877
s4 (144-17-1) 0.328 0.991 1.664 0.916
s5 (144-17-1) 1.018 0.988 0.594 0.490
s6 (144-7-1) 0.707 0.994 0.397 0.752
s7 (144-17-1) 0.318 0.995 0.972 0.831
s8 (144-17-1) 0.290 0.994 1.163 0.775
s9 (144-7-1) 0.737 0.993 0.497 0.390
s10 (144-7-1) 0.629 0.993 0.651 0.701
sl (144-7-1) 0.286 0.997 1.046 0.869
s12 (144-7-1) 0.649 0.994 0.489 0.637

IV. CONCLUSIONS AND FUTURE WORK

This study presented a new downscaling method
for two specific tasks: downscaling at locations where
past observations are available to train the models, and
downscaling for locations where there is no past record,
using neighbouring stations to train the models. We
explored the ability of artificial neural networks to down-
scale monthly mean temperatures and precipitations
for selected stations in British Columbia. The results
showed that using artificial neural networks to learn
from reanalysis gridded data and station observations
can lead to accurate downscaling results. In further
work, we plan to test the application of these methods
for downscaling additional climate variables, including
climate extremes as these are important for assessing
climate change impacts, and for planning adaptation
strategies for future climate change.
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