
Augmenting AVL trees



How we’ve thought about trees so far

Good for determining ancestry

Can be good for quickly finding an element



Other kinds of uses?

• Any thoughts?

• Finding a minimum/maximum…

– (heaps are probably just as good or better)

• Finding an average?

• More complicated things?!!!11one

Enter: idea of 

augmenting a tree



Augmenting

• Can quickly compute many global properties 

that seem to need knowledge of the whole tree!

• Examples:

– size of any sub-tree

– height of any sub-tree

– averages of keys/values in a sub-tree

– min+max of keys/values in any sub-tree, …

• Can quickly compute any function f(u) so long 

as you only need to know f(u.left) and f(u.right)!



Augmenting an AVL tree

• Can augment any kind of tree

• Only balanced trees are guaranteed to be fast

• After augmenting an AVL tree to compute 

f(u), we can still do all operations in O(lg n)!



• We are going to do one simple example

• Then, you will help with a harder one!

• Problem: augment an AVL tree so we can do:

– Insert(key): add key in O(lg n)

– Delete(key): remove key in O(lg n)

– Height(node): get height of sub-tree rooted at 

node in O(1)

Simple first example

A regular AVL tree 

already does this

How do we do this?
Store some extra data at 

each node… but what?



• Function we want to compute: Height(u) = H(u)

• If someone gives us H(uL) and H(uR),

can we compute H(u)?

• What formula should we use?

• If u is a leaf then

– H(u) = 0

• Else

– H(u) = max{H(uL), H(uR)}+1

Can we compute this function quickly?

uL uR

u

H(uL)

H(uR)

H(u)=?



Augmenting AVL tree to compute H(u)

• Each node u contains

– key: the key

– left, right: child pointers

– h: height of sub-tree rooted at u

• How?

The usual stuff…

Secret sauce!
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Algorithm idea:

• From the last slide, we develop an algorithm

Insert(key):

1 BST search for where to put key

2 Insert key into place like in a regular AVL tree

3    Fix balance factors and rotate as you would in
AVL insert, but fix heights at the same time.

(Remember to fix heights all the way to the root.
Don’t stop before reaching the root!)

• (When you rotate, remember to fix heights of all 
nodes involved, just like you fix balance factors!)



Harder problem: scheduling conflicts

• Your calendar 

contains a bunch of 

time intervals [lo,hi]

where you are busy

• We want to be able to 

quickly tell whether a 

new booking conflicts 

with an earlier 

booking.



Breaking the problem down

• You must design a data structure D to 

efficiently do:

– Insert(D; x): Insert interval x into D.

– Delete(D; x): Delete interval x from D.

– Search(D; x): If D contains an interval that 

overlaps with x, return any such interval. 

Otherwise, return null.

• All functions must run in O(lg n)
The hard part



Figuring out the data structure - 1

• Iterative process; HARD to get right the first time!

• Need a way to insert intervals into the tree

– Use low end-point of interval as the key

• Example tree:

8, 16
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29, 36

30, 34

60, 80

48, 52



Figuring out the data structure - 2

• What function do we want to compute?

– Does an interval x intersect any interval in the tree?

• What info should we store at each node u?

– Mhi(u) = Maximum high endpoint of any node in the 

subtree.

• How can we use the info stored at each node 

to compute the desired function (by looking at 

a small number of nodes)?

• Start by computing whether an interval x 

intersects any interval in a subtree.



Algorithm for Search within a subtree

Search(lo, hi, u):

if u is null then return null

Returns an interval in the subtree rooted at u 

that intersects [lo, hi]



Algorithm for Search within a subtree

Search(lo, hi, u):

if u is null then return null

if [lo, hi] intersects [lo(u), hi(u)] then return [lo(u), hi(u)]

Returns an interval in the subtree rooted at u 

that intersects [lo, hi]



lo                                             hi

Algorithm for Search within a subtree

Search(lo, hi, u):

if u is null then return null

if [lo, hi] intersects [lo(u), hi(u)] then return [lo(u), hi(u)]

else (no intersection)

if lo < lo(u) return Search(lo, hi, left(u))

u

lo              hi

lo(u)  hi(u)

Every node v on this 

side has lo(v) > hi

Returns an interval in the subtree rooted at u 

that intersects [lo, hi]



Algorithm for Search within a subtree

Search(lo, hi, u):

if u is null then return null

if [lo, hi] intersects [lo(u), hi(u)] then return [lo(u), hi(u)]

else (no intersection)

if lo < lo(u) return Search(lo, hi, left(u))

else (lo ≥ lo(u))

if lo > Mhi(left(u)) then return Search(lo, hi, right(u))

Returns an interval in the subtree rooted at u 

that intersects [lo, hi]

u
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k

lo              hi

lo(u)  hi(u)

Every node v on this 

side has hi(v) < lo



Search(lo, hi, u):

if u is null then return null

if [lo, hi] intersects [lo(u), hi(u)] then return [lo(u), hi(u)]

else (no intersection)

if lo < lo(u) return Search(lo, hi, left(u))

else (lo ≥ lo(u))

if lo > Mhi(left(u)) then return Search(lo, hi, right(u))

else (lo ≤ Mhi(left(u))

return Search(lo, hi, left(u))

Algorithm for Search within a subtree
Returns an interval in the subtree rooted at u 

that intersects [lo, hi]
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Final algorithm for Search

Search(lo, hi, u):

if u is null then return null

if [lo, hi] intersects [lo(u), hi(u)] then return [lo(u), hi(u)]

else (no intersection)

if lo < lo(u) return Search(lo, hi, left(u))

else (lo ≥ lo(u))

if lo > Mhi(left(u)) then return Search(lo, hi, right(u))

else (lo ≤ Mhi(left(u))

return Search(lo, hi, left(u))

Search(D, x=[lo, hi]):

return Search(lo, hi, root(D))



Algorithms for Insert and Delete

• Insert(D, x=[lo, hi]):

– Do regular AVL insertion of key lo, also storing hi.

– Set Mhi of the new node to hi.

– Fix balance factors and perform rotations as usual, 

but also update Mhi(u) whenever you update the 

balance factor of a node u.

– Update Mhi(u) for all ancestors, and for every 

node involved in a rotation, using formula:

Mhi(u) = max{hi(u), Mhi(left(u)), Mhi(right(u))}.

• Delete(D, x=[lo, hi]): similar to Insert



Why O(lg n) time?

• Insert/Delete: normal AVL operation = O(lg n)

– PLUS: update Mhi(u) for each u on path to the root

• Length of this path ≤ tree height, so O(lg n) in an AVL tree

– PLUS: update Mhi(u) for each node involved in a 

rotation

• At most O(lg n) rotations (one per node on the path from 

the root ≤ tree height)

• Each rotation involves a constant number of nodes

• Therefore, constant times O(lg n), which is O(lg n).

• Search

– Constant work + recursive call on a child

– Single recursive call means O(tree height) = O(lg n)


