
Pipelining And Redirection

1 / 22



Default I/O Streams
A program has access to these default I/O streams:
stdin = standard in[put]
stdout = standard out[put]
stderr = standard error (error messages)

sort

stdin stdout
stderr

Actually: process, not program. Process = what happens when you run a

program.

2 / 22



Default I/O Streams
Default setup: Connected (via OS) to terminal.

sort process

stdin stdout
stderr

OS

$ _

keyboard

Exercise: run sort alone, enter a few lines, use Ctrl-D on its own
line to end, see what happens.

3 / 22



Redirection And Pipelining
But configurable to connect (via OS) to files (redirection) or other
processes (pipelining).

sort < myfile | uniq > myfile-unique

sort

stdin stdout

uniq

stdin stdout

OS

myfile myfile-unique

(stderrs to terminal, not shown. Exercise: Why stderr,stdout?)

4 / 22



Redirection And Pipelining
Sometimes I draw this simpler, higher-level picture when the
spotlight is not on the OS (so omit it):

sort

stdin stdout

uniq

stdin stdout

myfile myfile-unique

(stderrs to terminal, not shown.)

We begin as users of pipelining and redirection; later on, we learn
how to do it (and more) in C with system calls.

5 / 22



Redirection And Pipelining
Sometimes I draw this simpler, higher-level picture when the
spotlight is not on the OS (so omit it):

sort

stdin stdout

uniq

stdin stdout

myfile myfile-unique

(stderrs to terminal, not shown.)

We begin as users of pipelining and redirection; later on, we learn
how to do it (and more) in C with system calls.

5 / 22



System Structure
Block diagram to keep in mind throughout the course:

OS
process

. . . shell
process

. . . user
process

. . .

kernel

device
#1

device
#2

. . .

launches

Next slide briefs you on the vocabulary.

6 / 22



Terminology
Kernel: arbitrator and service provider: decides which process to
run and when, what it may access or not, how to access.

Process: what happens when you run a program.

OS processes: More services, features, and background
monitoring. Because a lot of services don’t have to live in the
kernel.

Shell: That 70s text-mode command-line user interface. (Modern
graphical desktops are also called shells, e.g., GNOME shell,
Windows shell.)

User processes: your processes.

7 / 22



Special Files for Devices and Services
Unix presents devices and some services and info as files.

Of course not real files, the kernel makes up filenames and
emulate file operations (open, read, write, close). We say “special
files”.

(For real files as you know them, “regular files”.)

Examples:

▶ /dev/sda: Hard disk, the whole hard disk. (Clearly, restricted
access (why?).)

▶ /dev/urandom: Crytographically secure random bytes.
▶ /dev/null: Discards written data. Empty when read.
▶ /proc: Info about processes and system stuff.

8 / 22



File Management

Or: How we survived without File Explorer.

9 / 22



Directory Tree Model
Partial, but starts from system-wide root. Also, “tree” is an approximation.

/

bin

ls sh

dev

null sda urandom

home

trebla

B09

lec1.pdf

C24

lec1.pdf

10 / 22



Path(name)s
How to refer to a file or directory in the tree.

▶ Absolute path: start from root.
/home/trebla/B09/lec1.pdf

▶ Relative path: start from current directory.
B09/lec1.pdf
(Makes sense if current directory is /home/trebla.)

“Current directory” is part of the current state of a process.

11 / 22



Path(name)s
Pathnames may also include:

▶ parent directory: ..
▶ the directory itself: .

Examples: If current directory is /home/trebla, then these two both
refer to /bin/ls:

../../bin/ls

../../bin/./ls

Why is . useful: Some commands want a directory name, and you
want to name the current directory.

12 / 22



pwd and cd
pwd (print working directory): Output absolute path of current
directory.

cd (change directory): Set current directory.

Example: cd B09

Example: cd ../C24

Example: cd /dev

13 / 22



ls (list)
List filenames. Default: in the current directory (folder),
alphabetical order.

Given directory name(s): in those directory(es).

Given filename(s): list those filenames. (Why useful? See ‘-l’
below.)

Some options:

▶ -l: More information, e.g., access permissions, size,
modification time. (Next slide.)

▶ -d: Directories themselves, not files inside.
▶ -t: Order by modification time, new to old.
▶ -r: Reverse order.
▶ -R: Recurse into subdirectories—whole tree.

14 / 22



ls -l information
-rw-r--r-- 1 laialber cmsusers 63 May 6 20:28 myfile

-rw-r--r-- access permissions (later slides)
1 hard-link reference count (future lecture)
laialber owning user
cmsusers owning group (later slides)
63 file size, bytes
May 6 20:28 last modification time
myfile file name

Directories have a leading “d”:

drwxr-xr-x 2 laialber cmsusers 4 May 19 18:49 mydir

15 / 22



ls -a, ls -A, Dot Files
‘ls -a’: include filenames starting with ‘.’ (“dot files”)

‘ls -A’: like ‘-a’ but exclude ‘.’ and ‘..’

‘..’ stands for parent directory
‘.’ stands for the directory itself

Convention: “dot files” contain user settings, would be annoying to
be listed all the time.

Example: .nanorc has nano settings.

16 / 22



cat (dump file(s))
Dump file content or stdin to stdout.

Example: cat myfile

Handy for viewing a short text file. For long files, see next slide.

More generally, dump one or more files consecutively to stdout,
“concatenate”, hence the name “cat”.

Example: cat file1 file2 file3

17 / 22



less (view a text file)
View a text file with nice scrolling and searching.

Example: less myfile

action key
scroll down, up, pgdn, pgup
goto line 42 42g
search “foo” /foo <enter>
search next n
search prev N
unhilight <esc> u
help h
quit q

Trivia: Old limited viewer called “more”. New better viewer called
“less” for irony and proverb “less is more”.

18 / 22



mkdir (make directory)
Create new directory(es). Names are from the arguments you
provide, e.g.,

mkdir lab02 ../C24/lab02 /tmp/foo

Exercise: Read up about the option ‘-p’ and test it.

19 / 22



cp (copy)
Copy files.

Copy a file to a new pathname:
cp myfile newname

Copy file(s) to a directory:
cp file1 file2 B09

Copy recursively:
cp -R /home/trebla /tmp/mystuff

Be careful: Can overwrite existing files.

20 / 22



mv (move)
Can Rename. Can move to another directory.

Rename:
mv myfile mycoolfile

Move file(s) and/or directory(s) to another directory:
mv myfile B09 /tmp

Be careful: Can replace existing files.

21 / 22



rm and rmdir
rmdir (remove directory): Delete directory(es). Precondition: they
are empty.

rm (remove): Delete file(s). Does not delete directories unless:

Recursive delete:
rm -r /home/trebla

Be careful: They don’t enjoy a “recycle bin”, i.e., you won’t be able
to restore.

22 / 22


	Pipelining And Redirection
	File Management

