
Sockets
Sockets are another way for two processes to communicate.

Characteristics (esp. compared to pipes):

I One side considered “server”, has publishable “address”.
(Pipe ends unpublishable, only sharable by fork.)

I The other side considered “client”, contacts server by
published address.

I So unrelated processes (even on different computers) can still
make contact.
(Pipes: Processes must come from the same fork tree.)

I File descriptor is two-way street.
(Pipe is one-way street.)

1 / 14



Socket Varieties: Axis 1: Scope
3 scopes (“domain”, “address family”):

I Unix domain: Local to computer. Address is a filename.
I IPv4: Over the network. (Has special “loopback” address for

local.) 32-bit address plus 16-bit “port number”.
I IPv6: Like IPv4 but 128-bit address.

I will cover IPv4.

2 / 14



Socket Varieties: Axis 2: Abstraction Level
A lower level (datagram) and a higher level (stream):

I Datagram: By packets (chunks). One write syscall⇒ one
chunk⇒ one read syscall.

Packet loss possible. Neither side notified if it happens.

Packets can be out of order too.

Think “telegram”. Thus “datagram”.

I Stream: Network stack works hard to confirm, timeout,
resend, restore data order. You have almost no worry, just use
as byte stream.

Network stack can re-chunk for efficiency. Receiver may not
see sender’s original chunking.

I will cover stream.

3 / 14



Stream Socket: Client Workflow

1. Call socket: create socket fd.

2. Fill in address struct.
Call connect: Use fd to connect to server at address.

3. Use fd to talk to server.

4. Close fd when done with client.

4 / 14



Stream Socket: Server Workflow
Server workflow complicated because multiple FDs to juggle:

I One FD per client (cfd below).
I One FD to wait for new clients (sfd below).

1. Call socket: create socket sfd.

2. Fill in address struct.
Call bind: Bind sfd to address.

3. Call listen: Declare “sfd is for waiting for clients to connect”.
(Bad name, does not actually listen/wait.)

4. Loop over:
4.1 Call accept(sfd): Actually wait for a client to connect. Get yet

another socket cfd.
4.2 Use cfd to talk to client. Close when done with client.

5. Close sfd if no longer waiting for new clients.

5 / 14



Socket Creation
int socket(int family, int type, int protocol); Returns
positive socket FD, or -1 if error.

family: AF_UNIX, AF_INET (IPv4), AF_INET6

type: SOCK_DGRAM, SOCK_STREAM, advanced low-level types.

protocol: 0. (Other values for advanced low-level types.)

I will focus on IPv4 stream sockets (TCP/IP).

6 / 14



connect
int connect(int fd,

const struct sockaddr *server_addr ,
socklen_t addrlen);

Real address struct is never sockaddr:
Unix domain: sockaddr_un
IPv4: sockaddr_in
IPv6: sockaddr_in6
Always have to cast pointer type and provide size, e.g.,

connect(int myfd,
(struct sockaddr *) &myaddr,
sizeof(struct sockaddr_in));

Also, address structs may contain padding/reserved bytes, best to
set 0 before filling in fields (e.g., memset).

If success, may simply use read, write, close on fd.
Also recv, send, shutdown for socket-specific features.

7 / 14



IP (IPv4) Addresses
IPv4 address: 32-bit, 4-byte number. Identifies computers.
(Actually identifies network interfaces.)

Human-friendly dot-notation as string: Each byte in decimal,
separated by dots. Examples:
Mathlab: 142.1.96.164
uoft.me: 104.236.216.17
loopback address: 127.0.0.1

Use ‘dig’ program to look up IP addresses from domain names.
There are also C library functions. They work by asking
DNS—domain name servers.

It is possible for many domain names to map to one IP address.
(Small research exercise: What are some use cases?)

It is possible for one domain name to map to many IP addresses.
(Small research exercise: What are some use cases?)

8 / 14



IPv4 Address+Port Struct
struct sockaddr_in {
sa_family_t sin_family; // AF_INET
in_port_t sin_port; // port
struct in_addr sin_addr; // IPv4 address

};

struct in_addr {
uint32_t s_addr;

};

Port and IPv4 address need to be in “network byte order” (next
slide).

Two special addresses:
htonl(INADDR_LOOPBACK): loopback, 127.0.0.1
INADDR_ANY: 0.0.0.0, request binding to all network interfaces

9 / 14



Big/Little Endian, Network Byte Order
16-bit number 772 = hex 0304. 2 bytes. Which byte order?

I Big endian, network byte order: 03, 04.
I Little endian (e.g., Intel CPUs): 04, 03.

Similarly for 32-bit numbers.

For portability:

Library functions to convert from machine (host) order to network
order: ‘htonl’ (32-bit), ‘htons’ (16-bit).

The other direction: ‘ntohl’, ‘ntohs’.

(I don’t know why the system calls don’t auto-convert for us.)

Between dot-notation string and 32-bit network byte order:
‘inet_pton’, ‘inet_ntop’. (“p” = presentation, dot-notation)

10 / 14



bind
int bind(int fd,

const struct sockaddr *addr,
socklen_t addrlen);

Real address struct is never sockaddr:
Unix domain: sockaddr_un
IPv4: sockaddr_in
IPv6: sockaddr_in6
Always have to cast pointer type and provide size, e.g.,

bind(int myfd,
(struct sockaddr *) &myaddr,
sizeof(struct sockaddr_in));

Also, address structs may contain padding/reserved bytes, best to
set 0 before filling in fields (e.g., memset).

11 / 14



listen, accept
int listen(int fd, int backlog);

backlog specifies max queue length in network stack.
Queue grows when clients call connect but you don’t call accept.

int accept(int fd,
struct sockaddr *client_addr ,
socklen_t *addrlen);

If success, returns new socket cfd for talking to client.
client_addr receives client address.
(Again, never really sockaddr, depends on address familiy.)

May simply use read, write, close on cfd.

Also recv, send, shutdown for socket-specific features.

12 / 14



Stream Socket: No Packet Boundary
“No packet boundary” means: Suppose sender goes:

write(fd, n1, chunk1);
write(fd, n2, chunk2);

and receiver tries (n ≥ n1 + n2):

r = read(fd, myspace, n);

then all splitting and merging are possible:

I only first part of chunk1 (1 ≤ r < n1)
I only all of chunk1 (r = n1)
I chunk1 + first part of chunk2
I all of chunk1 + chunk2

If local, usually 2nd case. Don’t let that fool you, all 4 cases when
non-local. Check r, call read again to get more.

13 / 14



Broken Pipe
When you write to pipe/socket but the other end has closed:
“broken pipe”. Your process gets SIGPIPE.

Default action: Process killed. Very undesirable for socket
programs.

To override: Set action to SIG_IGN (ignore). Then process not
killed, write returns -1, errno is EPIPE, you can check and react.

14 / 14


