
Some utility programs.

1 / 12

diff: Compare Two Text Files
You have old version C file and new version, find the changes:

diff old.c new.c

Outputs lines to add, lines to delete, lines to replace.

Exit code: 0 = no difference; 1 = has difference.

Use case: A shell script that goes “if no difference, do X; else, do
Y”. You may like to add -q for briefer output.

You have old version C project directory and new version, find the
changes:

diff -r olddir newdir

Full features and doc: link

2 / 12

https://www.gnu.org/software/diffutils/manual/html_node/index.html

diff: Compare Two Text Files
You have old version C file and new version, find the changes:

diff old.c new.c

Outputs lines to add, lines to delete, lines to replace.

Exit code: 0 = no difference; 1 = has difference.

Use case: A shell script that goes “if no difference, do X; else, do
Y”. You may like to add -q for briefer output.

You have old version C project directory and new version, find the
changes:

diff -r olddir newdir

Full features and doc: link

2 / 12

https://www.gnu.org/software/diffutils/manual/html_node/index.html

diff: Compare Two Text Files
You have old version C file and new version, find the changes:

diff old.c new.c

Outputs lines to add, lines to delete, lines to replace.

Exit code: 0 = no difference; 1 = has difference.

Use case: A shell script that goes “if no difference, do X; else, do
Y”. You may like to add -q for briefer output.

You have old version C project directory and new version, find the
changes:

diff -r olddir newdir

Full features and doc: link

2 / 12

https://www.gnu.org/software/diffutils/manual/html_node/index.html

diff: Compare Two Text Files
You have old version C file and new version, find the changes:

diff old.c new.c

Outputs lines to add, lines to delete, lines to replace.

Exit code: 0 = no difference; 1 = has difference.

Use case: A shell script that goes “if no difference, do X; else, do
Y”. You may like to add -q for briefer output.

You have old version C project directory and new version, find the
changes:

diff -r olddir newdir

Full features and doc: link

2 / 12

https://www.gnu.org/software/diffutils/manual/html_node/index.html

diff Basic Output Format
Sample files: smallscript-v1, smallscript-v2

diff smallscript-v1 smallscript-v2

2,3d1
< dryrun=
< verbose=

v1 2–3 not in v2 at 1 (d = delete)

7c5
< dryrun=y

> dryrun=yes

v1 7 is v2 5, but changed (c =
change)

13a12
> ;;

v2 12 not in v1 at 13 (a = add)

3 / 12

smallscript-v1
smallscript-v2

diff “Unified” Output Format
diff -u smallscript-v1 smallscript-v2

--- smallscript-v1 <time>
+++ smallscript-v2 <time>

The files

@@ -1,16 +1,15 @@ Next chunk: v1 1–16, v2 1–15

#!/bin/sh
-dryrun=
-verbose=
while [$# -gt 0]; do

case "$1" in
-n)

- dryrun=y
+ dryrun=yes

;;
(etc.)

- is in v1, + is in v2

Similar to git diff and github commit display.

Version control systems use diff or equivalent internally.
4 / 12

grep: Search in Text File
Why B36 should be a prerequisite

You specify a “pattern”, grep outputs matching lines.

Video clip: Aho’s clip. In particular:

▶ “pattern”: regular expression
▶ “the algorithm” translates regular expression to

non-deterministic finite-state automaton, then sees if it
accepts your input

▶ “the program”: grep

Example: Pick out HTML start tags:
grep ’<[a-zA-Z]*>’ index.html

Exit code: 0 = found something; 1 = no match

Full features and doc: link

5 / 12

https://youtu.be/tc4ROCJYbm0?t=651
https://www.gnu.org/software/grep/manual/html_node/index.html

grep’s Regular Expressions 1/2
Tricky: Similar to but different from shell patterns.

Some base cases:

c matches the letter c
ace matches the string ace (concatenation, next slide)
[fin] matches f or i or n
[a-g] matches any character in that range
[^fin] matches any character except f, i, n
[^a-g] matches any character except that range
. matches any character
^ matches beginning of line
$ matches end of line
\b matches empty string at edge of word

\b Example: look for word “int”, so not “printf”:
grep ’\bint\b’ mycfile.c

6 / 12

grep’s Regular Expressions 2/2
Tricky: Similar to but different from shell patterns.

Some inductive cases. Let r, s be grep regular expressions. From
high to low precedence:

without -E with -E
\(r\) (r) parenthesizing
r\? r? 0 or 1 time of matching r
r* r* 0 or more times of matching r
r\+ r+ 1 or more times of matching r
rs rs concatenation
r\|s r|s r or s

7 / 12

sort
Sort, or check-if-sorted, or merge sorted files. But by what key?
Default: whole line. Customizable by. . .

Sample input (fruits.txt), 3 fields per line:

Frank orange 104
Albert strawberry 79
Tim orange 52

Sort by 3rd field (the numbers):
sort -b -k 3,3n
‘n’ means treat as number not string. (Exercise: What if omitted?)

Sort by 2nd field (the fruits); when tie, by 3rd field:
sort -b -k 2,2 -k 3,3n

--debug shows what is actually used as key(s).

Full features and doc: link

8 / 12

fruits.txt
https://www.gnu.org/software/coreutils/manual/html_node/sort-invocation.html

find: Look for Files
Automatic recursive traversal of a directory tree and operate on
selected files.

Full feature and doc: link.

Typical form:

find dir . . . expression

For each dir given, start there and recurse down. The expression
determines which files to pick out, and what to do with them.

9 / 12

https://www.gnu.org/software/findutils/manual/html_node/find_html/index.html

find Expressions: Tests
Filename matching: -name ’*.pdf’

Regular file vs directory: -type f, -type d

Owning user or group: -user trebla, -group cmsusers

Permissions: -readable, -writable, -executable

Times:

-mtime +3 -mtime -6
(last modified 3–6 days ago)

-mmin +3 -mmin -6
(last modified 3–6 minutes ago)

10 / 12

find Expressions: Logical Connectives
Multiple tests already ANDed together. But can also use explicit
-a, -and

OR: -o, -or

NOT: prefix !

Also parentheses. Example:
find mydir ’!’ ’(’ -mmin +3 -mmin -6 ’)’

11 / 12

find Expressions: Actions
If no action, implicitly -print

-print: Print pathname.

-delete: Delete.

Example: Find Python files and put in zip file:

find . -name ’*.py’ | zip a08-homework.zip -@

Example: Find Python files and print their paths and delete:

find . -name ’*.py’ -print -delete

12 / 12

	diff
	grep
	sort
	find

