
Memory Model
Memory is like an array of bytes.

We say “addresses” for indexes.

Refinement of A48 story: A variable may occupy multiple
consecutive bytes, depending on type. Address refers to the first
occupied byte.

“Pointer” = a variable/parameter that stores an address.

Confusing/Exciting: Since a pointer is a variable, it lives in memory
and has its address!

1 / 19

Memory Model
int i;
int *p;
i = 2018;
p = &i;

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 8567

i p

682018

(Fictional addresses, inspired by true story.)

2 / 19

Memory Model: Array, Address Arithmetic
int a[3];
int *p = a + 2; // 68 + 2*sizeof(int)
char *q = (char*)a + 2; // 68 + 2*sizeof(char)

68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 8567

a[0] a[1] a[2]

pq

Compiler translates “2” to “2×sizeof(type)”.

(Fictional addresses, inspired by true story.)

3 / 19

Important Memory Regions
(On most platforms)

Some important memory regions:

▶ Text (code): Stores code. Function pointers usually point into
here.

▶ Global: Stores global variables.
▶ Stack: For function calls. Holds local variables and return

address. (Supports recursive calls.) Automatic allocation at
call, deallocation at return.

▶ Heap: Manual allocation and deallocation, e.g., malloc, free.
Good for dynamic data that needs to live beyond function
return.
(Unrelated to priorty queue’s heap.)

4 / 19

Global Variables
Two kinds: top-level, function private.
Top-level subkinds: whole program, module only. (Difference when
you split code into multiple files. Future lecture.)

int public_var = 10;
static int module_var = 50;

void f(void)
{
static int private_var = 0;
public_var++;
private_var++;

...

Code: global.c

5 / 19

16-c-data-code/global.c

Integer Types
All combinations:
{signed, unsigned} × {char, short, int, long, long long}
Default signed, except char—depends on platform.
Abbreviations e.g., “unsigned” = unsigned int, “long” = long int.

Sizes and ranges depend on platform. On x86-64:

char (default signed) 1 byte
short 2 bytes
int 4 bytes
long 8 bytes
long long 8 bytes
ling ling 40 bytes

Code file: intsizes.c

6 / 19

16-c-data-code/intsizes.c

Integer Literal Notation

example type
3 int
’c’ int
3U unsigned int
3L long
3UL unsigned long
3LL long long
3ULL unsigned long long

(Lowercase u and l also OK.)

Why important:
Good: printf("%lu\n", 3UL);
Bad: printf("%lu\n", 3);

7 / 19

Number Type Conversion
E.g., suppose int i; char c; double d;

i = c; (small integer to big integer)
Safe conversion.

c = i; (big integer to small integer)
Safe if actual value fits. (Detailed rules if not, I won’t cover.)

d = i; (integer to floating-point)
Safe if within range. Approximation if can’t be exact.

i = d; (floating-point to integer)
Truncate towards zero. Safe if truncated value fits.
Consider writing explicit i = (int)d; for human readers.

Applies to function calls too, e.g., void f(int) but you call f(c).

8 / 19

Implicit Number Promotion
Applies to both integers and floating-point

E.g., x/y but x and y have different number types.

Pretty complicated rules. Approximately: convert “narrower
(range)” operand type to match “wider” operand type. BUT: char
and short are always promoted to at least int.

Example:

Suppose double d; char i, j;

i/j promote both to int, integer division.

d/j promote j to double, floating-point division.

Code: promote.c

9 / 19

16-c-data-code/promote.c

Enumeration Types
enum rps { ROCK, PAPER, SCISSORS };
// ROCK=0, PAPER=1, SCISSORS=2
enum coin { HEAD, TAIL };
// HEAD=0, TAIL=1

“new” types and new integer constant names.

enum rps a;
enum coin c;

a = PAPER;
c = HEAD;

Code: enum.c

10 / 19

16-c-data-code/enum.c

C Enumeration Types Are Fake
New integer constant names yes, new types no.

enum rps a;
enum coin c;
int i;
a = TAIL;
c = 10;
i = SCISSORS;

Bottomline: Enumeration “types” = int, mixable, not checked. Good
for “meaningful” names only.

Code: enum.c

Advertisement: Scala, Rust, Haskell have real enumeration types,
checked, not mixable.

11 / 19

16-c-data-code/enum.c

Union Types

union my_union {
unsigned short s;
unsigned int i;
unsigned char b[4];

};

union my_union u;
// use u.s, u.i, u.b[0] etc.

128

129

130

131

u

u.s

u.i u.b

Use case: Your data have 3 mutually exclusive cases.

You need your own way to remember which case it is.

12 / 19

Tagged Union Idiom
I want an array in which some elements are int, others are double.

struct int_or_double {
enum { INT, DOUBLE } tag;
union {
int i;
double d;

} data;
};
struct int_or_double a[10];

Idiom: Make an outer struct:

▶ tag field remembers which case you’re in
▶ union of the cases

Set/check tag manually. Error-prone. Advertisement: Scala, Rust,
Haskell do it for you, no bug.

Code: taggedunion.c
13 / 19

16-c-data-code/taggedunion.c

Type Alias: ‘typedef’
If you get tired of writing out ‘struct node’ all the time:

typedef struct node {
int i;
struct node *next;
// "nodetype" not available here

} nodetype;

nodetype *p = malloc(sizeof(nodetype));

typedef is general, can also do e.g.

typedef double temperature;
typedef double *ptr_to_double;
typedef enum coin { HEAD, TAIL } cointype;
typedef union mu { ... } mutype;

14 / 19

Type Alias: ‘typedef’
If you also get tired of thinking up a 2nd name:

typedef struct node {
int i;
struct node *next;

} node;

typedef enum coin { HEAD, TAIL } coin;

node *p = malloc(sizeof(node));
coin c = HEAD;

No name clash. (Think about it.)

15 / 19

Type Alias: ‘typedef’
Hell, this is legal too (DONT’ DO IT):

typedef struct node {
int i;
struct node *next;

} coin;

typedef enum coin { HEAD, TAIL } node;

16 / 19

How to Read/Write Difficult typedefs
typedef double *pd;

How to figure out pd stand for pointer to double:

1. Ignore typedef, pretend var declaration
double *pd;

2. What would be the type? Answer: pointer to double.

3. Put back typedef, conclude: pd stands for pointer to double.

17 / 19

Function Pointers
Variables f and g point to: function that takes 2 char parameters
and returns int:

int (*f)(char, char);
int (*g)(char x, char y);
// param names optional and ignored

How to read/write:

f is a pointer (*f)
to a function (*f)(...)
2 char parameters (*f)(char, char)
returns int int (*f)(char, char)

Code: funptr.c

Exercise: What would int *f(char, char); mean? This
explains parenthesizing.

18 / 19

16-c-data-code/funptr.c

Function Pointers (Epic)
Let’s up the game! Suppose I have defined F_out:

typedef char (*F_out)(int);

▶ h is pointer to function
(*h)(...)

▶ param f is pointer to function like last slide
(*h)(int (*f)(char, char))
(Note: name f is optional and ignored.)

▶ returns F_out, which is another kind of fun ptr:
F_out (*h)(int (*f)(char, char))

Some people use typedef to break it up:

typedef int (*F_in)(char, char);
F_out (*h)(F_in f);

19 / 19

Function Pointers (Epic)
Let’s up the game! Suppose I have defined F_out:

typedef char (*F_out)(int);

▶ h is pointer to function
(*h)(...)

▶ param f is pointer to function like last slide
(*h)(int (*f)(char, char))
(Note: name f is optional and ignored.)

▶ returns F_out, which is another kind of fun ptr:
F_out (*h)(int (*f)(char, char))

Some people use typedef to break it up:

typedef int (*F_in)(char, char);
F_out (*h)(F_in f);

19 / 19

Function Pointers (Epic)
Let’s up the game! Suppose I have defined F_out:

typedef char (*F_out)(int);

▶ h is pointer to function
(*h)(...)

▶ param f is pointer to function like last slide
(*h)(int (*f)(char, char))
(Note: name f is optional and ignored.)

▶ returns F_out, which is another kind of fun ptr:
F_out (*h)(int (*f)(char, char))

Some people use typedef to break it up:

typedef int (*F_in)(char, char);
F_out (*h)(F_in f);

19 / 19

Function Pointers (Epic)
Let’s up the game! Suppose I have defined F_out:

typedef char (*F_out)(int);

▶ h is pointer to function
(*h)(...)

▶ param f is pointer to function like last slide
(*h)(int (*f)(char, char))
(Note: name f is optional and ignored.)

▶ returns F_out, which is another kind of fun ptr:
F_out (*h)(int (*f)(char, char))

Some people use typedef to break it up:

typedef int (*F_in)(char, char);
F_out (*h)(F_in f);

19 / 19

Function Pointers (Epic)
Let’s up the game! Suppose I have defined F_out:

typedef char (*F_out)(int);

▶ h is pointer to function
(*h)(...)

▶ param f is pointer to function like last slide
(*h)(int (*f)(char, char))
(Note: name f is optional and ignored.)

▶ returns F_out, which is another kind of fun ptr:
F_out (*h)(int (*f)(char, char))

Some people use typedef to break it up:

typedef int (*F_in)(char, char);
F_out (*h)(F_in f);

19 / 19

