Users & Groups: Unix Account Organization
Unix has user accounts (obviously).

(/etc/passwd has accounts. “passwd” because had hashed passwords; not any
more for better security.)

Also “groups”. Sysadmin defines groups and puts users into
groups. Many-to-many relation. Up to sysadmin what groups
mean. Popular usage: one group per project team.

(/etc/group has groups and members.)
Why Unix has groups: For file permissions (next slide).

Example: MathLab has cscb09s25 (B09 students and teachers),
cscb09s25i (B0O9 teachers only). Also cmsusers for everyone.

Commands id and groups give your user name and groups.

1/25

Permission Flags

Each file is assigned one owning user and one owning group.
(Default: creator and their default group.)

Access permission flags:

> May the owner read? write? execute?
> May group members read? write? execute?
> May other users read? write? execute?

Notation example: ‘ruxr-x---’ = user may do all, group may read
and execute, others no access.

“Execute” for regular files: treat as program/script and run it.

2/25

My Life Hack

True story: A long time ago in an engineering faculty far far away, a
sysadmin didn’t want students to use a certain standard program.
The program enabled students to run multi-player LAN games.

The sysadmin thought this setting would do:

-rwxr--r-- 1 root root 56288 Feb 13 1992 xauth

| was a friend of some of the students. How did | help them
circumvent this?

3/25

My Life Hack

True story: A long time ago in an engineering faculty far far away, a
sysadmin didn’t want students to use a certain standard program.
The program enabled students to run multi-player LAN games.

The sysadmin thought this setting would do:
-rwxr--r-- 1 root root 56288 Feb 13 1992 xauth

| was a friend of some of the students. How did | help them
circumvent this?

Answer: You can still read, you can copy. You can set your own
copy executable!

3/25

Permissions And Groups: Use Cases

Sensible permission flags for

» emails, browser data, ...:

4/25

Permissions And Groups: Use Cases

Sensible permission flags for

» emails, browser data, ...:

4/25

Permissions And Groups: Use Cases

Sensible permission flags for

» emails, browser data, ...:

» homework for B09 profs and TAs to mark:

4/25

Permissions And Groups: Use Cases

Sensible permission flags for

» emails, browser data, ...:

» homework for B09 profs and TAs to mark:

TW-T----- (set file’s group to cscb09s25i)

4/25

Permissions And Groups: Use Cases

Sensible permission flags for

» emails, browser data, ...:

» homework for B09 profs and TAs to mark:

TW-T----- (set file’s group to cscb09s25i)
» Java code belonging to a team project:

4/25

Permissions And Groups: Use Cases

Sensible permission flags for

» emails, browser data, ...:

» homework for B09 profs and TAs to mark:

TW-T----- (set file’s group to cscb09s25i)

» Java code belonging to a team project:
rw-rw---- (set file’s group to team’s)

4/25

Permissions And Groups: Use Cases

Sensible permission flags for

» emails, browser data, ...:

» homework for B09 profs and TAs to mark:

TW-T----- (set file’s group to cscb09s25i)

» Java code belonging to a team project:
rw-rw---- (set file’s group to team’s)

> CS jokes for everyone

4/25

Permissions And Groups: Use Cases

Sensible permission flags for

» emails, browser data, ...:

» homework for B09 profs and TAs to mark:

TW-T----- (set file’s group to cscb09s25i)
» Java code belonging to a team project:
rw-rw---- (set file’s group to team’s)

> CS jokes for everyone
IW-r--r--

4/25

Permission Flags for Directories

Permission flags for directories have non-obvious meaning:
If you may read: You may see filenames.

If you may write: You may add and delete files.
Does not matter who own those files.

If you may “execute”:

> You may ‘cd’ to the directory.
> You may use pathnames that go through the directory.

Popular restriction idiom: ‘rwx--x--x’ = people may not discover
filenames in your directory, but you may tell selected people
selected filenames, then they can access just those files.

5/25

Changing Ownership, Permissions
Change permissions (mode):

chmod u=rw,g=r,o= path ...
Many other notations. man chmod

Syscall: chmod(const char *path, mode_t mode)
man 2 chmod

Change owning user and/or owning group:

chown user path ...

chown user:group path ...
chown :group path ...
chgrp group path ...

Syscall: chown(const char *path, uid_t user, gid_t group)

6/25

i-node

File system has a table (array) of “i-nodes”.

“i-node number” = array index

Each file/directory is identified by an i-node, not filename.
i-node stores a file/directory’s metadata:

type: regular file, directory, symbolic link, device, socket. . .
permissions

owning user, owning group (both as numerical id’s)

size

timestamps

where is data on disk (if regular file or directory)

others

vV V. vV V. VY VvV VY

but not filename (filenames are in directories)

Can obtain most by ‘stat’ command and ‘stat’ syscall.

7125

Directory

Directory stores mapping from filenames to i-node numbers.

Exact data structure varies by system. Regardless, use C library
functions ‘opendir’, ‘readdir’, ‘closedir’ to access portably.

Logical question: What if two filenames map to the same i-node
number?

8/25

Directory

Directory stores mapping from filenames to i-node numbers.

Exact data structure varies by system. Regardless, use C library
functions ‘opendir’, ‘readdir’, ‘closedir’ to access portably.

Logical question: What if two filenames map to the same i-node
number?

Answer: Why not?

8/25

Hard Link

When multiple filenames map to the same i-node number

Command ‘In’ can create another filename to have the same
i-node number as existing file:

In path 2ndpath

We say “creates a hard link”.

Corresponding system call: ‘link’.
The special directories *.” and ‘. .” are implemented this way.

Unfortunately, hard-linking directories disallowed otherwise.

9/25

Unlinking

So what happens when you delete a file by filename, but there are
other filenames referring to the same i-node number?

The i-node also stores a reference count (“link count”): How many
filenames map to this i-node. (‘1s -1"and ‘stat’ display this.)

When you delete, the kernel does:

1. Decrease reference count.
2. If still positive, done.

3. If zero, free up disk space and this i-node.
(If some processes still have the file open, wait for closing.)

This is why the system call for deleting is called ‘unlink’.

10/25

Soft/Symbolic Link (Symlink)
A symlink forwards you to another pathname.

Most system calls follows symlink forwarding. (Can be moar
forwarding up to a maximum count.) By extension, most C library
functions and programs do this too.

System call ‘symlink’ and program ‘In’ can create symlinks:
In -s path linkname

If path is relative, relative to the directory linkname lives in.

Symlinking to a directory is allowed. (Recall hard-linking to a
directory is not.)

‘1s -1’ and ‘stat’ show a symlink itself. Add ‘-L’ to follow symlink.

11/25

Hard vs Symbolic Links

Suppose:
‘myhardlink’ is hard link to ‘/dir/file’
‘mysymlink’ is symlink to ‘/dir/file’

Exercise 1: What if you don’t have any access to ‘/dir'?

12/25

Hard vs Symbolic Links
Suppose:
‘myhardlink’ is hard link to ‘/dir/file’
‘mysymlink’ is symlink to ‘/dir/file’
Exercise 1: What if you don’t have any access to ‘/dir'?

Answer: myhardlink accessible, mysymlink denied

12/25

Hard vs Symbolic Links

Suppose:
‘myhardlink’ is hard link to ‘/dir/file’

‘mysymlink’ is symlink to ‘/dir/file’
Exercise 1: What if you don’t have any access to ‘/dir'?

Answer: myhardlink accessible, mysymlink denied

Suppose now you have access to ‘/dir’.

Exercise 2: | rename ‘/dir/file’ to ‘/dir/stuff’. What happens?

12/25

Hard vs Symbolic Links

Suppose:
‘myhardlink’ is hard link to ‘/dir/file’

‘mysymlink’ is symlink to ‘/dir/file’
Exercise 1: What if you don’t have any access to ‘/dir'?
Answer: myhardlink accessible, mysymlink denied

Suppose now you have access to ‘/dir’.

Exercise 2: | rename ‘/dir/file’ to ‘/dir/stuff’. What happens?

Answer: myhardlink OK, mysymlink broken

12/25

Hard vs Symbolic Links

Suppose:
‘myhardlink’ is hard link to ‘/dir/file’
‘mysymlink’ is symlink to ‘/dir/file’

Exercise 1: What if you don’t have any access to ‘/dir'?
Answer: myhardlink accessible, mysymlink denied
Suppose now you have access to ‘/dir’.

Exercise 2: | rename ‘/dir/file’ to ‘/dir/stuff’. What happens?
Answer: myhardlink OK, mysymlink broken

Exercise 3: | delete ‘/dir/stuff’, create a new file, name it ‘/dir/file’.
What happens?

12/25

Hard vs Symbolic Links

Suppose:
‘myhardlink’ is hard link to ‘/dir/file’
‘mysymlink’ is symlink to ‘/dir/file’

Exercise 1: What if you don’t have any access to ‘/dir'?
Answer: myhardlink accessible, mysymlink denied
Suppose now you have access to ‘/dir’.

Exercise 2: | rename ‘/dir/file’ to ‘/dir/stuff’. What happens?
Answer: myhardlink OK, mysymlink broken

Exercise 3: | delete ‘/dir/stuff’, create a new file, name it ‘/dir/file’.
What happens?

Answer: myhardlink — original file, mysymlink — new file.

12/25

File Attributes

System calls to get file attributes (“status”):

int stat(const char *path, struct stat *statbuf);
int 1stat(const char *path, struct stat *statbuf);
Returns 0 if success, -1 if error (and sets errno).

(If path symlink, stat () works on the target, 1stat() works on the
symlink.)

See ‘man 3 stat’ for the fields in struct stat. Same info shown
by the stat program.

The field st_mode has file type and permission flags, e.g., it
represents “drwxr-xr-x”. Meaning and useful macros in ‘man inode’.

13/25

Bases ten, sixteen, eight, two

We write “26” for twenty six because 2 X ten®"® + 6 X ten”*™
Decimal, base ten.

Hexadecimal (hex) “1A”: 1 x sixteen®™® + A X sixteen”*"
(A =ten, B =eleven,...)
C notation: Ox1A or Ox1a

Octal “32”: 3 x eight®"® + 2 X eight™"
C notation: 032

Binary “11010”:

four three tWo one 710

1 X two ™ + 1 X two +0Xtwo " + 1 X two™™ + 0 X two

Note 3 bits per octal digit, 4 bits per hex digit.

“| use base 10, what is base 47?7~

14/25

https://web.archive.org/web/20090125051251/http://cowbirdsinlove.com/43

Bitwise Operations

C has bitwise and (&), or (1), not (~), xor (*).
Example using 8-bit unsigned char:
a=10001001

b = 00000011

a&b alb a’rb ~ a
00000001 10001011 10001010 01110110

Left shift (<<) and right shift (>>):
00011000 << 2 = 01100000
00011000 >> 2 = 00000110

Note how a < k = a x 2%, a > k = |a/2¥].

15/25

Bit Check/Set/Clear/Flip Idioms
How to check/set/clear/flip bit 5 of b:

Let m = binary 00100000 = octal 040 =1 << 5
Bit 5 is on, other bits off.

check if (b & m)
set (to 1) b=b|m
clear (to0) b =b & ~m
flip b=b*m

Alsob |= metc.

16/25

File Type And Permissions Bits
st_mode bitwise layout (picture from textbook):
< File type + «—— Permissions —— >

L1 [[Jujc[rfrjwjx[riw]x]r]ulx]|

User Group Other

Convenient macros for checking individual bits (man inode):
S_IRUSR = 0400 = binary 0000 000 100 000 000

S_IWUSR = 0200 = binary 0000 000 010 000 000

S_IXUSR = 0100 = binary 0000 000 001 000 000

etc.

Sample code: if (s.st_mode & S_IRUSR) { ... }

U (set user ID), G (set group ID), T (sticky): Next slide.

17/25

Set-UID, Set-GID, Sticky

For directory:
> set-gid: Initial group of new file = directory’s group. (Otherwise

creator’s default group.)
Use case: Team-wide project directory.

18/25

Set-UID, Set-GID, Sticky

For directory:

> set-gid: Initial group of new file = directory’s group. (Otherwise
creator’s default group.)
Use case: Team-wide project directory.

» sticky: Other users can’t delete/rename your files.
Use case: /tmp is writable by all, everyone can create temp
files inside. But you don’t want everyone to delete/rename
your temp file! /tmp has sticky bit for this.

18/25

Set-UID, Set-GID, Sticky

For directory:

> set-gid: Initial group of new file = directory’s group. (Otherwise
creator’s default group.)
Use case: Team-wide project directory.

» sticky: Other users can’t delete/rename your files.
Use case: /tmp is writable by all, everyone can create temp
files inside. But you don’t want everyone to delete/rename
your temp file! /tmp has sticky bit for this.

For executable file:

> set-uid: Run with file owner’s privilege.
Use case: ‘su’ and ‘sudo’ for escalating to sysadmin privilege.

18/25

Set-UID, Set-GID, Sticky

For directory:

> set-gid: Initial group of new file = directory’s group. (Otherwise
creator’s default group.)
Use case: Team-wide project directory.

» sticky: Other users can’t delete/rename your files.
Use case: /tmp is writable by all, everyone can create temp
files inside. But you don’t want everyone to delete/rename
your temp file! /tmp has sticky bit for this.

For executable file:

> set-uid: Run with file owner’s privilege.
Use case: ‘su’ and ‘sudo’ for escalating to sysadmin privilege.

> set-gid: Likewise, but group instead of owner.

18/25

System Calls for (Low-Level) File 1/0O

int open(const char *path, int flags);

flags: O_WRONLY, O_RDONLY, O_RDWR, O_EXCL, O_TRUNC, O_APPEND,
some others. Can use bitwise-or to combine.

If success, returns “file descriptor”, “fd” below.

int open(const char *path, int flags, int mode);
When flags contains O_CREAT. mode is initial permissions (further
restricted by “umask”, next slide).

ssize_t read(int fd, void *buf, size_t count);
ssize_t write(int fd, void *buf, size_t count);

off t lseek(int fd, off t offset, int origin);
Oﬂghr one of SEEK_SET, SEEK_CUR, SEEK_END
Returns new offset from file’s beginning (if success).

int close(int fd);

19/25

umask

“umask” limits initial permissions at file creation.
Part of a process’s state.

Shell built-in command: umask
Syscall: mode_t umask(mode_t mask)
Actual initial permissions = (what open requests) & ~ umask

umask has 1’s for what to ban. Some idioms:

» 077: ban rwx for group and others, makes sense on MathLab
» 002: just ban w for others, makes sense in a company

At open(), normally request 0666, let umask do the cuts.
Unless security-sensitive, then request 0600 right away.

20/25

Bridge with High-level stdio.h

If you have file descriptor and wish to use nice high-level stdio.h
functions on it:

FILE *fdopen(int fd, const char *mode);

(mode is again one of those “r”, “w”, “r+”, “w+”, etc.)

fclose does close(£d) for you.

If you have FILE* and wish to know the file descriptor underneath:
int fileno(FILE *stream);

21/25

File Descriptor

Every process has a “file descriptor table”. File descriptors are
array indexes.

Three file descriptors already exist since process creation:
0: standard input

1: standard output

2: standard error

‘open’ (and ‘dup’ later) consumes entries; ‘close’ frees entries.

In fact ‘open’/‘dup’ always consumes the lowest-number free entry.
Some programmers rely on this for redirection and pipelining.

File descriptor table is finite. Runs out if too many open’s without
closing.

File descriptor table maps to entries in a system-wide “open file
table”—the real deal. (Next slide.)

22/25

File Descriptor Table — Open File Table

7 0
fi 1
Jil2

fd 20

File

Ji0
Jil1
a2
Ji3

Process A
File descriptor table

Open file table
(system-wide)

fd
flags

file
ptr

file
ollset

status
flags

inode
ptr

/]

Process B
descriptor table

fd
[lags

file
ptr

o\

23

86

(Picture from textbook.)

224

1976

5139

I-node table
(system-wide)

file
ype

file
locks

23/25

How Many-to-One Happens
(OFT = open file table; FDT = file descriptor table)

How two OFT entries refer to same i-node:
Two opens (may be same process or different processes)

How two FDs refer to same OFT entry:
dup or dup2 syscalls (next slide)

How two processes have FDs referring to same OFT entry:
When launching child process, FDT cloned by default

Important: file position (“cursor”, current r/w position) in OFT entry,
not in FDT.

Two FDs referring to same OFT entry implies: If you read some
data via one FD, won’t read it again via the other (unless you seek
backwards).

24/25

Duplicating File Descriptors

int dup(int oldfd);
“Duplicate”: Take another FDT entry to refer to the same OFT
entry as oldfd does. Return new file descriptor.

int dup2(int oldfd, int newfd);
Like dup but take FDT entry at newfd. (If newfd was in use, close
first.)

We say “duplicate oldfd [t0 newfd]”.

On previous slide, A’s FD 1 and FD 20 refer to the same OPT
entry. This could be the result of dup2(260, 1).

Use cases: stdin/stdout/stderr redirection, pipelining.
E.g., shell 2>&1’ = dup2(1, 2)

Demo: offset.c, esp. how “cursor” is shared state.

25/25

40-files-code/offset.c

