
Threads (vs Processes)
Computer runs multiple processes concurrently (interleaved
time-slicing and/or multicore parallel).

Multiple threads too, with different overhead and use case:

process thread
overhead higher lower
data sharing
with relatives

unshared shared

Threads are great for concurrency over shared data.

1 / 13

Concurrency, Parallelism
Related but not synonym.

Parallelism: You really insist k cores working on k subproblems at
the same time to finish in 1/k of the time. You don’t accept
interleaving on 1 core.

Concurrency: Neutral on parallelism vs interleaving. Just means
structuring your code as k workflows, they’re independent apart
from a bit of communication or shared data.

Parallelism requires concurrent coding. Converse not true:

Concurrent coding could also mean you don’t mind interleaving,
you just find concurrency a better code structure for your task, you
would rather the OS interleave for you than you interleave by hand.

2 / 13

Thread Creation
int pthread_create(
pthread_t *tid,
const pthread_attr_t *attr,
void *(*start)(void *), void *arg);

Returns 0 if success, +ve error code if error.

tid: address to store thread ID.

start: [pointer to] function like this:

void* mythreadstart(void *myarg);

New thread starts from it, myarg gets arg.

attr: NULL for default: priority, scheduling, other technical options.

threads.c

threads-retval.c (return value example)

3 / 13

80-threads-code/threads.c
80-threads-code/threads-retval.c

pthread_t Portability Notes
pthread_t could be number or pointer or struct depending on
system. No portable way to print, not even ==. Instead use:

int pthread_equal(pthread_t t1, pthread_t t2);

On Linux, unsigned long holding address. May be acceptable to
print as such when debugging.

For additional confusion/fun: Linux has gettid giving yet another
number (pid_t, closely related to PIDs).

4 / 13

Wait (Join) for Thread Termination
int pthread_join(pthread_t tid, void **retval);

Wait for thread termination, optionally get return value (if retval
not NULL).

Any thread can wait for any thread, no parent-child relation
required. (In fact no parent-child relation at all.)

Zombie thread happens if a thread terminates but you don’t join it.

5 / 13

Thread Termination
A thread terminates if one of:

Thread’s start function returns.

Thread calls:
void pthread_exit(void *retval);

Something cancels the thread:
int pthread_cancel(pthread_t thread);
(Returns immediately. Use pthread_join to wait. Target thread
can postpone termination until sensible point.)

Main thread main function returns, or something calls exit. All
threads die.

6 / 13

Pitfall of Data Sharing: Race Conditions
As simple as incrementing a counter:

1. read

2. compute new value

3. write

blows up if 2 threads A and B do it interleavedly:

1. A’s turn, read, get 5

2. B’s turn, read, it’s still 5

3. A’s turn, compute 6

4. still A’s turn, write 6

5. B’s turn, compute 6

6. still B’s turn, write 6

race.c
7 / 13

80-threads-code/race.c

Synchronization Primitive 1: Mutex
Mutex = “mutual exclusion”.

A thread can request to “acquire/lock” a mutex. Once acquired,
can (should) later “release/unlock” it.

Until released, other threads requesting to acquire are blocked.
When released, one requester is chosen to acquire it. Etc.

Workflow for accessing shared data:

1. (Request to) Acquire mutex:
int pthread_mutex_lock(pthread_mutex_t *m);

2. Work on shared data. (“critical section”)

3. Release mutex:
int pthread_mutex_unlock(pthread_mutex_t *m);

Now threads can access shared data in an orderly fashion.

8 / 13

Pthreads Static And Dynamic Mutex
Static mutex: Pthreads offers simplified creation if your mutex is
global:

pthread_mutex_t my_mutex =
PTHREAD_MUTEX_INITIALIZER;

and no need to cleanup. mutex-static.c

Dynamic mutex: If your mutex space is local var or malloc’ed,
better init and cleanup by:

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutex_attr);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

mutex-dynamic.c

9 / 13

80-threads-code/mutex-static.c
80-threads-code/mutex-dynamic.c

Synchronization Primitive 2: Condition Variable
Sometimes a thread wants to idle until another thread has
changed shared data.

Example: A sender thread puts a message in a shared message
box. A receiver thread is waiting for message to appear.

Condition variable = medium for sender to say “updated, please
check now”.

int pthread_cond_signal(pthread_cond_t *cond);

and for receiver to wait for that:

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

Reason for the mutex is explained next.

10 / 13

Why pthread_cond_wait needs mutex
Basic idea for receiver workflow:

1. Acquire mutex (because next is check shared data).

2. Check message box. Suppose no message, want to wait:

3. Release mutex (sender will need it).

4. Start waiting on cond var.

5. The wait ends.

6. Re-acquire mutex (because next is re-check).

7. Goto 2.

But race condition if 3–4 or 5–6 is interleavable with sender thread
or other receiver threads.

Want them atomic (inseparable). That’s pthread_cond_wait,
needing both cond var and mutex.

11 / 13

Pthreads Static And Dynamic Cond Var
Static cond var: Pthreads offers simplified creation if your cond var
is global:

pthread_cond_t my_cond = PTHREAD_COND_INITIALIZER;

and no need to cleanup. cond-static.c

Dynamic cond var: If your cond var space is local var or malloc’ed,
better init and cleanup by:

int pthread_cond_init(pthread_cond_t *cond,
pthread_condattr_t *cond_attr);

int pthread_cond_destroy(pthread_cond_t *cond);

cond-dynamic.c

12 / 13

80-threads-code/cond-static.c
80-threads-code/cond-dynamic.c

General Workflow for Complex Use Case
In a complex application: Different waiters wait for different
predicates, updater unsure an update is relevant to whom.

Simple workflow that always works (just a bit inefficient):

Updater notifies everyone:
int pthread_cond_broadcast(pthread_cond_t *cond);

Waiter checks and anticipates to wait again:

pthread_mutex_lock(&m);
while (! my_predicate) {
pthread_cond_wait(&c, &m);

}
// now my turn to work, and then:
pthread_mutex_unlock(&m);

cond-static-broadcast.c

13 / 13

80-threads-code/cond-static-broadcast.c

