
Levels of Achievements
Levels of achievements in this course:

▶ Lowest: “I learned some programming languages.”

Principles of Programming Languages

▶ Medium: “I learned some topics in programming languages.”

Principles of Programming Languages

I hope most of you will achieve this.

▶ Highest: “I began to see through the features in programming
languages.”

Deconstruction/Reductionism of Programming Languages?

This one is very hard. I’m not sure I can teach it either.

1 / 6



Levels of Achievements
Levels of achievements in this course:

▶ Lowest: “I learned some programming languages.”

Principles of Programming Languages

▶ Medium: “I learned some topics in programming languages.”

Principles of Programming Languages

I hope most of you will achieve this.

▶ Highest: “I began to see through the features in programming
languages.”

Deconstruction/Reductionism of Programming Languages?

This one is very hard. I’m not sure I can teach it either.

1 / 6



Levels of Achievements
Levels of achievements in this course:

▶ Lowest: “I learned some programming languages.”

Principles of Programming Languages

▶ Medium: “I learned some topics in programming languages.”

Principles of Programming Languages

I hope most of you will achieve this.

▶ Highest: “I began to see through the features in programming
languages.”

Deconstruction/Reductionism of Programming Languages?

This one is very hard. I’m not sure I can teach it either.

1 / 6



Course Overview
Part I:

▶ Haskell (functional), Curry (logic).
Not comprehensive—I show the hard parts, you pick up the
easy parts, and we focus on the parts we need.

▶ Basic topics.

Part II:

▶ Syntax: Moar context-free grammars; simple parsers.
▶ Semantics: By toy language models in Haskell.

Why Haskell: Almost like math definition, and executable.
(In a grad course I would use actual pure math.)

▶ Advanced topics.

Next few slides elaborate a bit. . .

2 / 6



Course Overview
Part I:

▶ Haskell (functional), Curry (logic).
Not comprehensive—I show the hard parts, you pick up the
easy parts, and we focus on the parts we need.

▶ Basic topics.

Part II:

▶ Syntax: Moar context-free grammars; simple parsers.
▶ Semantics: By toy language models in Haskell.

Why Haskell: Almost like math definition, and executable.
(In a grad course I would use actual pure math.)

▶ Advanced topics.

Next few slides elaborate a bit. . .

2 / 6



Example Topic: Evaluation Order
Define f (x) = 4. Now f (1/0) =?

Call by value (most languages): Evaluate 1/0 first. Error.

Lazy evaluation (e.g., Haskell): Don’t evaluate 1/0 yet, just plug in
as-is. Oh x is unused, f (1/0) = 4.

Consequence: In Haskell many short-circuiting operators and
control constructs are user-definable; in other languages you’re
stuck with what’s hardwired.

Aside: Scheme is call by value, but provides a macro system for
user-definable control constructs and other constructs.

3 / 6



Example Topic: Evaluation Order
Define f (x) = 4. Now f (1/0) =?

Call by value (most languages): Evaluate 1/0 first. Error.

Lazy evaluation (e.g., Haskell): Don’t evaluate 1/0 yet, just plug in
as-is. Oh x is unused, f (1/0) = 4.

Consequence: In Haskell many short-circuiting operators and
control constructs are user-definable; in other languages you’re
stuck with what’s hardwired.

Aside: Scheme is call by value, but provides a macro system for
user-definable control constructs and other constructs.

3 / 6



Example Topic: Evaluation Order
Define f (x) = 4. Now f (1/0) =?

Call by value (most languages): Evaluate 1/0 first. Error.

Lazy evaluation (e.g., Haskell): Don’t evaluate 1/0 yet, just plug in
as-is. Oh x is unused, f (1/0) = 4.

Consequence: In Haskell many short-circuiting operators and
control constructs are user-definable; in other languages you’re
stuck with what’s hardwired.

Aside: Scheme is call by value, but provides a macro system for
user-definable control constructs and other constructs.

3 / 6



Example Topic: Parametric Polymorphism
In Haskell define: trio x = [x, x, x]
[Inferred] Type: t -> [t]
Like Java’s <t> LinkedList<t> trio(<t> x)

trio 0 and trio "hello" are both legal.

User chooses what type to use for the type variable t, and
implementation not told what it is.

Consequence: Uniform behaviour. Can’t vary by types:
trio 0 = [0, 0, 0]

trio "hello" = []

Less flexible, but easier to test—test on one type and conclude for
all types.

If we have time, I’ll show you how to prove that.

4 / 6



Example Topic: Parametric Polymorphism
In Haskell define: trio x = [x, x, x]
[Inferred] Type: t -> [t]
Like Java’s <t> LinkedList<t> trio(<t> x)

trio 0 and trio "hello" are both legal.

User chooses what type to use for the type variable t, and
implementation not told what it is.

Consequence: Uniform behaviour. Can’t vary by types:
trio 0 = [0, 0, 0]

trio "hello" = []

Less flexible, but easier to test—test on one type and conclude for
all types.

If we have time, I’ll show you how to prove that.

4 / 6



Some Other Example Topics
Type inference.

Model of local variables and local functions.

If there is time: Model of mutable variables.

If there is time: Continuations.

5 / 6



Practicality
My presentation of languages will tend to be academic.

This is not because they are impractical. It is only because I am
teaching selected topics.

Example: I use naïve singly-linked lists all the time, but data
structures for grown-ups such as random-access arrays and
efficient dictionaries are available.

6 / 6


