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The Recursive Program Question
In a typical functional programming language:

g : Integer -> Integer
g(n) = if n=0 then 0 else g(n-2)

Expect: g(n) is defined for even n ≥ 0, undefined elsewhere, this is
fine.

Want: A mathematical model that gives such predictions.
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Solution Ingredient: Permitting Undefinedness
Add ⊥ (“bottom”) to codmain to stand for “no answer”:

g : Z→ Z ∪ {⊥}

E.g., expect g(3) = ⊥.

Not done today: Also add ⊥ to domains, more uniform (Integer is
always Z ∪ {⊥}), covers “non-strict” language such as Haskell, but
more distracting when today I don’t need it.

Fine point: Intuitively non-termination, but want to abstract away
from computational steps. So “no answer”, “undefined” are better.
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Solution Ingredient: Successive Approximations
Construct sequence of functions g0, g1, g2, . . .

g0(n) = ⊥ (for all n)

gi+1(n) = if n = 0 then 0 else gi(n − 2)

n: −1 0 1 2 3 4 5
. . .

g3(n): ⊥ 0 ⊥ 0 ⊥ 0 ⊥

g2(n): ⊥ 0 ⊥ 0 ⊥ ⊥ ⊥

g1(n): ⊥ 0 ⊥ ⊥ ⊥ ⊥ ⊥

g0(n): ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Idea: gi approximates the program, as much information (answer)
as possible under a quota of recursion depth i.

⊥ can also stand for “no information, I don’t know [for now]”.
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Solution Ingredient: Take Limit

gi(n) =

0 if 0 ≤ n < 2i and n is even

⊥ o/w

Sequence of increasing definedness. Take limit. Idea: What if
unlimited quota of recursion depth.

Define g to be the limit.

g(n) =

0 if 0 ≤ n and n is even

⊥ o/w

Will have to define “limit”.
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Solution Recipe
In general: For a piece of recursive function code

foo : X -> Y
foo(x) = ... foo(x’) ...

Model as

foo : X → Y ∪ {⊥} or X ∪ {⊥} → Y ∪ {⊥}

Construct sequence of functions

foo0(x) = ⊥

fooi+1(x) = . . . fooi(x
′) . . .

Then use the limit for foo.

The rest of the talk is about what is “limit” and why this always
works.
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Partial Order
Idea: Relax from total order, allow both ¬(x v y) and ¬(y v x)—”x
and y are incomparable”.

Axioms:

I reflexive: x v x
I transitive: if x v y and y v z, then x v z
I antisymmetric: if x v y and y v x, then x = y

Familiar example: ⊆ over a powerset, or really any family of sets.
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Information Order
Definition: Information order over Z ∪ {⊥} is the smallest relation v
such that: ⊥ v ⊥; and for all k ∈ Z, ⊥ v k and k v k.

E.g., 0 @ 42 and 42 @ 0.

Idea: x v y means y has the same or more information (answer)
than x.

Boring but there is a reason, and there are ways to build interesting
orders.

People write Z⊥ for Z ∪ {⊥} when using this information order.

8 / 20



Hasse Diagram
Shows a partial order in a diagram.

If x v y, x , y, and nothing in between, draw y higher than x,
connect with line segment. Horizontal position unconstrained apart
from aesthetics.

{}

{0} {1}

{0, 1}

⊥

−2 −1 0 1 2. . . . . .

a b

c d
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Pointwise Function Order
Let X be a set (no required structure).

Let v be a partial order over D. Can extend pointwise to function
space DX but I write X → D:

f v g iff ∀x ∈ X · f (x) v g(x)

Examples: g0 v g1 v g2 v · · ·

This is why the information order over Z⊥ insists to be boring. It is
safe. g1 v g2 means that not only g2 works for more inputs than g1,
but also since g1(0) = 0, g2(0) has to agree.
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Join (Least Upper Bound)
Let v be a partial order over D. Let x, y ∈ D.

A 2-ary join of x and y may exist in D: x t y such that:

I (upper bound) x v x t y and y v x t y
I (least) if x v z′ and y v z′, then x t y v z′

When x t y exists, it is unique (exercise).

Example: max for total orders.

Example: 2-ary union in a family of sets closed under 2-ary union.
For a non-total order, the join can be different from both operands.

Counterexample: In Z⊥, 1 t 2 does not exist (no upper bound).

Also possible: Have multiple incomparable upper bounds, so no
one is the least.
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Join (Least Upper Bound)
Let v be a partial order over D. Let S ⊆ D.

A join of [the elements of] S may exist in D, written
⊔

S. When it
exists, it is unique (exercise). Indexed notation:

⊔
i∈I F(i)

I (upper bound) for all x ∈ S, x v
⊔

S
I (least) if (for all x ∈ S, x v z′), then

⊔
S v z′

Example: Arbitrary union in a powerset.

Counterexample: For ≤ over Q, {x | x2 < 2} doesn’t have a join.

Example: For ≤ over R,
⊔
{x | x2 < 2} =

√
2.

Example:
⊔

i∈N gi = g. Join is the “limit” or “union” for modelling
recursive programs.
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Complete Partial Order (CPO)
Definition: Partial order v over D is a CPO iff:

I Chains have joins: If S ⊆ D, non-empty, and v is a total order
when restricted to S (“S is a chain”), then S has a join.

I D has a least element (exercise: it is unique). Join of the
empty set. Usually written ⊥, called “bottom”.

Some people don’t require a least element, and say “pointed CPO”
when it exists.

Example: Powerset and ⊆.

Example: Set of all subgroups of a group, using union for join.

Example: Information order over Z⊥.

Example: Extending that pointwise to Z→ Z⊥ (by theorem on next
slide).
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Pointwise CPO on Functions
Theorem: If v is a CPO over D, then its pointwise extension to
X → D is a CPO.

Proof:

Least element: x 7→ ⊥.

Chains: Given S non-empty chain of functions, candidate:
j(x) =

⊔
{f (x) | f ∈ S}.

Check:

{f (x) | f ∈ S} ⊆ D is a chain, has join.

j is a least upper bound of S by pointwise extension.
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Monotonic And Continuous
Let D and E have partial orders, both written v. Let f : D→ E.

Definition: f is monotonic iff
for all x, y ∈ D, if x v y then f (x) v f (y). “f preserves order”.

Let D and E be/have CPOs, both orders written v, both chain joins
written

⊔
. Let f : D→ E.

Definition: f is continuous iff
for every chain S ⊆ D, f (

⊔
S) =

⊔
f (S). “f preserves chain joins

(limits)”.

Theorem: Continuous implies monotonic.

Proof: If f is continuous:
If x v y, then x t y = y, f (x t y) = f (y).
That’s a chain join, f (x t y) = f (x) t f (y).
So f (x) v f (x) t f (y) = f (y). f is monotonic.
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Least Fixed Points of Continuous Functions
Let v be a CPO over D; let F : D→ D be continuous.

Theorem: The equation p = F(p) has a unique least solution (“least
fixed point of F”):

⊔
i∈N pi where

p0 = ⊥

pi+1 = F(pi)

(Marvelous proof doesn’t fit in this margin so next slide.)
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Least Fixed Points of Continuous Functions
Proof:

p0 v p1 v p2 v · · · by induction and because F is monotonic. This
is a chain, the join exists.

The join is a fixed point:

F(
⊔

i∈N pi) =
⊔

i∈N F(pi)

=
⊔

i∈N pi+1

= ⊥ t
⊔

i∈N pi+1

=
⊔

i∈N pi

Least: If q = F(q), then pi v q by induction, so the join is v q.
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Application: Recursive Programs
Define

F : (Z→ Z⊥)→ (Z→ Z⊥)

F(r) = n 7→ if n = 0 then 0 else r(n − 2)

F is continuous (every programming construct is).

The recursive program is saying g = F(g).

The theorem says that such a g exists and the least is
⊔

i∈N gi

where

g0 = ⊥

gi+1 = F(gi)
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Good Book
Introduction to lattices and order, 2ed, by Davey and Priestley.
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If That Was Too Easy
Advanced definition of CPO:

I D has a least element.
I Directed join: If S ⊆ D, non-empty, every x, y ∈ S have an

upper bound in S (“S is a directed subset”), then S has a join.

Example: Set of all subgroups of a group, using union for join.

Easy: If directed joins exist, then chains are directed subsets, so
chain joins exist.

Hard: If chain joins exist, then directed joins exist.
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