Partial orders
and application to
the semantics of computer programs

Albert Lai

July 14, 2021

1/20

The Recursive Program Question

In a typical functional programming language:

g : Integer -> Integer
g(n) = if n=0 then 0 else g(n-2)

Expect: g(n) is defined for even n > 0, undefined elsewhere, this is
fine.

Want: A mathematical model that gives such predictions.

2/20

Solution Ingredient: Permitting Undefinedness

Add L ("bottom”) to codmain to stand for “no answer”:
g:Z—ZU{l}

E.g., expect g(3) = L.

Not done today: Also add L to domains, more uniform (Integer is
always Z U {1}), covers “non-strict” language such as Haskell, but
more distracting when today | don’t need it.

Fine point: Intuitively non-termination, but want to abstract away
from computational steps. So “no answer”, “undefined” are better.

3/20

Solution Ingredient: Successive Approximations

Construct sequence of functions go, g1, g2, - - -

go(n) = L (foralln)
gi+1(n) =if n =0then 0 else g;(n —2)

n: -1 0 1 2 3 4 5
gsmn): L 0 L O L 0 L
em: L 0 1 0 L 1 1
gm: L O L 1 1 1 1L
gow): L L1 L 1 1 L1 1

Idea: g; approximates the program, as much information (answer)
as possible under a quota of recursion depth i.

1 can also stand for “no information, | don’t know [for now]”.

4/20

Solution Ingredient: Take Limit

0 if0O<mn<?2iandniseven
gi(n) =
L o/w

Sequence of increasing definedness. Take limit. [dea: What if
unlimited quota of recursion depth.

Define g to be the limit.

0 if0<mandniseven
gn) =
1L o/w

Will have to define “limit”.

5/20

Solution Recipe

In general: For a piece of recursive function code

foo : X > Y
foo(x) = ... foo(x’)

Model as
foo: X ->YU{Ll} or XU{L}—->YU{L}
Construct sequence of functions

Joog(x) = L
Jf00i.,(x) = ... foo,(x') ...

Then use the limit for foo.

The rest of the talk is about what is “limit” and why this always
works.

6/20

Partial Order

Idea: Relax from total order, allow both =(x C y) and —=(y C x)—"x
and y are incomparable”.

Axioms:

> reflexive: x C x
> transitive: ifxCyandyC z,thenxE z
> antisymmetric: if xCyand y C x,thenx =y

Familiar example: C over a powerset, or really any family of sets.

7/20

Information Order

Definition: Information order over Z U {_} is the smallest relation C
suchthat: L C 1;andforallkeZ, L CkandkLC k.

E.g., 0Z 42 and 42 ¢ 0.

Idea: x C y means y has the same or more information (answer)
than x.

Boring but there is a reason, and there are ways to build interesting
orders.

People write Z, for Z U { L} when using this information order.

8/20

Hasse Diagram
Shows a partial order in a diagram.

If x C y, x # y, and nothing in between, draw y higher than x,
connect with line segment. Horizontal position unconstrained apart
from aesthetics.

{0, 1}

RN .
{0}\{}/{1} \\//

9/20

Pointwise Function Order
Let X be a set (no required structure).

Let C be a partial order over D. Can extend pointwise to function
space DX but | write X — D:

fCgiffVxe X f(x) C g(x)
Examples: goC g1 C g -

This is why the information order over Z, insists to be boring. It is
safe. g; C g, means that not only g, works for more inputs than g,
but also since g1(0) = 0, g2(0) has to agree.

10/20

Join (Least Upper Bound)

Let C be a partial order over D. Let x,y € D.

A 2-ary join of x and y may exist in D: x Ll y such that:

> (upperbound) xCxlLiyandyC xLly
> (least)ifxCz andyC 7/, thenxuyC 7

When x LI y exists, it is unique (exercise).

11/20

Join (Least Upper Bound)

Let C be a partial order over D. Let x,y € D.

A 2-ary join of x and y may exist in D: x Ll y such that:

> (upperbound) xCxlLiyandyC xLly
> (least)ifxCz andyC 7/, thenxuyC 7
When x LI y exists, it is unique (exercise).

Example: max for total orders.

11/20

Join (Least Upper Bound)
Let C be a partial order over D. Let x,y € D.

A 2-ary join of x and y may exist in D: x Ll y such that:

> (upperbound) xCxlLiyandyC xLly
> (least)ifxCz andyC 7/, thenxuyC 7

When x LI y exists, it is unique (exercise).
Example: max for total orders.

Example: 2-ary union in a family of sets closed under 2-ary union.
For a non-total order, the join can be different from both operands.

11/20

Join (Least Upper Bound)
Let C be a partial order over D. Let x,y € D.

A 2-ary join of x and y may exist in D: x Ll y such that:

> (upperbound) xCxlLiyandyC xLly
> (least)ifxCz andyC 7/, thenxuyC 7
When x LI y exists, it is unique (exercise).

Example: max for total orders.

Example: 2-ary union in a family of sets closed under 2-ary union.
For a non-total order, the join can be different from both operands.

Counterexample: In Z,, 1 L1 2 does not exist (no upper bound).

11/20

Join (Least Upper Bound)
Let C be a partial order over D. Let x,y € D.
A 2-ary join of x and y may exist in D: x Ll y such that:

> (upperbound) xCxlLiyandyC xLly

> (least)ifxCz andyC 7/, thenxuyC 7
When x LI y exists, it is unique (exercise).
Example: max for total orders.

Example: 2-ary union in a family of sets closed under 2-ary union.
For a non-total order, the join can be different from both operands.

Counterexample: In Z,, 1 L1 2 does not exist (no upper bound).

Also possible: Have multiple incomparable upper bounds, so no
one is the least.

11/20

Join (Least Upper Bound)
Let C be a partial order over D. Let S C D.

A join of [the elements of] S may exist in D, written | | S. When it
exists, it is unique (exercise). Indexed notation: | |;; F(i)

(upper bound) forall xe S, xC | |S

| 2
> (least) if (forallxe S,xC 7/),then | |[SC 7

12/20

Join (Least Upper Bound)
Let C be a partial order over D. Let S C D.

A join of [the elements of] S may exist in D, written | | S. When it
exists, it is unique (exercise). Indexed notation: | |;; F(i)

(upper bound) forall xe S, xC | |S

| 2
> (least) if (forallxe S,xC 7/),then | |[SC 7

Example: Arbitrary union in a powerset.

12/20

Join (Least Upper Bound)
Let C be a partial order over D. Let S C D.

A join of [the elements of] S may exist in D, written | | S. When it
exists, it is unique (exercise). Indexed notation: | |;; F(i)

(upper bound) forall xe S, xC | |S

| 2
> (least) if (forallxe S,xC 7/),then | |[SC 7

Example: Arbitrary union in a powerset.

Counterexample: For < over Q, {x | x* <2} doesn’t have a join.

12/20

Join (Least Upper Bound)
Let C be a partial order over D. Let S C D.

A join of [the elements of] S may exist in D, written | | S. When it
exists, it is unique (exercise). Indexed notation: | |;; F(i)

> (upper bound) forallxe S, xC | |S
> (least) if (forallxe S,xC 7/),then | |SC 7

Example: Arbitrary union in a powerset.
Counterexample: For < over Q, {x | x* <2} doesn’t have a join.

Example: For < over R, | [{x|x* <2} = V2.

12/20

Join (Least Upper Bound)
Let C be a partial order over D. Let S C D.

A join of [the elements of] S may exist in D, written | | S. When it
exists, it is unique (exercise). Indexed notation: | |;; F(i)

> (upper bound) forallxe S, xC | |S

> (least) if (forallxe S,xC 7/),then | |SC 7

Example: Arbitrary union in a powerset.

Counterexample: For < over Q, {x | x> < 2} doesn’t have a join.
Example: For < over R, | [{x|x* <2} = V2.

Example: | ;v gi = g Join is the “limit” or “union” for modelling
recursive programs.

12/20

Complete Partial Order (CPO)

Definition: Partial order C over D is a CPO iff:

» Chains have joins: If S € D, non-empty, and C is a total order
when restricted to S (“S is a chain”), then § has a join.

> D has a least element (exercise: it is unique). Join of the
empty set. Usually written L, called “bottom”.

Some people don’t require a least element, and say “pointed CPO”
when it exists.

13/20

Complete Partial Order (CPO)

Definition: Partial order C over D is a CPO iff:

» Chains have joins: If S € D, non-empty, and C is a total order
when restricted to S (“S is a chain”), then § has a join.

> D has a least element (exercise: it is unique). Join of the
empty set. Usually written L, called “bottom”.

Some people don’t require a least element, and say “pointed CPO”
when it exists.

Example: Powerset and C.

13/20

Complete Partial Order (CPO)

Definition: Partial order C over D is a CPO iff:

» Chains have joins: If S € D, non-empty, and C is a total order
when restricted to S (“S is a chain”), then § has a join.

> D has a least element (exercise: it is unique). Join of the
empty set. Usually written L, called “bottom”.

Some people don’t require a least element, and say “pointed CPO”
when it exists.

Example: Powerset and C.

Example: Set of all subgroups of a group, using union for join.

13/20

Complete Partial Order (CPO)

Definition: Partial order C over D is a CPO iff:

» Chains have joins: If S € D, non-empty, and C is a total order
when restricted to S (“S is a chain”), then § has a join.

> D has a least element (exercise: it is unique). Join of the
empty set. Usually written L, called “bottom”.

Some people don’t require a least element, and say “pointed CPO”
when it exists.

Example: Powerset and C.
Example: Set of all subgroups of a group, using union for join.

Example: Information order over Z, .

13/20

Complete Partial Order (CPO)

Definition: Partial order C over D is a CPO iff:

» Chains have joins: If S € D, non-empty, and C is a total order
when restricted to S (“S is a chain”), then § has a join.

> D has a least element (exercise: it is unique). Join of the
empty set. Usually written L, called “bottom”.

Some people don’t require a least element, and say “pointed CPO”
when it exists.

Example: Powerset and C.
Example: Set of all subgroups of a group, using union for join.
Example: Information order over Z, .

Example: Extending that pointwise to Z — Z, (by theorem on next
slide).

13/20

Pointwise CPO on Functions

Theorem: If C is a CPO over D, then its pointwise extension to
X — Dis a CPO.

Proof:

14/20

Pointwise CPO on Functions

Theorem: If C is a CPO over D, then its pointwise extension to
X — Dis a CPO.

Proof:

Least element: x — L.

14/20

Pointwise CPO on Functions

Theorem: If C is a CPO over D, then its pointwise extension to
X — Dis a CPO.

Proof:
Least element: x — L.

Chains: Given S non-empty chain of functions, candidate:

JO =) 1 f € S}

14/20

Pointwise CPO on Functions

Theorem: If C is a CPO over D, then its pointwise extension to
X — Dis a CPO.

Proof:

Least element: x — L.

Chains: Given S non-empty chain of functions, candidate:
J&) = LI{f &) [f € S}

Check:

{f(x) | f € S} € Dis a chain, has join.

Jj is a least upper bound of S by pointwise extension.

14/20

Monotonic And Continuous
Let D and E have partial orders, both written C. Letf: D — E.

Definition: f is monotonic iff
forallx,y € D, if x E y then f(x) C f(y). °f preserves order”.

15/20

Monotonic And Continuous
Let D and E have partial orders, both writtenC. Let f: D — E.

Definition: f is monotonic iff
forall x,y € D, if x C y then f(x) C f(y). “f preserves order”.

Let D and E be/have CPOs, both orders written C, both chain joins
written | |. Letf: D — E.

Definition: f is continuous iff
for every chain S C D, f(||S) = L|f(S). f preserves chain joins
(limits)”.

15/20

Monotonic And Continuous
Let D and E have partial orders, both writtenC. Let f: D — E.

Definition: f is monotonic iff
forall x,y € D, if x C y then f(x) C f(y). “f preserves order”.

Let D and E be/have CPOs, both orders written C, both chain joins
written | |. Letf: D — E.

Definition: f is continuous iff
for every chain S C D, f(||S) = L|f(S). f preserves chain joins
(limits)”.

Theorem: Continuous implies monotonic.

Proof: If f is continuous:

fxCythenxUy=y, f(xUy) =f().
That’s a chain join, f(x Uy) = f(x) Uf(y).
So f(x) C f(x) Uf(y) =f(y). f is monotonic.

15/20

Least Fixed Points of Continuous Functions
Let C be a CPO over D; let F: D — D be continuous.

Theorem: The equation p = F(p) has a unique least solution (“least
fixed point of F”): | |;en pi Where

po=1
pir1 = F(pi)

(Marvelous proof doesn't fit in this margin so next slide.)

16/20

Least Fixed Points of Continuous Functions
Proof:

po C p1 CE pp C--- by induction and because F is monotonic. This
is a chain, the join exists.

The join is a fixed point:
F(Uien pi) = Lien F(pi)
= Uiew pis1
= LU | lienw pis1
= Llien pi

Least: If ¢ = F(g), then p; C g by induction, so the join is C g.

17/20

Application: Recursive Programs
Define
F:(Z—-2,)>Z->1Z))
F(r)y=n—ifn=0then0else r(n — 2)
F is continuous (every programming construct is).
The recursive program is saying g = F(g).

The theorem says that such a g exists and the least is | |;cy gi
where

go=1
8i+1 = F(gi)

18/20

Good Book

Introduction to lattices and order, 2ed, by Davey and Priestley.

19/20

If That Was Too Easy
Advanced definition of CPO:

> D has a least element.
» Directed join: If S € D, non-empty, every x,y € S have an

upper bound in S (“S is a directed subset”), then S has a join.

Example: Set of all subgroups of a group, using union for join.

Easy: If directed joins exist, then chains are directed subsets, so
chain joins exist.

Hard: If chain joins exist, then directed joins exist.

20/20

