
Eager, Lazy, and Other Executions for Predicative Programming

by

Albert Y. C. Lai

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

c© Copyright 2013 by Albert Y. C. Lai



Abstract

Eager, Lazy, and Other Executions for Predicative Programming

Albert Y. C. Lai

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2013

Many programs are executed according to the conventional, eager execution order, for which ver-

ification of execution costs is well-understood. However, there are other execution orders in use.

One such order in common use is lazy execution or lazy evaluation, which is mostly demand-

driven. Laziness supports better decompositions of algorithms, e.g., into modular producers and

consumers, which enables compositional reasoning of answer correctness, but then timing correct-

ness is more elusive. This thesis gives a formal method for verifying lazy timing, compositional

with respect to program structure; it is an extension of a predicative programming theory.

Predicative programming theories are formal methods that unify both specifications and pro-

grams as predicates or boolean-typed expressions over memory state and other quantities of in-

terest. Their strengths are mathematical simplicity and support of program development and ver-

ification by incremental refinements. Among these theories, Hehner’s a Practical Theory of Pro-

gramming has the further strength of leaving termination and timing open rather than a built-in,

and therefore is a flexible substrate for various timing schemes corresponding to various execution

strategies. We use this substrate for our method for lazy timing.

This thesis also proves soundness of the eager timing scheme in Hehner’s work with respect

to an eager operational semantics, and our lazy timing scheme with respect to a lazy operational

semantics. Thus, if refinements promise an upper time bound, then execution actually stops within

that time.

Lastly, this thesis outlines a space of more operational semantics. It is possible ground for more

execution strategies.

ii



Acknowledgements

I am most grateful to my supervisor Ric Hehner for guidance and inspiration: bringing me to see

the fascinating field of formal programming methodology, teaching how to be formal (symbolic)

in arguments for good formatting, economy, and clarity (yes it can be done), exemplifying how to

simplify and get to core issues, showing how to seize opportunities to generalize with low cost and

big payoff (in particular when I already had an eager execution order and a lazy execution order,

the suggestion to cover arbitrary orders), and suggesting how to sanely write a large document such

as a thesis—like writing a program by refinement, write down high-level goals, then incrementally

elaborate goals and fill in details. I am next grateful to Marsha Chechik for fostering good science

and good presentation. I thank the supevisory committee—Ric Hehner, Marsha Chechik, Steve

Easterbrook, Azadeh Farzan—and the external examiner Jules Desharnais for suggesting further

improvements; for example, Azadeh Farzan alerted me to look for and cite recent work on auto-

matic computing of time bounds. I thank the attendees of IFIP Workgroup 2.3 in summer 2005 for

interest and encouragement when I presented early parts of this work. I am grateful that all of the

above persons, as well as other faculty and students I met, have been collegial.

This work has been funded by NSERC PGS B.

iii



Contents

1 Introduction 1

1.1 Lazy Execution and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Question of Lazy Execution Time . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Predicative Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A Practical Theory of Programming 6

2.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Quantities of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Boolean Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Useful Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Syntax of Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Satisfaction—Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Useful Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 On Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Termination and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 The Soundness Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Bibliographical Notes on Termination . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Eager Execution 24

iv



3.1 Eager Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Soundness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Bootstrapping of Implementability . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Lazy Timing 39

4.1 Representing Demand: Usage Variables . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Propagating Demand: Usage Transformation . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Assignments without Operations . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.2 Operations on Primitive Data . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.3 Constructions of Algebraic Data . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.4 Case Analyses of Algebraic Data . . . . . . . . . . . . . . . . . . . . . . 49

4.2.5 Conditional Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.6 General Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.7 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.8 Adding and Hiding Variables . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Lazy Recursive Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Automatic Annotation of Usage and Time . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Small Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Larger Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7.1 Lazy UTP (Guttmann) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7.2 Context Analysis (Wadler and Hughes, Sands) . . . . . . . . . . . . . . . 80

5 Lazy Execution 83

5.1 Lazy Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 The Prospect of Speculative Execution . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Soundness Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

v



6 A Space of Operational Semantics 108

6.1 Execution State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Execution rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.1 Execution and Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Parallel Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 Conclusion 118

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Summary of Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

A Notation and Precedence 121

Bibliography 123

vi



Chapter 1

Introduction

Many programming languages stipulate the same order of execution, called eager execution, which

executes a sequential composition from left to right, among other things. For programs written for

eager execution, how to verify execution costs is widely known and well-understood. However,

there are other execution orders used by some other programming languages and some systems;

these orders are chosen for certain benefits, but their execution costs are often elusive. One such

order in common use is lazy execution.

1.1 Lazy Execution and Applications

Lazy execution (more often called lazy evaluation) roughly means that some parts of a program

are not executed until demanded (there is a specified root demand to start the process), and the

answers thus computed are shared and reused if aliased; the details are more complicated than this

optimistic description, and moreover there are provisions to mark some parts as less lazy. Lazy

execution is mostly found in implementations of some functional programming languages such as

Gofer, Miranda, and Haskell.

The main application of lazy execution is to support a decomposition of programs into produc-

ers and consumers that is hard to carry out in eagerly executed languages. Writing programs in this

more well-structured way enables more compositional reasoning of answer correctness. Hughes

gives the following motivating example: Square roots can be computed by a function composition

1



Chapter 1. Introduction 2

(analogous to sequential composition in imperative programming) of a producer of successive ap-

proximations (e.g., Newton-Raphson) and a consumer that codifies an accuracy criterion and stops

consuming when the criterion is met. Note that the producer does not contain the criterion, yet it

is stopped properly by lazy execution; that to change the accuracy criterion, we keep the producer

and just swap the consumer; and that to solve a different approximation problem, we keep the

consumer and just swap the producer [20].

Nordin and Tolmach have a whole framework of solvers for constraint satisfaction problems

based on the decomposition into a producer of candidates, intermediate processors (representing

heuristics such as prioritizing and pruning), and a final checker; besides easy experimentation of

heuristics by just swapping the intermediate processors, the modularity helps comprehension and

proofs [27].

McIlroy has an elegant solution to enumerating the strings of a regular expression using lazi-

ness [23]. As a gist of the kind of clean and obvious program structures made possible: If the

regular expression is 0∗+1∗, then one program produces the infinite list of ε, 0, 00, 000. . . another

program produces ε, 1, 11, 111. . . and finally a third program interleaves them.

1.2 The Question of Lazy Execution Time

The question of stating and proving time bounds of lazy executions can be considered harder than

that of eager executions. Whereas eager execution runs, for example, an infinite loop either fully

or not at all depending on control flow and input data only, lazy execution runs it any number

of times depending also on demand. Lazy timing specifications must therefore mention demand

information and use more complicated formulas. In addition, since the details of lazy execution

are a bit more complicated than an optimistic “only when needed”, and since in practice some

parts of a program can be marked as less lazy, it could do more work than a human’s subjective

judgement of “absolutely necessary”. This calls for formal methods for verifying lazy execution

time bounds, preferrably without mandating a whole-program analysis. This thesis contributes

one such method, formalized as an extension of the predicative programming theory named below,

although our method is a simplification of previous ones [36, 31]; we also explain why we can

afford the simplification.



Chapter 1. Introduction 3

1.3 Predicative Programming

A programming theory formalizes specifications, programs, and satisfactions (criteria for a pro-

gram to satisfy a specification). Predicative programming theories [11, 16] formalize specifica-

tions and programs by boolean-typed expressions in which free variables stand for quantities of

interest in the problem specification and/or the solution program. (The name predicative refers

to predicates, an old name for boolean-typed expressions.) With specifications and programs uni-

fied, these theories allow hybrid compositions and support stepwise refinement [38] in program

development, and therefore satisfaction is also called refinement. Thus, they emphasize deriving

programs from specifications, i.e., analysis, verification, and documentation happen in tandem with

programming, incrementally and compositionally; most other theories of programming emphasize

analysis and verification post-mortem of a monolith, and are mostly silent about documentation.

Different predicative programming theories choose different quantities of interest. For a tradi-

tional example, in batch-mode computations, the quantities of interest are initial values and final

values of the memory, and so each memory cell is represented by two free variables, say x for

its initial value and x′ for its final value; incrementing the cell content by one may be speci-

fied as x′=x+1. For a more modern example, if a computation takes input and produces output

throughout its duration, not just initial values at the beginning and final values at the end, the input

history and the output history are also quantities of interest, which are represented respectively by

sequence-typed free variables [14]; echoing the input stream to the output stream may be specified

as (∀i · output i=input i) or output=input.

Among various predicative programming theories, Hehner’s a Practical Theory of Program-

ming [13, 14, 15] further excludes termination (more precisely, termination under eager execution)

as a quantity of interest; it is replaced by initial time and final time (as numeric values and can

be infinite), on the ground that termination claims cannot be refuted by observations, while tim-

ing claims can be. Accordingly, unlike many predicative programming theories, its constructs

(especially sequential composition) and its refinement do not have built-in checks for termination

under eager execution. To ensure that a program is productive, one writes eager time bounds in the

specification, and proves that they are refined by the program. But the theory makes eager timing



Chapter 1. Introduction 4

optional: one can choose to include it or omit it. In effect, the base theory is neutral on execution

orders.

This makes the base theory extensible for different execution orders. In this thesis, we extend

it for timing under lazy execution. We also set the stage for more execution orders.

1.4 Structure of This Thesis

This thesis is organized as follows.

• Chapter 2 introduces the predicative programming theory that will be the substrate of this

thesis. The theory is a small modification of Hehner’s [13, 14, 15]. The chapter poses the

question of soundness of refinements, which is then answered in the chapter after. The end

of the chapter has bibliographical notes on termination schemes for interested readers.

• Chapter 3 describes a high-level, small-step operational semantics for eager execution, and

then uses it to prove soundness of refinements (if the refinements use eager timing).

Our contribution in this chapter is the proof. (The operational semantics is also a small

contribution.)

• Chapter 4 describes our method of lazy timing refinements. Laziness requires expressing

how much of the final answer is demanded and how this propagates into the middle of the

program; for this, we add usage variables and usage transformation. Equipped with usage

variables, we can specify and prove usage-dependent time bounds. Reasoning about these

time bounds is compositional with respect to program structure, for example in a sequential

composition of a producer and a consumer, the time bound of the producer can be proved

independently from the consumer. Our method covers both basic data types (e.g., integers)

and lazy algebraic data types (e.g., lazy lists). We provide examples of how to use this

method.

Our contribution in this chapter is the method: usage variables, usage transformation, and

usage-dependent time bounds.



Chapter 1. Introduction 5

• Chapter 5 describes a high-level, small-step operational semantics for lazy execution, shows

an example, and then uses it to prove soundness of refinements that use the method in the

chapter before.

Our contribution in this chapter is the operational semantics and the proof.

• Chapter 6 outlines and contributes a space of operational semantics that is more general and

with more open ends than both the eager one and the lazy one in the chapters before. It is

possible to explore more execution orders and strategies from this space.

• Chapter 7 is the conclusion. It summarizes our contribution and related work, and outlines

future work.

Most chapters include discussions of related work.



Chapter 2

A Practical Theory of Programming

A theory of programming formalizes specifications, programs, and satisfactions (criteria for a pro-

gram to satisfy a specification). This chapter outlines the theory of programming used throughout

this thesis; it uses part of A Practical Theory of Programming [12, 13, 14] and has minor additions.

We use the following symbols, listed in decreasing precedence (also listed in Appendix A):

• >, ⊥ (boolean values “true” and “false” respectively)

literals

parenthesized expressions

• function application written as juxtaposition, e.g., f x

• ×, / (arithmetic)

• infix +, − (arithmetic)

• =, ,, <, >, ≤, ≥ (equality and inequalities; continuing, e.g., a=b≤c means a=b and b≤c)

• ¬ (boolean “not”)

• ∧ (boolean “and”)

• ∨ (boolean “or”)

• ⇒,⇐ (boolean implication, continuing)

6



Chapter 2. A Practical Theory of Programming 7

• :=, =: (assignment, Section 2.1.2)

• if then else (conditional)

case of (Section 2.1.4)

• . (sequential composition, Section 2.1.2)

• ∀, ∃ (predicate logic quantifiers)

var, scope (Section 2.1.2)

• =,⇒,⇐ (same meaning as =,⇒, and⇐ respectively, and continuing, but lowest prece-

dence)

A theory of programming defines three things: specification, program, and the satisfaction

relation between the two. These are defined in the following sections for the particular theory we

use.

2.1 Specifications

The theory of programming we use is a predicative theory [11, 16]. In general, a predicative

theory picks some quantities of interest and defines specifications to be boolean expressions (used

to be called predicates in the past) having these quantities as free variables. These formalize

expectations: a computation is within expectation if and only if the quantities of the computation

satisfy the boolean expression.

Below we elaborate on the variables and boolean expressions we use in this thesis.

2.1.1 Quantities of Interest

In our present case, because sequential imperative programming is included, the quantities of in-

terest include the values of the memory variables before and after execution of a given program

fragment. Timeliness is also of interest, with a time variable introduced in Section 2.4. There are

also usage variables, introduced for lazy execution in Chapter 4. In all three cases—memory, time,



Chapter 2. A Practical Theory of Programming 8

usage—we are interested in both before and after, so each state variable becomes a pair of free

variables.

Here is the naming convention for the variable values before and after. For a memory variable

x, the same name x refers to the value before, also called the pre-value; and the primed name x′

refers to the value after, also called the post-value. The same convention applies to the time variable

t and later usage variables. Sometimes σ and σ′ refer to the aggregates of all pre-values in scope

and all post-values in scope, respectively, when stating general statements about specifications in

which the actual names do not matter.

Other kinds of quantities are possible in general, though not used in this thesis. If a program

communicates with the environment through an unbounded channel, one free variable of a se-

quence type stands for the complete history of all messages sent and to be sent in chronological

order [13]. (An extra pair of memory variables stand for the write cursor and the read cursor.) If

a program shares a state variable with another program run concurrently, one free variable of a

function type (from time to value) stands for the values of the shared variable at various times [15].

Note that neither the message history nor the shared variable is represented by a pair of pre-value

and post-value; each is one single free variable, not two, and already stands for all values of all

times.

2.1.2 Boolean Expressions

Any mathematical expression with its result type being boolean and with all free variables being

quantities of interest is a specification. It could be formed by relations between quantities and/or

composition by logic operators. Here are some examples, with just memory variables x, y, and z

for now, and so x, x′, y, y′, z, z′ are the quantities of interest:

x′=x+1

x′=x+1∧ y′=y∧ z′=z

y,0∧ (∃n: int · x=y×n)⇒ x′=x/y

>

y,0



Chapter 2. A Practical Theory of Programming 9

⊥

There are some commonly used specifications and operators over specifications:

• ok = x′=x∧y′=y∧z′=z = σ′=σ

corresponds to no-operation, the empty program

• x:=e = x′=e∧y′=y∧z′=z

corresponds to assignment

• x=:e = x=e∧y′=y∧z′=z

is backward assignment; in this thesis, we only use it as an accounting device in Chapter 4

• if b then P else Q = b∧P∨¬b∧Q = (b⇒P)∧(¬b⇒Q)

corresponds to conditional branching

• P .Q = ∃σ′′ · (substitute σ′′ for σ′ in P)∧(substitute σ′′ for σ in Q)

corresponds to sequential composition

• var v: T · P = ∃v, v′: T · P

corresponds to local memory variable introduction: the fresh pair of pre-value v and post-

value v′, of domain T , are accessible in P. Often, when the domain is implicit or unimportant,

we write var v · P

• scope v · P

corresponds to memory variable hiding: memory variables (pre-values and post-values)

other than v (pre-value v and post-value v′) are inaccessible in P. We enforce this access

restriction syntactically for simplicity. Hiding fewer variables is possible by listing more

variables, e.g., scope x, y · P .

Note: A Practical Theory of Programming [14, 15] has a similar frame construct to restrict

post-values but still allows access to all pre-values; we deviate from that here for convenience

in lazy programs later in this thesis.



Chapter 2. A Practical Theory of Programming 10

We define scope by extrapolating from an example. If the memory variables are x, y, and z,

we define

scope x, y · P = P∧z′=z

2.1.3 Useful Theorems

There are some useful theorems on the above operators (some theorems are given acronyms for

reference):

• ok . P = P

P . ok = P

• P . (Q .R) = (P .Q) .R

We use this associativity theorem so pervasively that we will seldom cite it.

• 2.1.3-assignment-before:

x:=e . P = (substitute e for x in P)

provided e does not mention any post-value.

• 2.1.3-engulf-assignment:

b⇒P . x:=e ⇒ b⇒(P . x:=e)

provided b does not mention x′.

• 2.1.3-if-distribution:

Many operators distribute over if-then-else, in particular we will use:

R∧if b then P else Q = if b then R∧P else R∧Q

(∃v · if b then P else Q) = if b then (∃v · P) else (∃v · Q)

provided b does not mention v.

• (scope v · P .Q) = (scope v · P) . (scope v · Q)

• (scope v · P . v:=e) = (scope v · P) . v:=e

(scope v · v:=e . P) = v:=e . (scope v · P)

provided e does not mention any variable forbidden by the scope.



Chapter 2. A Practical Theory of Programming 11

• (var v · P . x:=e) = (var v · P) . x:=e

(var v · x:=e . P) = x:=e . (var v · P)

provided x is not v and e does not mention v.

2.1.4 Data Types

While predicative theories of programming are open and flexible about data types, this thesis will

make heavy use of the following data types, and so they are worth describing. Before we begin, we

must emphasize that data types and their operators are not confined to computers and programming

languages; they are also subject matter in specifications and mathematical statements. It is entirely

reasonable that some ways of using data types and their operators are rare in programs but common

in specifications and proofs. As an example that has already happened, some boolean operators

double as common specification operators.

Firstly, as expected, there are the familiar number types (e.g., nat, int) and the boolean type,

with their familiar operators (e.g., + and × for number types, logic operators for the boolean type).

Of the boolean type, we say a few more words on one operator, in preparation for algebraic data

types covered next.

If b is a boolean operand and e0, e1 are operands of any type (some programming languages

require e0 and e1 to have the same type), then we have the expression

if b then e0 else e1

This if-then-else operator satisfies at least the following laws (some are given names for reference):

• 2.1.4-if-elim:

if b then e else e = e

• 2.1.4-if-resolve:

if > then e0 else e1 = e0

if ⊥ then e0 else e1 = e1

• 2.1.4-if-context:

within if b then e0 else e1:



Chapter 2. A Practical Theory of Programming 12

when rewriting e0, b may be assumed

when rewriting e1, ¬b may be assumed

• f (if b then e0 else e1) = if b then f e0 else f e1

These laws are consistent with those of the similarly-named specification operator for conditional

branching, and so we will use the same name and syntax for both the data-level operator and the

specification-level operator.

Next, we cover algebraic data types, which are especially interesting and useful in lazy pro-

grams. An algebraic data type is formed by a disjoint union of cartesian products, and recursion

(self and mutual) is allowed. The cases of the disjoint union are distinguished by tags. For example,

the type of cons-lists of int—call it iclist—is formed by the disjoint union of

• a singleton (an empty product) for the empty list, and we tag this case nil

• the product of int and iclist, and we tag this case cons

As another example, the type of binary trees of nat—call it nbintree—is formed by the disjoint

union of

• a singleton for the empty tree with tag emp

• the product of nat, nbintree, and nbintree, with tag bin

We write values of algebraic data types as curried function applications of tag names to compo-

nent values, such as cons 3 (cons 1 nil) for an iclist example and bin 4 emp (bin 0 emp emp) for an

nbintree example. We do not introduce a formal syntax for declaring algebraic data types in this

thesis.

Each algebraic data type comes with two kinds of operators: construction and case analysis.

Construction operators are simply the tags, e.g., cons of arity 2 for iclist, emp of arity 0 for nbintree.

They satisfy injectivity laws, e.g., for iclist:

• nil,cons h r

• cons h r = cons h1 r1 = h=h1∧r=r1



Chapter 2. A Practical Theory of Programming 13

In general, for an algebraic data type with tags including tagj (of arity m) and tagk (of arity n):

• tagj x1 . . . xm , tagk y1 . . . yn

• tagj x1 . . . xm = tagj z1 . . . zm = x1=z1∧ . . .∧xm=zm

The case analysis operator, case-of, is conditional branching based on tags, analogous to if-

then-else; in addition, for each tag with arity 1 or more, it introduces local names (similar to

lambda-bound names) to refer to component values (operands of the tag), so that the branch can

use them conveniently. The syntax of case-of is as follows:

For iclist:

case c of nil→e0 | cons h r→e1

where h and r are fresh local names, and e1 may use them.

For nbintree:

case c of emp→e0 | bin n t0 t1→e1

where n, t0, and t1 are fresh local names, and e1 may use them.

Extrapolating, for an algebraic data type with tags including tagk (of arity n):

case c of . . . | tagk v1 . . . vn→ek | . . .

where v1, . . . , vn are fresh local names, and ek may use them.

All tags of the algebraic data type must be covered uniquely.

These case-of operators satisfy at least the following laws (some are given names for reference),

analogous to if-then-else:

• 2.1.4-case-elim:

case c of tag1 . . .→e | . . . | tagk . . .→e = e

i.e., when every branch is e; provided e does not mention any of the local names



Chapter 2. A Practical Theory of Programming 14

• 2.1.4-case-resolve:

case tagk x1 . . . xn of tagk v1 . . . vn→ek | . . . = (substitute x1,. . . ,xn for v1,. . . ,vn in ek)

if tagk has arity 0, then there is nothing to substitute: case tagk of tagk→ek | . . . = ek

• 2.1.4-case-context:

within case c of tagk v1 . . . vn→ek | . . . :

when rewriting ek, may assume c=tagk v1 . . . vn

• f (case c of tagk v1 . . . vn→ek | . . .) = case c of tagk v1 . . . vn→ f ek | . . .

provided f does not mention any of the local names such as v1, . . . , vn

i.e., f is distributed into or factored out of all branches

Again analogous to if-then-else, we have case-of as both a data operator and a specification op-

erator (the branches are specifications). Of the specification operator, we will use these distribution

laws:

• 2.1.4-case-distribution:

R∧case c of tagk v1 . . . vn→P | . . . = case c of tagk v1 . . . vn→R∧P | . . .

provided R does not mention any of the local names

(∃u · case c of tagk v1 . . . vn→P | . . .) = case c of tagk v1 . . . vn→(∃u · P) | . . .

provided c does not mention u

2.2 Syntax of Programs

In predicative theories, programs are defined to be special specifications: They are specifications in

that they describe expectations of computer behaviours, and they are special in that they are handed

over to computers without further programming, and so they must be limited in expressiveness for

computers.

We define programs by syntactic restrictions. We give these restrictions semi-formally: below

is a formal grammar with open ends, and following it are further restrictions given informally.



Chapter 2. A Practical Theory of Programming 15

〈program〉 ::= ok

| 〈variables〉:=〈expressions〉

| if 〈boolean expression〉 then 〈program〉 else 〈program〉

| case 〈variable〉 of 〈case〉 (|〈case〉)∗

| 〈program〉 . 〈program〉

| var 〈variables〉 · 〈program〉

| scope 〈variables〉 · 〈program〉

| 〈label〉

〈case〉 ::= 〈tag〉 〈variable〉∗→〈program〉

The non-terminal 〈variables〉 allows a comma-separated list of distinct variables; 〈expressions〉

allows a comma-separated list of expressions of corresponding length. In forward assignment :=,

the assigned variables must be memory or time. An “expression” is formed from pre-values of

memory and time variables, computer-supported constants, and computer-supported operations. A

〈boolean expression〉 is an “expression” as above, except only memory variables are allowed, plus

the requirement that it evaluates to boolean values. In the case-of statement, we restrict the first

operand to one variable for simplicity. We leave the type system open.

The non-terminal 〈label〉 allows a specification and treats it as a label, and we impose the fol-

lowing restriction. For each specification S used as a label, a refinement of the form S⇐ 〈program〉

must be given; self- and mutual-references are allowed—the program on the right hand side may

use a specification refined by the same or another refinement. The significance of this requirement

becomes clear in the next section.

Examples of programs using especially the last requirement are:

• x′≤0, given x′≤0⇐ if x≤0 then ok else (x:=x−1 . x′≤0)

• x′≤0, given the pair x′≤0⇐ x′<0 and x′<0⇐ x′≤0 . x:=x−1

• x′≤0, given x′≤0⇐ x′≤0

The last two examples look strange, and are further discussed in the next section.



Chapter 2. A Practical Theory of Programming 16

2.3 Satisfaction—Refinement

Satisfaction in the program theory used here is called refinement, and is defined as universal impli-

cation: specification P (regarded as a problem) is refined by specification S (regarded as a solution)

iff

∀σ,σ′ · P⇐S

For convenience and without loss of soundness, often we just state and prove

P⇐S

instead. The solution may use the problem as a component, which means pre-fixpoint in denotation

and recursion in execution.

2.3.1 Useful Theorems

There are some useful theorems on refinement and operators over specifications.

Operators on specifications are monotonic in the refinement order. In particular, we will use:

• 2.3.1-seq-mono:

(P .Q)⇐(P1 .Q1) if P⇐P1 and Q⇐Q1

• 2.3.1-var-mono:

(var v · P)⇐(var v · P1) if P⇐P1

• 2.3.1-scope-mono:

(scope v · P)⇐(scope v · P1) if P⇐P1

provided that all the specifications involved comply with the respective scope requirements of the

operators.

For refinements involving if-then-else, we will use:

• 2.3.1-refine-by-if:

R⇐(if b then P else Q) iff (b⇒(R⇐P))∧(¬b⇒(R⇐Q))



Chapter 2. A Practical Theory of Programming 17

The major application is dividing the proof of

R ⇐ if b then P else Q

into:

• assuming b, proof of R⇐P

• assuming ¬b, proof of R⇐Q

Similarly, for refinements involving case-of, we have 2.3.1-refine-by-case: we will divide the

proof of

R ⇐ case c of nil→P | cons h r→Q

into:

• assuming c=nil, proof of R⇐P

• assuming c=cons h r, proof of R⇐Q

and likewise for case-of over other algebraic data types.

2.3.2 Example

As a short example, we prove x′≤0 ⇐ if x≤0 then ok else (x:=x−1 . x′≤0) with memory variable

x in scope alone. By 2.3.1-refine-by-if:

Assuming x≤0:

ok

= 〈definition〉

x′=x

⇒ 〈assumption: x≤0〉

x′≤0



Chapter 2. A Practical Theory of Programming 18

Assuming x>0:

x:=x−1 . x′≤0

= 〈2.1.3-assignment-before〉

x′≤0

Although this branch is silly, it will become interesting when we add timing in Section 2.4 below.

2.3.3 On Termination

Some refinements suggest infinite procrastination, e.g.,

• x′≤0⇐ x′≤0

• the pair x′≤0⇐ x′<0 and x′<0⇐ x′≤0 . x:=x−1

Neither of the refinements, when translated into program code and executed, stops to deliver the

promised result; moreover, one of them is an empty loop. They are correct refinements just because

they postpone their promise indefinitely.

At first glance, it seems unsatisfactory to allow infinite procrastination as a correct implementa-

tion. But whether a program terminates, and more generally when a program terminates, depends

on execution order. Already decades ago, two useful execution orders, call-by-name and call-by-

value, were identified for both Algol 60 [29] and the lambda calculus [30]. These can be adapted to

imperative batch-mode programs as eager execution and lazy execution, respectively, as this thesis

will show. What constitutes infinite procrastination in one execution order can become immediate

return in another. As an example,

x′≤0 ⇐ x′≤0 . x:=0

is stuck in the left recursion under eager execution, but is done immediately with the tailing com-

mand x:=0 under lazy execution. With this option open, it is now paramount to keep termination

out of correctness of refinements (partial correctness, impartial to termination), isolating out the

timing discipline as an add-on to be chosen according to the execution order.

The following section adds the timing discipline for eager execution as in the original theory

[12, 13, 14]. In Chapter 4 we show our discipline for lazy execution.



Chapter 2. A Practical Theory of Programming 19

2.4 Termination and Timing

To prove that a refinement represents a timely program, we prove a time bound. The theory sup-

ports this by introducing a time variable t, whose pre-value is t and post-value t′, for the times

before and after a computation, with which it is possible to specify a time bound as an inequality.

There are many ways to interpret and use this time variable: it may be concrete or ghost; it

may stand for real time, machine ticks, operation count, or recursive time. Recursive time simply

counts the number of recursions (including iterations), which suffices for proving eventuality, and

so we will assume it.

When the time variable is present, some common specifications need re-definitions (assume

the memory variables are x, y, z):

• σ and σ′ include t and t′, respectively; so the definition of P .Q has one more existentially

quantified variable, i.e., σ′′ includes t′′

• ok = x′=x∧y′=y∧z′=z∧t′=t = σ′=σ

• x:=e = x′=e∧y′=y∧z′=z∧t′=t

t:=e = x′=x∧y′=y∧z′=z∧t′=e

• x=:e = x=e∧y′=y∧z′=z∧t′=t

Other specifications and specification operators retain their definitions. Useful theorems listed in

this chapter still hold.

To prove a time bound for a program, we add time bounds to specifications (including pro-

grams), and we prove their refinements. The addition is already done mostly by the re-definitions

above, so manual additions are needed only for two kinds of things: specifications, and a time

increment t :=t+1 for each recursive call site, since we use recursive time here.

Here is an example. We extend this refinement

with memory variable x alone:

x′≤0 ⇐ if x≤0 then ok else (x:=x−1 . x′≤0)

to



Chapter 2. A Practical Theory of Programming 20

with memory variable x and time variable t:

S ⇐ if x≤0 then ok else (x:=x−1 . t :=t+1 . S )

where

S = x′≤0∧if x≤0 then t′=t else t′≤t+x

The refinement now has x, x′, t, and t′ in scope; this modifies the meaning of ok and x:=x−1

correctly. The specification S now includes a time bound. The recursive call is sequentially com-

posed with t :=t+1 as required. (In principle it could be composed either before or after; for ease

of simplification, under eager timing, we choose before.)

The new refinement can be proved as follows. By 2.3.1-refine-by-if:

Assuming x≤0:

S⇐ok

= 〈definitions〉

x′≤0∧(if x≤0 then t′=t else t′≤t+x)⇐ x′=x∧t′=t

= 〈assumption: x≤0〉

x′≤0∧t′=t⇐ x′=x≤0∧t′=t

= 〈arithmetic〉

>

Assuming x>0:

S⇐(x:=x−1 . t :=t+1 . S )

= 〈definition of S 〉

S⇐(x:=x−1 . t :=t+1 . x′≤0∧if x≤0 then t′=t else t′≤t+x)

= 〈2.1.3-assignment-before〉

S ⇐ x′≤0∧ if x−1≤0 then t′=t+1 else t′≤t+1+x−1

= 〈assumption: x>0〉

S ⇐ x′≤0∧ if x=1 then t′=t+1 else t′≤t+x



Chapter 2. A Practical Theory of Programming 21

⇐ 〈weaken RHS: t′=t+1 when x=1 is a special case of t′≤t+x〉

S ⇐ x′≤0∧ t′≤t+x

= 〈definition of S 〉

x′≤0∧ (if x≤0 then t′=t else t′≤t+x) ⇐ x′≤0∧ t′≤t+x

= 〈assumption: x>0〉

x′≤0∧ t′≤t+x⇐ x′≤0∧ t′≤t+x

= 〈propositional logic〉

>

Here is another example: It shows that with this timing scheme we can detect infinite procras-

tination. Extending this refinement for recursive time

x′≤0 ⇐ x′≤0

we can only hope to get and prove (with the extended arithmetic law 1+∞=∞)

x′≤0∧ t′=t+∞ ⇐ t :=t+1 . x′≤0∧ t′=t+∞

Replacing∞ by any expression with finite values yields unprovable refinements. Thus the way the

theory handles infinite procrastination is not by defining refinement to forbid them, but rather by

adding a timing scheme to expose them.

To put it another way, liveness is proved by being turned into safety: introducing an extra vari-

able that increases at critical points (this can be mechanically inserted, such as “before recursion”),

and proving a safety bound on the gross increase. Thus terminating refinement can remain as a

safety property.

We do not necessarily consider all calls to be recursive calls. For the purpose of proving

termination or establishing an asymptotic time bound, we just need one time increment per cycle

of calls. In examples in this thesis, we typically have a main program that initializes and then calls

a helper, and we do not have a time increment for this call; but the helper calls itself, and we have

a time increment for this call.



Chapter 2. A Practical Theory of Programming 22

2.5 The Soundness Question

The theory allows operationally paradoxical refinements in the presence of infinite loops, e.g.,

b′ ⇐ if b then ok else (b:=⊥ . b′)

If the program goes into a loop of setting b to ⊥, how can b ever attain the value of >?

The paradox involves infinite procrastination. In this example, the promise (of setting b to >) is

not delivered until time∞. Anything the program does until then—even operations drifting further

and further away from the goal—is therefore fair game. If we allow infinite procrastinations in

refinements, we must allow infinite counterproductive procrastinations too.

This paradox is not an inconsistency between refinements and executions: the refinement

promises b′ at time∞ (after timing is added), and no operational observation will confirm or refute

it. It is unsettling not because of the near-miss refutation, but because of the lack of confirmation.

The real question is: what if a refinement promises delivery in finite time, does the execution still

confirm it? This will be answered in the affirmative in the next chapters.

2.6 Bibliographical Notes on Termination

For readers interested in termination schemes in programming theories, this section is an overview

of how most other predicative and relational programming theories have termination built in. These

theories also treat illegal operations (e.g., dividing by zero) like non-termination. They specify

(non-)termination and (il)legal operations in some of the following ways:

• Add a termination variable: pre-value says whether this program starts, and post-value says

whether this program finishes [18].

• Add a special element to the state space to stand for non-termination, and require every

specification to propagate non-termination from pre-state to post-state [7]. (Also Z when

proving refinements [39].) This is usually accompanied by the next:

• Use the convention that possible non-termination under a pre-state means that the pre-state

leads to all post-states of the state space (both terminating and non-terminating) [11, 7, 18].

(Also Z when proving refinements [39].)



Chapter 2. A Practical Theory of Programming 23

• Use the convention that non-termination under a pre-state means that the pre-state leads to

no post-state [24]. (Also Z when writing specifications [39].)

• In every specification, include a set or a condition to stand for a pre-condition for termination

[28, 18].

Accordingly, refinement and often sequential composition in these theories contain checks for

termination.

Besides predicative and relational theories, most other theories of imperative programming

have termination built into the semantics of iteration and recursion [5, 26, 25, 6, 3, 2].

Hehner and Malton have a further discussion of various termination schemes [17].



Chapter 3

Eager Execution

This chapter describes a simple operational semantics for eager execution and proves soundness of

eager timing: if a program refines an upper bound on recursive time, execution finishes within that

number of recursive calls.

3.1 Eager Operational Semantics

Our operational semantics is a small-step semantics with a high-level execution state, i.e., a col-

lection of rewrite rules over expressions that look like programs.

In more detail, our execution state is a sequential composition of programs, bindings, and right

projections (defined promptly). A binding stores memory variables and the time variable as a

conjunction of equations, each equation taking the form variable′=value. An example execution

state is

xs′=nil∧y′=0∧t′=0 . y:=y+1 . xs:=cons y xs

The binding on the left stores initial or current values. The use of variable′=value is just right

because sequential composition turns it into pre-value for the program that follows; this convention

gives our execution states both a predicative reading and an operational reading. The initial value

of the time variable is 0 here but can be an arbitrary finite number. The program to be executed is

(y:=y+1 . xs:=cons y xs).

An example of execution illustrates how the execution state evolves:

24



Chapter 3. Eager Execution 25

xs′=nil∧y′=0∧t′=0 . y:=y+1 . xs:=cons y xs

−→ 〈assignment rule (given below)〉

xs′=nil∧ y′=0+1∧ t′=0 . xs:=cons y xs

−→ 〈evaluation rule (given below)〉

xs′=nil∧y′=1∧t′=0 . xs:=cons y xs

−→ 〈assignment rule〉

xs′=cons 1 nil∧ y′=1∧ t′=0

and we stop now because the program has been completely “eaten”. The remaining binding has

the final answers.

A right projection is added by the execution rule for var v · P to mark where we can discard

local variables. We place this marker to the right of P because eager execution “eats” the program

from the left. This marker has also a specification-level meaning: when reading from left to right,

it projects the memory state space to omit v. We use the notation close v for a right projection for

local variable v, and close v,w for several local variables at once (here v and w). An example of

execution that contains var and introduces a right projection:

xs′=cons 1 nil∧ y′=1∧ t′=0 . (var v · v:=y+1 . y:=v)

−→ 〈local variable introduction rule (given below)〉

v′=v∧ xs′=cons 1 nil∧ y′=1∧ t′=0 . v:=y+1 . y:=v . close v

−→ 〈assignment〉

v′=1+1∧ xs′=cons 1 nil∧ y′=1∧ t′=0 . y:=v . close v

−→ 〈evaluation〉

v′=2∧ xs′=cons 1 nil∧ y′=1∧ t′=0 . y:=v . close v

−→ 〈assignment〉

v′=2∧ xs′=cons 1 nil∧ y′=2∧ t′=0 . close v

−→ 〈local variable elimination rule (given below)〉

xs′=cons 1 nil∧ y′=2∧ t′=0



Chapter 3. Eager Execution 26

and we stop now because the program has been completely “eaten”.

Here is the operational semantics. At the beginning, sequentially compose a binding on the left

of the program to store initial values, using m to stand for the memory variables:

m′=initial∧t′=0 . Main

To carry out an execution step, find the leftmost subprogram that matches one of the LHS’s of

the following rules (they are mutually exclusive), and apply the matching rule to the matching

subprogram. (The transition operator −→ has the same precedence as⇐.)

• Skip:

m′=a∧t′=at . ok

−→ m′=a∧t′=at

• Assignment: to help state the assignment rule, let us partition the memory variables m into

x and y, and assume the assignment statement to be x:=e.

x′=ax∧y′=ay∧t′=at . x:=e

−→ x′=(subst ax,ay,at for x,y,t in e)∧y′=ay∧t′=at

• Recursive call:

m′=a∧t′=at . t :=t+1 . Label

−→ m′=a∧ t′=at+1 . Body

given the refinement Label⇐Body

• Non-recursive call: Some calls are not recursive (e.g., a main program calling a helper just

once), and so they do not cost recursive time:

m′=a∧t′=at . Label

−→ m′=a∧t′=at . Body

given the refinement Label⇐Body



Chapter 3. Eager Execution 27

• Local variable introduction:

m′=a∧t′=at . (var v · P)

−→ v′=value∧m′=a∧t′=at . P . close v

where value is an arbitrarily chosen value of the correct data type.

Note: it may be necessary to perform a renaming on var v · P before using this rule, so as to

avoid name clashes with what’s already in m. Example:

v′=0∧x′=1∧t′=0 . (var v · v:=x . x:=v+1)

= 〈rename〉

v′=0∧x′=1∧t′=0 . (var w · w:=x . x:=w+1)

−→ 〈local variable introduction; arbitrarily choose 4 initially〉

w′=4∧v′=0∧x′=1∧t′=0 . w:=x . x:=w+1

• Local variable elimination:

v′=av∧m′=a∧t′=at . close v

−→ m′=a∧t′=at

• Scope:

m′=a∧t′=at . (scope v · P)

−→ m′=a∧t′=at . P

• Conditional branch step 1:

m′=a∧t′=at . if cond then P else Q

−→ if (subst a,at for m,t in cond) then (m′=a∧t′=at . P) else (m′=a∧t′=at . Q)



Chapter 3. Eager Execution 28

• Conditional branch step 2:

if > then P else Q

−→ P

if ⊥ then P else Q

−→ Q

• Case branch: Suppose the binding m′=a contains x′=tag e.

m′=a∧t′=at . case x of tag w→P | . . .

−→ w′=e∧m′=a∧t′=at . P . close w

It may be necessary to rename w to a fresh name, just like local variable introduction.

This generalizes to tags of other arities in the obvious way.

Expressions bindings are ready for evaluation after assignments; so is a branching condition after

conditional branch step 1. We use these simple evaluations:

• Primitive operations: evaluate when all necessary operands are literals, e.g.,

1+1

−→ 2

• Conditional expression: evaluate when the condition is a literal:

if > then e0 else e1

−→ e0

if ⊥ then e0 else e1

−→ e1



Chapter 3. Eager Execution 29

• Case analysis expression: evaluate when the argument has its tag exposed, e.g.,

case tag e0 of tag w→e1 | . . .

−→ (subst e0 for w in e1)

Execution stops when the binding is the only remaining part of the execution state and all

evaluations are finished.

We note a theorem on the relation between execution and refinement.

Theorem 3.1 Using σ to stand for all variables (both memory m and time t), if an execution state

(σ′=a . P) transits to state (σ′=b .Q) after some steps, then ∀σ′ · (σ′=a . P)⇐(σ′=b .Q).

2

This is obvious for most of the rules, with the exception of some technicality due to var and

scope. Because of var, σ′=a may have more variables than those after the end of P or Q; this

can be compensated by limiting ∀σ′ to the smaller state space at the end. Because the scope rule

eliminates the scope construct, we may have to put it back when stating ∀σ′·(σ′=a . P)⇐(σ′=b .Q).

3.2 Soundness Theorem

This section states and proves the soundness theorem that eager execution results agree with a

useful class of refinements, i.e., eager execution delivers the specified memory behaviour and time

bound. We first show some examples both covered and not covered by the theorem to introduce

the delineating conditions.

Examples not covered by the theorem:

Example 3.1 A specification that simplifies to ⊥ in some context, and then by logic P⇐⊥ vacu-

ously:

b∧b′∧t′=t ⇐ b:=⊥ . t :=t+1 . b∧b′∧t′=t

Execution will not terminate or deliver > as the post-value of b. The problem is that under certain

pre-values (b=⊥ in this example), no post-value satisfies the specification b∧b′∧t′=t, i.e., under



Chapter 3. Eager Execution 30

those pre-values, the specification simplifies to ⊥ regardless of post-values. When this happens,

indefinite procrastination is allowed, as the refinement is proved vacuously:

b:=⊥ . t :=t+1 . b∧b′∧t′=t

= 〈sequential composition, simplify〉

⊥∧ b′ ∧ t′=t+1

= 〈propositional logic〉

⊥

⇒ 〈propositional logic〉

b∧b′∧t′=t

We guard against this by requiring that all programs P involved must, for every pre-value, be

satisfiable by some post-value, and so are not vacuous: (∀σ · ∃σ′ · P). This requirement needs

further strengthening; see the next example.

2

Example 3.2 An ill time bound:

(x has type int)

t′=t+x ⇐ x:=x−1 . t :=t+1 . t′=t+x

Execution will not terminate, let alone meet the time bound (or go back in time!). The problem

here is that t′=t+x can dictate a time decrement (when x<0 here), which cancels with t :=t+1 for

the recursive call, and therefore the refinement can indefinitely procrastinate without being caught.

Therefore we require that every program P involved must, for every pre-value, be satisfiable by

some post-value that does not decrease time: (∀σ · ∃σ′ · P∧t′≥t). This condition is called imple-

mentable by Hehner [14, 15]. It suffices to establish this condition for non-compound programs

involved (assignment statements, specifications that are refined), since all compositions preserve

this condition.

2



Chapter 3. Eager Execution 31

Example 3.3 Lacking a time bound:

b′ ⇐ b:=⊥ . t :=t+1 . b′

Execution will not terminate or deliver > as the post-value of b. This is largely because no time

bound is specified, allowing indefinite procrastination. Therefore we require that the starting pro-

gram P (usually a specification that is refined) to be executed must specify a time bound, i.e., for a

suitable function nat-valued function f , (∀σ,σ′ ·P⇒ t′ ≤ t+ f σ) should hold. Execution will then

take at most f σ call steps. This condition will be relaxed for a reason explained by Example 3.5

below.

2

Examples covered by the theorem:

Example 3.4 A loop (tail-recursion) with completely specified behaviour:

(x has type int)

P ⇐ if x≤0 then ok else (x:=x−1 . t :=t+1 . P)

where P = x′=min 0 x ∧ t′ = t+max 0 x

2

Example 3.5 Behaviour specified with a precondition:

(x has type int)

P ⇐ if x=0 then ok else (x:=x−1 . t :=t+1 . P)

where P = x≥0⇒ x′=0∧ t′=t+x

It only specifies memory behaviour and time bound when the pre-value of x is non-negative. To

cover it in the soundness theorem, one condition must be relaxed: in ∀σ,σ′ · P⇒ t′ ≤ t+ f σ the

pre-value σ does not have to range over the full state space; it only needs to range over a suitable

subspace D, and the soundness theorem considers only executions beginning from pre-values in

D, i.e., executing (σ′=a . P) where a:D. The subspace for this example is those states satisfying

x≥0.

2



Chapter 3. Eager Execution 32

Example 3.6 Non-tail recursion and mutual recursion in a system of refinements:

(m and n have type nat)

P ⇐ if n=0 then ok else (n:=n−1 . t :=t+1 . Q . n:=n+1)

Q ⇐ if m=0 then ok else (m:=m−1 . t :=t+1 . P . m:=m+1)

where

P = m′=m∧ n′=n∧ t′=t+if n≤m then 2×n else 2×m+1

Q = m′=m∧ n′=n∧ t′=t+if m≤n then 2×m else 2×n+1

2

We now state the soundness theorem.

Theorem 3.2 Using σ to stand for all variables (memory m and time t), if in a system of refine-

ments,

1. every recursive call is composed with a time increment, i.e., calling S is (t :=t+1 . S )

2. every non-compound program P (assignment statements, labels) used in the refinements

satisfies (∀σ · ∃σ′ · P∧t′≥t) , i.e., is implementable

3. the starting program P satisfies (∀σ: D · ∀σ′ · P⇒ t′ ≤ t+ f σ), given state subspace D and a

nat-valued function f

then

• for each pre-value a:D where the time component is finite, (σ′=a . P) executes to some

σ′=b in at most f a call steps, and the pair of pre-value a and post-value b satisfies P as a

specification.

2

We first justify focusing on the number of recursive calls. We define a program’s size by its

number of ok’s, assignments, if’s, case’s, var’s, scope’s, and labels; we define the size of a set of

refinements by the sum of program sizes on the right hand side (the bodies). Each size unit except



Chapter 3. Eager Execution 33

labels takes at most 2 steps to consume (if takes two consecutive steps; var takes one step and

produces close, which takes one step later to consume, and so we count two steps and don’t count

close separately). Each label takes 1 call step and expands to more units to be executed, but every

cycle of calls contains at least a recursive call step, and so we attribute to n recursive calls at most

n+1 expansions, each by at most the size of the set of refinements. So we have

number of all steps

≤ 2×((start program size)+(1+number of recursive calls)×(size of the set of refinements))

We write P
n
−→ Q iff Q is a result of execution starting from P through at most n call steps

and unlimited other steps (although we now know their bound). The conclusion of the soundness

theorem can be written as:

• ∀a: D · ∃b · (σ′=a . P
f a
−→ σ′=b)∧(substitute a, b for σ, σ′ in P)

By Theorem 3.1, transitively we get

(σ′=a . P
n
−→ σ′=b) ⇒ ∀σ′ · (σ′=a . P)⇐σ′=b

We next prove an easy part of the conclusion: provided (σ′=a . P
n
−→ σ′=b), the part (substitute

a, b for σ, σ′ in P) holds:

(σ′=a . P
n
−→ σ′=b)

⇒ 〈above〉

∀σ′ · (σ′=a . P)⇐σ′=b

= 〈sequential composition, simplify〉

∀σ′ · (substitute a for σ in P)⇐σ′=b

= 〈predicate calculus〉

(substitute a, b for σ, σ′ in P)

So it remains to prove the (σ′=a . P
f a
−→ σ′=b) part.

In the proof, we will include premise 3, (∀σ: D·∀σ′·P⇒ t′ ≤ t+ f σ) for the starting program P,

as part of the formal expression to be proved, while leaving the other premises as mostly informal

context; so the formal expression is



Chapter 3. Eager Execution 34

(∀σ: D · ∀σ′ · P⇒ t′ ≤ t+ f σ)⇒∀a: D · ∃b · (σ′=a . P
f a
−→ σ′=b)

This expression is most suitable for induction on the time bound. Actually, for that induction to

work, we will prove a stronger expression (let at stand for the time component of initial value a):

(∀σ: D · ∀σ′ · P⇒ t′ ≤ t+ f σ)⇒∀a: D · ∃b · (σ′=a . P
f a
−→ σ′=b)

= 〈move ∀a outer〉

∀a: D · (∀σ: D · ∀σ′ · P⇒ t′ ≤ t+ f σ)⇒∃b · (σ′=a . P
f a
−→ σ′=b)

⇐ 〈specialize σ to a; (subst σ for a in P)=(σ′=a . P);

let at stand for the time component of initial value a〉

∀a: D · (∀σ′ · (σ′=a . P)⇒ t′ ≤ at+ f a)⇒∃b · (σ′=a . P
f a
−→ σ′=b)

⇐ 〈D no longer essential, generalize to the full state space〉

∀a · (∀σ′ · (σ′=a . P)⇒ t′ ≤ at+ f a)⇒∃b · (σ′=a . P
f a
−→ σ′=b)

⇐ 〈generalize f a to arbitrary n:nat for induction〉

∀n: nat · ∀a · (∀σ′ · (σ′=a . P)⇒ t′≤at+n)⇒∃b · (σ′=a . P
n
−→ σ′=b)

⇐ 〈generalize P to all implementable programs, will help the proof〉

∀n: nat · ∀P, a · (∀σ′ · (σ′=a . P)⇒ t′≤at+n)⇒∃b · (σ′=a . P
n
−→ σ′=b)

The latter is proved by induction on n:

• Base case. Assume (∀σ′ · (σ′=a . P)⇒ t′≤at+0) (where at stands for the time component of

a). We just need to show that execution does not hit a recursive call, i.e.,

σ′=a . P
0
−→ σ′=b . t :=t+1 . Label . More

does not happen. Then σ′=a . P
0
−→ σ′=b is the only remaining possibility.

(σ′=a . P
0
−→ σ′=b . t :=t+1 . Label . More)

⇒ 〈Theorem 3.1; assumption〉

∀σ′ · (σ′=b . t :=t+1 . Label . More)⇒ t′≤at+0



Chapter 3. Eager Execution 35

= 〈de Morgan and variations〉

¬(∃σ′ · (σ′=b . t :=t+1 . Label . More)∧t′>at)

= 〈at finite〉

¬(∃σ′ · (σ′=b . t :=t+1 . Label . More)∧ t′≥at+1)

= 〈split σ′=b into m′=bm∧t′=at; the time component of b is at too〉

¬(∃σ′ · (m′=bm∧t′=at . t :=t+1 . Label . More)∧ t′≥at+1)

= 〈simplify first sequential composition〉

¬(∃σ′ · (m′=bm∧ t′=at+1 . Label . More)∧ t′≥at+1)

⇒ 〈generalize bm, at+1 to “all σ”〉

¬(∀σ · ∃σ′ · (Label .More)∧t′≥t)

= 〈Label and More are implementable (premise 2)〉

⊥

• Induction step. The induction hypothesis is

∀P, a · (∀σ′ · (σ′=a . P)⇒ t′≤at+n)⇒∃b · (σ′=a . P
n
−→ σ′=b)

(where at stands for the time component of a). Given P and a, we assume

∀σ′ · (σ′=a . P)⇒ t′≤at+n+1

and prove ∃b · (σ′=a . P
n+1
−→ σ′=b) .

If σ′=a . P
0
−→ σ′=b without recursive calls, we are done. Otherwise, we hit a state that

uses the recursive call rule. The execution up to the recursive call can be summarized below,

with σ′=a split up as t′=at∧m′=am :

t′=at∧m′=am . P

0
−→ 〈after some steps except recursive call〉

t′=at∧m′=c . t :=t+1 . Label . More



Chapter 3. Eager Execution 36

1
−→ 〈recursive call, with refinement Label⇐Body〉

t′=at+1∧m′=c . Body . More

and it remains to prove ∃b · (t′=at+1∧m′=c . Body . More
n
−→ σ′=b) :

∃b · (t′=at+1∧m′=c . Body . More
n
−→ σ′=b)

⇐ 〈instantiate induction hypothesis: P to Body .More,

a to time part at+1, memory part c〉

∀σ′ · (t′=at+1∧m′=c . Body . More)⇒ t′≤at+1+n

⇐ 〈the execution t′=at∧m′=am . P
1
−→ t′=at+1∧m′=c . Body . More above;

Theorem 3.1;⇐ transitive〉

∀σ′ · (t′=at∧m′=am . P)⇒ t′≤at+n+1

= 〈t′=at∧m′=am = σ′=a; assumption〉

>

This concludes the proof.

In the proof of Theorem 3.2, the implication

(∀σ′ · (σ′=a . P)⇒ t′≤at+n)⇒∃b · (σ′=a . P
n
−→ σ′=b)

cannot be strengthened further to an equivalence because P may underestimate the actual cost of

the refinement, e.g.,

t′≤t+10 ⇐ ok

In the logical sense, while the antecedent is not a necessary condition, it is sharp. In a broader

sense, the condition is necessary: if it is false, there is a refinement of P (not necessarily the given

one) that takes more than n recursive calls to execute.

3.3 Bootstrapping of Implementability

To obtain the blessing of the soundness theorem, one must first prove the implementability of the

specifications involved, i.e., prove a theorem of the form



Chapter 3. Eager Execution 37

∀σ · ∃σ′ · S ∧t′≥t

Often, it calls for a constructive proof, which is a program for S , which is a set of refinements,

which begs the soundness question, which requires one to prove implementability

∀σ · ∃σ′ · S ∧t′≥t

which calls for a constructive proof. . .

We now describe how to break this cycle in practical cases. For ease of discussion and without

loss of generality, assume the refinement in question is

S ⇐ . . . t :=t+1 . S . . .

Usually S can be factored as M∧C, where M focuses on the final answer in the memory variables

and C focuses on the time bound (may also contain a helper invariant on the memory variables,

weaker than what M specifies), and the following refinements can be proved (replacing S by M

and by C):

M ⇐ . . . t :=t+1 . M . . .

C ⇐ . . . t :=t+1 . C . . .

The implementability of C is easy to prove by design because this holds for most time bounds

and helper invariants in practice, and we use C for bootstrapping. By the soundness theorem,

execution using C as the label terminates in the promised time and has a final answer. But it is the

same execution and the same refinement scheme using M or even M∧C as the label, and so we

know M∧C has a final answer too:

∀σ · ∃σ′ · M∧C

Lastly, because M is supposed to leave final time open (only C specifies final time), C is imple-

mentable, and the helper invariant in C is implied by M, we conclude

∀σ · ∃σ′ · M∧C∧t′≥t

So S is implementable, and the refinement for S is sound.



Chapter 3. Eager Execution 38

3.4 Related Work

Here are some theories of predicative programming and vicinity that come with operational seman-

tics. A Practical Theory of Programming shows an example of what a compiler may do, and later

states soundness without proof [14]. Unifying Theories of Programming contains a predicative

theory and shows its correspondence to a rewriting operational semantics [18], which maintains

the memory store and the program in a tuple. Call-by-value functional programming, which is

deterministic predicative programming with just initial and final values and a restricted specifica-

tion form (final value = function of initial value), has a time calculus in the same spirit as adding

t :=t+1 for recursive calls, with a soundess proof using the call-by-value lambda calculus, with a

small technical gap concerning errors such as asking for the head of an empty list [31]. (Our use

of unrestricted specifications liberates our scheme from the trap of such error states—just add a

precondition!) The Refinement Calculus of Back and von Wright uses two-person games [3]. The

theory of the guarded command language and weakest preconditions uses an informal operational

semantics [6].

Our operational semantics is closest to that in Unifying Theories of Programming of Hoare and

He above, but we go one step further: we keep the memory store in specification form and fuse it

with the program. This style makes the relation between execution and refinement more seamless,

and it also makes our lazy operational semantics more seamless in Chapter 5, which will need

more memory stores at more locations.



Chapter 4

Lazy Timing

As noted in Chapter 2, a theory of programming can be given a timing discipline corresponding to

a supposed execution strategy, and Section 2.4 gives the timing discipline corresponding to eager

execution. This chapter gives a different one: that to lazy execution. It can be used to prove

time bounds of program executions without referring to the operational semantics and without a

whole-program analysis.

4.1 Representing Demand: Usage Variables

To account for running time (lazy evaluation or not), we introduce the time variable t as in Sec-

tion 2.4 for recursive time. And under lazy execution, program execution time depends on which

post-values are demanded (among other things), and so we need extra variables to stand for that in-

formation (to be mentioned in time bound formulas). The program itself represents how demands

on post-values lead to demands on pre-values, and so we also need extra variables to stand for that.

For example, let the memory variable have pre-value m and post-value m′. Let the demand on m′

be um′, which tells whether the post-value m′ is needed either as final output or as input to a subse-

quent computation; let the demand on m be um, which tells whether the pre-value m is needed for

this computation. Then a typical specification for some computation on m, with demand and time,

goes like

m′= f m ∧ um=F um′ ∧ t′ = t+ft m um′

39



Chapter 4. Lazy Timing 40

(t′ = t+ft m um′ is elaborated at the end of this section after explaining the type and values of um′.

um=F um′ is elaborated in the next section.)

We need to mention demands on pre-values because, through sequential composition, they

become demands on post-values of a preceding program, which are obviously needed for the time

bound of the preceding program, and ultimately of the whole program. For example,

m′=g m ∧ um=G um′ ∧ t′ = t+gt m um′ . m′= f m ∧ um=F um′ ∧ t′ = t+ft m um′

= 〈sequential composition〉

∃m′′, t′′, um′′ · m′′=g m ∧ um=G um′′ ∧ t′′ = t+gt m um′′

∧ m′= f m′′ ∧ um′′=F um′ ∧ t′ = t′′+ft m′′ um′

= 〈predicate calculus〉

m′= f (g m) ∧ um=G (F um′) ∧ t′ = t+gt m (F um′)+ft (g m) um′

Our use of sequential composition to complete the demand pathway justifies the designation um′

for the demand on m′ and similarly um for m. Henceforth we refer to the pair as a usage variable,

and consider it to be analogous to memory variables and the time variable in the aspect that it comes

with a “pre”-value um and a “post”-value um′. The only peculiarity is that demand information

flows from um′ to um for usage variables, whereas data flows from m to m′ for memory variables;

however, information flow direction is absent at the predicative level (it belongs to the operational

level).

Next, we designate the data types of usage variables and the representation of demand infor-

mation. In simple cases, a memory variable holds data of a primitive type such as a boolean, an

integer, or a character; accordingly, its value is either used or unused, and so the corresponding

usage variable can be a boolean. Similarly, a memory variable of an array type can have a usage

variable of the boolean array type. However, this scheme does not generalize, and we will not use

it.

Richer usage representations than the booleans are needed for lazy algebraic data types. Alge-

braic data types are described in Section 2.1.4; to recapitulate, they are disjoint unions of cartesian

products, and recursion is allowed. For example, the type iclist of cons-lists of int is formed by the

disjoint union of



Chapter 4. Lazy Timing 41

• a singleton (an empty product) for the empty list, with tag nil

• the product of int and iclist, with tag cons

We write values of algebraic data types as curried function applications of tag names to component

values, such as cons 3 (cons 1 nil).

A lazy algebraic data type further stipulates that the disjoint union and the components can be

used or unused to various degrees. To elaborate, for iclist described above, a list could be unused

altogether, or used just to the point of resolving nil vs cons; in the cons case, the int component

could be used or unused, and the list component is the same story all over again. As a concrete

example, the list cons 1 nil admits the following degrees of usage:

• unused

• resolved to cons, both components unused

• resolved to cons, the 1 is used, the list component is unused

• resolved to cons, the 1 is unused, the list component is resolved to nil

• resolved to cons, the 1 is used, the list component is resolved to nil

The list cons 3 (cons 1 nil) admits the following degrees of usage, altogether 11 possibilities, coarsely

enumerated here for brevity:

• unused

• resolved to cons, the 3 is unused, the list component is any of the above for cons 1 nil

• resolved to cons, the 3 is used, the list component is any of the above for cons 1 nil

To represent all possibilities of partial usage of lazy algebraic data values, the usage type needs

to mimick the type concerned. We adopt the following slightly redundant scheme for ease of

statement based on reuse of well-known mathematics. Borrowing from denotational semantics,

domain theory, and context analysis [37], we correspond each data type to an extended type: add

one special value (traditionally thought of as “no information”), and replace component types by



Chapter 4. Lazy Timing 42

corresponding extended types. We use the symbol “�” for the special value. (The “⊥” symbol has

already been taken for the boolean “false”.) To illustrate, extended int is int together with “�”, and

extended iclist is the disjoint union of:

• �

• a singleton (an empty product) for the empty list, with tag as nil

• the product of extended int and extended iclist, with tag cons

In these extended types, partial values are possible, such as:

• �

• cons��

• cons 1�

• cons� nil

• cons 1 nil

Note how these incomplete values nicely express all of the different degrees of usage of cons 1 nil.

Therefore, we adopt extended types for usage variables: A component value unused is represented

by �, while a component value used is represented by its actual data value. We emphasize that

we do not adopt extended types for memory data variables. We do exactly this: given the data

type (unextended) of a memory variable, the corresponding usage variable has the corresponding

extended type.

Up to this point, a usage variable may take on invalid values, and what constitutes invalid

usage values depends on the data value of the corresponding memory variable. If the data value is

cons 1 nil, then invalid usage values are nil, cons 0�, cons� (cons��), and many more. We need

to constrain valid usage values by data values at every point in the program. Still borrowing from

denotational semantics, domain theory, and context analysis [37], we define a partial order v (same

precedence as = and traditionally thought of as “information order”):

• for extended value e, �ve



Chapter 4. Lazy Timing 43

• for unextended primitive value x (e.g., a number, a boolean), xvx

• for extended algebraic values tag x1 . . . xn and tag y1 . . . yn of the same tag, compare compo-

nentwise, i.e.,

tag x1 . . . xn v tag y1 . . . yn⇐ x1vy1 ∧ . . .∧ xnvyn

this also works for 0-ary tags, for example nilvnil

• co-induction over the above (induction does not suffice: under induction, the infinite cons-list

of �’s is not v the infinite cons-list of 1’s)

The constraint on a usage variable um, given its memory variable m, is then umvm. We stipu-

late this as an invariant on all programs. More precisely, we stipulate the healthiness condition

um′vm′⇒umvm, so that a program represents how a valid demand on post-values leads to a valid

demand on pre-values. In practice, it is already satisfied by careful definition of programming

constructs, and so programmers seldom need to express or verify it explicitly.

The existence of domains for these extended values (technically non-trivial for recursively

defined algebraic data types) and their order-theoretic properties are established by Smyth and

Plotkin [35]. (Existence alone is established earlier by Scott [33], but we need much stronger

properties here.) Below are the properties we will use:

• binary least upper bound xty exists if there is an upper bound, i.e., ∃z · xvz∧yvz, e.g., we

usually have complete values as upper bounds

• greatest lower bound over a non-empty set exists

We can now express time bounds with usage variables. Starting with primitive types again, if

x is a primitive type memory variable, and we want to say that the time cost is 1 if x′ is used, and

0 otherwise, then we can write one of the following:

t′=t+if ux′=� then 0 else 1

t′=t+if ux′=x′ then 1 else 0



Chapter 4. Lazy Timing 44

For lazy algebraic data types, again taking cons-lists for example, if xs is a cons-list memory

variable, and we want to say that the time cost is the number of cons cells used (count 0 for both

nil and �), then we define mathematically ulen for this count:

ulen�= 0

ulen nil = 0

ulen (cons h r) = 1+ulen r

and then we can specify

t′ = t+ulen uxs′

4.2 Propagating Demand: Usage Transformation

For each program, we need to derive and augment how it transforms post-usage to pre-usage, since

this is required for calculating the result of sequential compositions and composed times. We

show how to transform usage for basic programming constructs, which is mechanical. There is

no mechanical method for deriving usage transformation of arbitrary specifications, just as there is

no mechanical method for writing specifications, being products of negotiation between user wish

and programmer wish (pre-usage can be wished upon rather than derived, too); however, we do

suggest a guiding principle for writing arbitrary usage transformations, generalizing from those for

basic programming constructs.

4.2.1 Assignments without Operations

We begin with ok. Suppose the memory variables are x and y; then ok was x′=x∧y′=y∧t′=t before

we had usage variables. So how x is used is exactly how x′ is used, and similarly for y and y′. We

formalize this usage transformation as:

x′=x∧y′=y∧t′=t∧ux=ux′∧uy=uy′

It fits the spirit of ok, which is “post-values equal pre-values”. We now re-define ok to add usage

as



Chapter 4. Lazy Timing 45

ok = x′=x∧y′=y∧t′=t∧ux=ux′∧uy=uy′

Henceforth, ok does not need explicit usage transformation because it already contains the neces-

sary ux=ux′∧uy=uy′.

Assignment statements without operations come in two flavours: from constant literal c in x:=c

and from variable y in x:=y.

In the constant case, x:=c expanded to x′=c∧y′=y∧t′=t before we had usage variables. So x is

unused, while how y is used is exactly how y′ is used. We add this usage transformation as:

x′=c∧y′=y∧t′=t∧ux=�∧uy=uy′

To express this in program notation, we re-define assignment statements to include usage variables:

x:=e = x′=e∧y′=y∧t′=t∧ux=ux′∧uy=uy′

where e is an expression

We don’t put or hide usage transformation in the definition of assignment statements; this is in

line with the spirit of “changing” just one variable and preserving the rest. Setting ux and uy is

separated into the next definition, backward assignment for usage variables:

ux=:e = x′=x∧y′=y∧t′=t∧ux=e∧uy=uy′

where e is an expression

Sequentially composing assignments and backward assignments gives us a program notation to

express both memory changes and usage changes:

x′=c∧y′=y∧t′=t∧ux=�∧uy=uy′

= ux=:� . x:=c

The order of composition is not important in this case. (In other cases, putting usage assignments

first is advantageous.)

In the case of x:=y, this expanded to x′=y∧y′=y∧t′=t before we had usage variables. This time,

x is unused, but the use of y is a combination of the use of x′ and the use of y′, in the sense that a part



Chapter 4. Lazy Timing 46

of y is used iff that part is required by ux′ or by uy′, which is formalized by the least upper bound

operator t (precedence below + and above =, v), e.g., �t2=2, cons� niltcons 3�= cons 3 nil.

We add this usage transformation as:

x′=y∧ y′=y∧ t′=t∧ ux=�∧ uy=uy′tux′

= ux=:� . uy=:uy′tux′ . x:=y

For backward assignment statements, we expect e to not use usage pre-values; it can use usage

post-values and memory values (pre or post), for example uy′tux′. There are some useful theorems

on backward assignment, analogous to those for forward assignment:

• 4.2.1-assignment-after:

P . u=:e = (substitute e′ for u′ in P)

provided e does not mention u

where e′ means substituting all pre-values by post-values (memory, time, usage) in e

• 4.2.1-engulf-assignment:

u=:e . b⇒P ⇒ b⇒(u=:e . P)

provided b does not mention u

4.2.2 Operations on Primitive Data

Next, we discuss operations on primitive types, beginning with strict operations, i.e., those that

unconditionally use all operands. These are one coherent class to treat because usage for primitive

types is completely specified by the dichotomy “used” and “unused”. To be concrete, suppose the

memory variables are x:int and y:int, and we consider x:=x+y. We take the + operation to behave

such that if its result is used, both operands are used (we say that + is strict in both operands). If x′

is used, x and y are used; if y′ is used, y is used; otherwise, x and y are unused. Turning it around,

x is used iff x′ is used, and y is used iff x′ or y′ is used. This can be expressed as:

ux=:(if ux′=� then � else x) . uy=:uy′t(if ux′=� then � else y) . x:=x+y

The order is only important insofar as feeding the correct version of x and y into the two backward

assignments.



Chapter 4. Lazy Timing 47

The clumsy expression is due to using incomplete values rather than booleans for usage (e.g.,

with booleans, we could have written uy=:uy′∨ux′), but this will buy us simpler expressions when

it comes to operations on lazy algebraic types. The clumsiness is also mitigated by defining the

commonly used:

u�e = if u=� then � else e

(u1, . . ., un)�e = if u1=�∧ . . .∧un=� then � else e

(Precedence of � is below t and above =.) Then we can rewrite the program with usage as:

ux=:ux′�x . uy=:uy′t(ux′�y) . x:=x+y

If the assignment assigns to x but does not use x as an operand, for example x:=y+y, then the

usage of y is as in the above, and the usage of x is just ux=:�. In full,

ux=:� . uy=:uy′t(ux′�y) . x:=y+y

In general, to add usage transformation to x:=e , where e is strict in all operands, and all

operands and the result are of primitive types:

• if x is an operand within e, add ux=:ux′�x; if not, add ux=:�

• if memory variable y other than x is an operand within e, add uy=:uy′t(ux′�y)

• other memory variables and their usage variables do not need explicit treatment—all they

need is a form of u=:u′, which is already implicit in both forward assignments and the above

backward assignments

(“add” means sequentially compose before x:=e; this order is chosen so that the backward assign-

ment statements can depend on memory pre-values).

Some basic operations on some primitive types are conditionally strict, in particular short-

circuit boolean operators. For example, with short-circuit ∧, b∧c uses b, and it uses c iff b evaluates

to >. Usage transformation adds conditionals to the above formulas, e.g., whereas previously we

choose ux=:ux′�x or ux=:� statically, now we let a “run-time” test choose:



Chapter 4. Lazy Timing 48

• if x is an operand and cx is the condition for strictness in x, add

ux=:if cx then ux′�x else �

• if memory variable y other than x is an operand and cy is the condition for strictness in y,

add

uy=:uy′tif cy then ux′�y else �

Here are some typical examples with short-circuit ∧ :

• ub=:ub′�b . uc=:uc′t(if b then ub′�c else �) . b:=b∧c

• ub=:ub′t(uc′�b) . uc=:(if b then uc′�c else �) . c:=b∧c

• ua=:� . ub=:ub′t(ua′�b) . uc=:uc′t(if b then ua′�c else �) . a:=b∧c

4.2.3 Constructions of Algebraic Data

For lazy algebraic data types, there are two basic operations: construction and case analysis. This

subsection treats construction, and the next subsection treats case analysis. We use cons-lists for

example again before generalizing. Construction means building an algebraic data value using tags

and storing it in a memory variable, such as xs:=nil and xs:=cons x xs.

Suppose the memory variables are y and xs, with xs of the cons-list type (y may be of a primitive

type or a lazy algebraic type). Usage transformation for xs:=nil is easy:

uxs=:� . xs:=nil

For xs:=cons y xs, the pre-value of xs is the tail of the post-value xs′, and so is their usage: the

extent of using the tail of xs′ becomes the extent of using xs, or else both are unused; the use of

pre-value y combines the use of post-value y′ and the use of the head of xs′. For convenience, we

first define head and tail mathematically:

head �=�

head nil =� (not used here but useful elsewhere)

head (cons h r)=h



Chapter 4. Lazy Timing 49

tail�=�

tail nil =� (not used here but useful elsewhere)

tail (cons h r) = r

Then usage transformation added to xs:=cons x xs can be expressed as:

uxs=:tail uxs′ . ux =: ux′thead uxs′ . xs:=cons x xs

(head nil and tail nil do not happen here under the assumption uxs′vxs′.)

Generally for a construction assignment statement xs:=tag x1 . . . xn, first define untagi to select

the ith component of tag, or to return � if inapplicable:

untagi (tag . . . ui . . .) = ui

untagi u =� otherwise (including when u=�)

then we add usage transformations as:

• if xs is the ith operand, add uxs=:untagi uxs′; if not, add uxs=:�

• if memory variable y other than xs is the ith operand, add uy =: uy′tuntagi uxs′

Although untagi would make no sense for a 0-ary tag such as nil, the above can still be adopted for

xs:=nil by noting that no variable is an operand, and so the above just adds uxs=:� and spares us

the question of unnil.

4.2.4 Case Analyses of Algebraic Data

For algebraic data types, case analysis means conditional branching based on tags, and in addi-

tion introducing local names (similar to lambda-bound names) to refer to component values, for

example:

x:=case xs of nil→0 | cons h r→h+1

xs:=case xs of nil→nil | cons h r→r



Chapter 4. Lazy Timing 50

(This subsection covers case analysis at the expression level. Case analysis can also be at the

program statement level, e.g., case xs of nil→(x:=0) | cons h r→(y:=0). The program statement

level is covered in Section 4.2.7.)

For case analysis such as x:=case xs of nil→e0 | cons h r→e1, if x′ is used to some degree

(ux′,�), the usage of xs must be enough to discern its tag (nil vs cons), and possibly more accord-

ing to e0, e1, and uxs′. Other memory variables m are also used according to e0, e1, and um′. Take

for a concrete example x:=case xs of nil→y | cons h r→x+h :

• In the nil case, it is as though we had x:=y, which would receive the annotation

ux=:� . uy=:uy′tux′ . uxs=:uxs′

In addition, if x′ is used to some degree, then xs is used as much as to find that it is nil, so

the annotation is increased to

ux=:� . uy=:uy′tux′ . uxs=:uxs′t(ux′�nil)

• In the cons case, it is as though we had x:=x+h, which would receive the annotation (treating

h as a constant for a moment)

ux=:ux′�x . uxs=:uxs′

In addition, if x′ is used to some degree, then xs is used further in two ways. Firstly, it is then

used as much as to find that it is cons:

ux=:ux′�x . uxs=:uxs′t(ux′�cons��)

Secondly, h is part of xs, and now is time to account for its usage due to x:=x+h. If h

were a memory variable (though it is a local constant), its usage would be annotated as

uh=:uh′t(ux′�h). From this we deduce that the corresponding component of cons has

usage ux′�h:

ux=:ux′�x . uxs=:uxs′t(ux′�cons (ux′�h)�)

This example can be simplified to

ux=:ux′�x . uxs=:uxs′t(ux′�cons h�)

The annotated assignment statement is therefore:

ux=:case xs of nil→� | cons h r→ux′�x .



Chapter 4. Lazy Timing 51

uy=:case xs of nil→uy′tux′ | cons h r→uy′ .

uxs=:case xs of nil→uxs′t(ux′�nil) | cons h r→uxs′t(ux′�cons h�) .

x:=case xs of nil→y | cons h r→x+h

More generally, for v:=case xs of nil→e0 | cons h r→e1, where v may or may not be xs:

• for memory variables m other than xs (such as v, x, y), add

um=:case xs of nil→(usage of m in v:=e0)

| cons h r→(usage of m in v:=e1)

• for xs, add

uxs=:case xs of nil→(usage of xs in v:=e0)t(uv′�nil)

| cons h r→(usage of xs in v:=e1)t(uv′�cons hu ru)

where hu and ru are usages of h and r respectively in v:=e1. To determine hu, suppose h

were a memory variable (though it is a local constant), then its usage annotation due to v:=e1

should look like uh=:uh′thu, from which we can extract hu. Similarly for r.

This works even if xs is the variable assigned to and an operand in e0 or e1, for example

xs:=case xs of nil→nil | cons h r→cons 1 xs

is annotated by

uxs=:case xs of nil→(usage of xs in xs:=nil)t(uxs′�nil)

| cons h r→(usage of xs in xs:=cons 1 xs)t(uxs′�cons hu ru)

= uxs=:case xs of nil→uxs′�nil

| cons h r→ tail uxs′t(uxs′�cons��)

Generalizing to other lazy algebraic types is straightforward.



Chapter 4. Lazy Timing 52

4.2.5 Conditional Expressions

This subsection covers assignments that use if-then-else expressions such as

x:=if y=0 then 1 else 2×y

(Conditional statements such as

if y=0 then x:=1 else x:=2×y

are treated in Section 4.2.7.)

In x:=if y=0 then e0 else e1, if x′ is used to some degree (ux′,�), then y is used as much

as to determine whether y=0 is > or ⊥, and in addition according to e0, e1, and uy′. Other

memory variables m are also used according to e0, e1, and um′. Using the concrete example

x:=if y=0 then 1 else 2×y:

• For x, one case is as though we had x:=1, and the other case is as though we had x:=2×y:

ux=:if y=0 then � else �

which can be simplified to

ux=:�

• For y, one case is as though we had x:=1, and the other case is as though we had x:=2×y:

uy=:if y=0 then uy′ else uy′t(ux′�y)

In addition, if x′ is used to some degree, then y is used as much as to compute y=0, so this

must be increased by ux′�y

uy=:(ux′�y)t(if y=0 then uy′ else uy′t(ux′�y))

which can be simplified to

uy=:(ux′�y)tuy′

The annotated assignment statement is therefore

ux=:� . uy=:(ux′�y)tuy′ . x:=if y=0 then 1 else 2×y

Other examples may be less simplifiable.

In general, v:=if e then e0 else e1 is annotated this way: each memory variable m (including

v) receives



Chapter 4. Lazy Timing 53

um=: (uv′�(usage of m in e))

t (if e then (usage of m in v:=e0) else (usage of m in v:=e1))

Ordering of these usage assignments may be important so that each receives the intended value of

uv′; usually the assignment for uv should be left-most.

Usage of m in e can be calculated this way: Image a new memory variable b and the assignment

b:=e, which would be annotated like um=:um′t(ub′�stuff ), and the answer is stuff (extracted

by asserting ub′,� and um′=�). Checking this with the previous example, b:=(y=0) would be

annotated by uy:=uy′t(ub′�y), from which y is extracted.

Here are three more examples:

Example 4.1 x:=if y=0 then 1 else x+2

after annotation is

ux=:if y=0 then � else ux′�x .

uy=:(ux′�y)t(if y=0 then uy′ else uy′) .

x:=if y=0 then 1 else x+2

which can be simplified to

ux=:if y=0 then � else ux′�x .

uy=:(ux′�y)tuy′ .

x:=if y=0 then 1 else x+2

2

Example 4.2 x:=if x=0 then y else x+2

after annotation is

ux=:(ux′�x)t(if x=0 then � else ux′�x) .

uy=:if x=0 then uy′tux′ else uy′ .

x:=if x=0 then y else x+2



Chapter 4. Lazy Timing 54

which can be simplified to

ux=:ux′�x .

uy=:if x=0 then uy′tux′ else uy′ .

x:=if x=0 then y else x+2

2

Example 4.3 In this example, the condition may use one part of the list in xs, and the rest of the

assignment may use other parts.

xs:=if 0=(case xs of nil→0 | cons h r→h) then xs

else case xs of nil→nil | cons h r→r

Doing it slowly, we need to determine usage in the condition, in xs:=xs, and in

xs:=case xs of nil→nil | cons h r→r.

Usage of xs in the condition is

uxs′�case xs of nil→nil | cons h r→cons h�.

Usage of xs in xs:=xs is uxs′.

Usage of xs in xs:=case xs of nil→nil | cons h r→r is

case xs of nil→uxs′�nil | cons h r→ uxs′�cons� uxs′.

Therefore, the complete annotation is

uxs=: (uxs′�case xs of nil→nil | cons h r→cons h�)

t (if 0=(case xs of nil→0 | cons h r→h) then uxs′

else case xs of nil→uxs′�nil | cons h r→ uxs′�cons� uxs′) .

xs:=if 0=(case xs of nil→0 | cons h r→h) then xs

else case xs of nil→nil | cons h r→r

which can be somewhat simplified to

uxs=:uxs′�(case xs of nil→nil

| cons h r→if 0=h



Chapter 4. Lazy Timing 55

then cons h�tuxs′

else cons h uxs′) .

xs:=if 0=(case xs of nil→0 | cons h r→h) then xs

else case xs of nil→nil | cons h r→r

2

4.2.6 General Principle

There is a general principle of usage transformation underlying the above basic operations, which

can help design or even derive usage transformation in all cases. We begin by recalling that in

algebraic data constructions, where the operation is cons, the usage transformation consists of the

two inverses, head and tail. Primitive operations can also be seen in this light with a relaxed sense

of inverse, e.g., where the operation is x+y, the usage transformation seems to be inverting x+y

back into its operands x and y. This pattern is much less obvious but still present in algebraic data

case analyses. It seems that where the operation is x:= f x y, the usage transformation inverts it, so

that ux′= f ux uy (relaxed to ux′v f ux uy for reasons explained below).

This principle arises from the following consideration. In an operation x:= f x y (which con-

tains x′= f x y∧ y′=y), f is not only mathematically defined but also computationally postulated

with operand usage (by our wish or by computer specification). For example we postulate:

• f x y=x+y uses both operands completely

• f x y=cons x y itself does not use its operands at all (all uses come from external demands)

• f x y=(case x of nil→> | cons h t→⊥) uses x only as much as telling its tag and does not use

y at all

• f x y=(case x of nil→0 | cons h t→h+1) uses x to tell its tag, and in the cons case the first

component completely for +

We formalize these postulates by extending f or its underlying operations (e.g., +, cons, case) to

take incomplete value parameters and return possibly incomplete value answers. To express how



Chapter 4. Lazy Timing 56

much an operation uses an operand, we add a definition expressing that the operation returns �

when an incomplete operand lacks what it uses (but otherwise works fine). To formalize the above

examples:

• �+y=�∧ x+�=�∧�+�=� (the last conjunct is redundant if we allow x and y to stand for

incomplete values too)

• cons: no further definitions: operands are unused

• (case � of nil→e0 | cons h t→e1)=�

• (case cons� nil of nil→0 | cons h t→h+1)=�

(this does not need to be postulated independently; it just combines ordinary case analysis

and �+y=�)

Extending f this way enables the following formalization. When deriving usage transforma-

tion, we seek usage pre-values ux and uy that are sufficient and necessary to supply what f uses to

produce as much non-� parts as in ux′. That is, sufficiency means that ux and uy are large enough

so that f ux uy is in turn large enough compared to ux′, i.e., ux′v f ux uy; necessity means that ux

and uy are the smallest under sufficiency. (Necessity can be formalized with fairly little gain, so

we keep it as an informal side condition.)

Note that usually sufficiency and necessity do not combine to ux′= f ux uy for reasons such as:

• with x′=cons x y, sufficiency is ux′vcons ux uy; we can have ux′=�, so ux′<cons ux uy

• with x′=x+y∧ y′=y, sufficiency is ux′vux+uy∧ uy′vuy; we can have ux′=5 forcing uy,�,

and uy′=� so uy′<uy

4.2.7 Branching

In this subsection, we treat branching statements (if-then-else and case-of) at the program level, as

control-flow constructs that select from alternative programs, rather than as expressions in assign-

ment statements. For two examples:



Chapter 4. Lazy Timing 57

if y=0 then x:=0 else y:=0

case xs of nil→(z:=0) | cons h r→(y:=y+h . xs:=r)

These pose several possible degrees of laziness, of which some important choices are:

• High precision and laziness: knowing the precise usage information of the branches, if all

mentioned memory variables are unused (but other variables may be used), execution skips

evaluating the branching condition and selecting one branch. Using the if-then-else example

above, if x′ and y′ are unused and a third variable z′ is used, the condition y=0 is unevaluated,

since a precise analysis determines that neither x:=0 nor y:=0 affects z′ or other post-values.

• Speculative execution: concurrently execute both branches; only when their results are sig-

nificantly different (the difference affects the demanded parts), evaluate the branching con-

dition.

• Low precision and laziness: not knowing the precise usage information of the branches, ex-

ecution plays safe by evaluating the branching condition and selecting one branch whenever

any memory variable (post-value) in scope is used; skipping happens only when all vari-

ables in scope are unused. Using again the if-then-else example above, if z′ is used, then

even though x′ and y′ are unused and neither branch affects z′, y=0 is still evaluated to select

a branch. This reflects the choice that the compiler or interpreter does not bother to analyze

the branches, which may be difficult to analyze if they contain recursive calls.

In this thesis, we adopt the latter, which is also the choice of programming languages such as

Haskell. We note that other choices could be achieved with aggressive analyses and/or programmer-

provided information, with corresponding usage annotation and operational semantics.

Our choice implies that branching statements are less lazy than equivalent assignments using

branching expressions. Take the following pair for example:

if y=0 then x:=0 else x:=1

x:=if y=0 then 0 else 1



Chapter 4. Lazy Timing 58

Although both programs give the same answers in x′ and y′, the former (if-then-else statement)

is less lazy: if a third variable z′ is used, then y is used. The latter (assignment with if-then-else

expression) does not use y if z′ is used but x′ and y′ are both unused.

We begin by annotating if e then P else Q. Assume that P and Q are already annotated,

and consider the following. If any post-value in scope (say x′, y′, or z′) is used, the memory

variables in e are first used as much as to get an answer (> or ⊥), so for example uy is at least

(ux′, uy′, uz′)�(how e uses y); and then further usage is as per the selected alternative (P or Q), so

for example uy is also at least what P or Q requires. This is represented by (say x, y, and z are the

only memory variables in scope):

∃ux′′, uy′′, uz′′ · if e then (subst ux′′,uy′′,uz′′ for ux,uy,uz in P)

else (subst ux′′,uy′′,uz′′ for ux,uy,uz in Q)

∧ ux=ux′′t((ux′, uy′, uz′)�(how e uses x))

∧ uy=uy′′t((ux′, uy′, uz′)�(how e uses y))

∧ uz=uz′′t((ux′, uy′, uz′)�(how e uses z))

In general, a local name ux′′ is introduced existentially to help capture the value of ux governed by

P and Q, and the equation

ux=ux′′t((all usage post-values)�(how e uses x))

is added as a conjunct to state that the overall ux combines the contribution of P or Q and the

contribution of e. This huge expression is simplifiable in some cases: Notably, if e does not use x

at all, the local name ux′′ and the equation for ux can be eliminated:

∃ux′′, uy′′, uz′′ · (the rest)

∧ ux=ux′′t((ux′, uy′, uz′)�(how e uses x))

= 〈e does not use x at all〉

∃ux′′, uy′′, uz′′ · (the rest)

∧ ux=ux′′t((ux′, uy′, uz′)��)

= 〈ux′′t((ux′, uy′, uz′)��) = ux′′t�= ux′′〉



Chapter 4. Lazy Timing 59

∃ux′′, uy′′, uz′′ · (the rest)

∧ ux=ux′′

= 〈predicate calculus〉

∃uy′′, uz′′ · (the rest, with ux′′ restored to ux)

The part “how e uses m” can be calculated this way: Image a new memory variable b and the

assignment b:=e, which would be annotated like um=:um′t(ub′�stuff ) for each memory variable

m in e; then stuff is the answer, i.e., simulate ub′,� and um′=�.

Example 4.4 We annotate if y=0 then x:=0 else y:=0. The memory variables are x, y, and z.

x:=0 itself after annotation is ux=:� . x:=0

y:=0 itself after annotation is uy=:� . y:=0

The branching condition y=0 uses y fully but does not use x or z at all.

Therefore, the complete annotation is the following, followed by simplification:

∃uy′′ · if y=0 then (subst uy′′ for uy in ux=:� . x:=0)

else (subst uy′′ for uy in uy=:� . y:=0)

∧ uy=uy′′t((ux′, uy′, uz′)�y)

= 〈distribute〉

if y=0 then ∃uy′′ · (subst uy′′ for uy in ux=:� . x:=0)∧ uy=uy′′t((ux′, uy′, uz′)�y)

else ∃uy′′ · (subst uy′′ for uy in uy=:� . y:=0)∧ uy=uy′′t((ux′, uy′, uz′)�y)

= 〈expand assignment and sequential composition〉

if y=0 then ∃uy′′ · ux=�∧ uy′′=uy′ ∧ uz=uz′ ∧ x′=0∧ y′=y∧ z′=z∧ uy=uy′′t((ux′, uy′, uz′)�y)

else ∃uy′′ · ux=ux′ ∧ uy′′=�∧ uz=uz′ ∧ x′=x∧ y′=0∧ z′=z∧ uy=uy′′t((ux′, uy′, uz′)�y)

= 〈predicate calculus〉

if y=0 then ux=�∧ uz=uz′ ∧ x′=0∧ y′=y∧ z′=z∧ uy=uy′t((ux′, uy′, uz′)�y)

else ux=ux′ ∧ uz=uz′ ∧ x′=x∧ y′=0∧ z′=z∧ uy=�t((ux′, uy′, uz′)�y)

= 〈�tu=u;

uy′t((ux′, uy′, uz′)�y)=(ux′, uy′, uz′)�y assuming uy′vy′ and in context y′=y〉



Chapter 4. Lazy Timing 60

if y=0 then ux=�∧ uz=uz′ ∧ x′=0∧ y′=y∧ z′=z∧ uy=(ux′, uy′, uz′)�y

else ux=ux′ ∧ uz=uz′ ∧ x′=x∧ y′=0∧ z′=z∧ uy=(ux′, uy′, uz′)�y

= 〈contract to assignment and sequential composition〉

if y=0 then (ux=:� . uy=:(ux′, uy′, uz′)�y . x:=0)

else (uy=:(ux′, uy′, uz′)�y . y:=0)

2

We now turn to case-of statements, say case xs of nil→P | cons h r→Q. These are like if-then-

else with an additional requirement. If any post-value in scope (say xs′, y′, or z′) is used, then xs is

first used as much as to select a branch (nil or cons��, but not �), so uxs is at least

(uxs′, uy′, uz′)�case xs of nil→nil | cons h r→cons��

and then further usage is as per the selected alternative (P or Q), so uxs is also at least what P or

Q requires. Now comes the additional requirement: Q may use xs by directly referring to xs or by

indirectly referring to its parts h and r. To help capture the indirect use, we introduce local usage

pre-values uh and ur for h and r respectively, and we require the usage annotation of Q to include

specifying uh and ur. We skip uh′ and ur′, replacing them by � to reflect that there is no h′ or r′ to

be used. With this addition, we can now annotate the overall case-of:

∃uxs′′, uh, ur · case xs of nil→(subst uxs′′ for uxs in P)

| cons h r→(subst uxs′′ for uxs in Q)

∧ uxs=uxs′′t((uxs′, uy′, uz′)�case xs of nil→nil | cons h r→cons uh ur)

Example 4.5 We annotate case xs of nil→(z:=0) | cons h r→(y:=y+h . xs:=r). The memory vari-

ables are xs, y, and z.

z:=0 itself is annotated as uz=:� . z:=0

y:=y+h . xs:=r itself is annotated, with uh and ur, as

uy=:uy′�y . uxs=:� . uh=:uy′�h . ur=:uxs′ . y:=y+h . xs:=r

Note that y:=y+h would normally lead to uh=:uh′t(uy′�h), and we replace uh′ by �; similarly



Chapter 4. Lazy Timing 61

xs:=r would normally lead to ur=:ur′tuxs′, and we replace ur′ by �.

The overall annotation is:

∃uxs′′, uh, ur · case xs of nil→(subst uxs′′ for uxs in uz=:� . z:=0)

| cons h r→(subst uxs′′ for uxs in

uy=:uy′�y . uxs=:� . uh=:uy′�h . ur=:uxs′ . y:=y+h . xs:=r)

∧ uxs=uxs′′t((uxs′, uy′, uz′)�case xs of nil→nil | cons h r→cons uh ur)

2

4.2.8 Adding and Hiding Variables

The construct var z · P creates a local memory variable z in the scope of P; this local memory

variable is not in scope outside the var construct. For lazy programs, each memory variable comes

with a pre-value, a post-value, a pre-usage, and a post-usage; so we re-define the var construct as:

var z: T · P = ∃z, z′: T · ∃uz, uz′: TE · P

where TE refers to the extended type for T . We often leave both T and TE implicit and just write

var z · P.

Usage annotation of var z · P is performed as normally done to P, including uz and uz’. In

addition, P is sequentially followed by uz=:� to reflect that z′ cannot be used outside. So var z · P

after annotation becomes:

var z · (P annotated) . uz=:�

We choose to make the tailing uz=:� explicit, rather than part of the var package, because we

often take out the body and calculate on it (e.g., refine, simplify) without the var, in which case,

(P annotated) . uz=:� offers more simplifications than (P annotated) alone.

The construct scope x · P hides from P memory variables and usage variables other than those

for x, so the scope of P has the memory variable x (along with usage) and the time variable t

only. P can read and write x only, and cannot read or write other memory variables; these other



Chapter 4. Lazy Timing 62

memory variables are unchanged. Hiding fewer variables is possible by listing more variables in

the construct, e.g., scope x, y · P retains x, y, and t in the scope of P. We re-define the scope

construct by extrapolating from this example: if the memory variables already in scope are w, x, y,

and z before entering the scope construct, then we re-define:

scope x, y · P = P∧w′=w∧z′=z∧uw=uw′∧uz=uz′

Usage annotation of scope x, y · P is performed as normally done to P, including ux, ux′, uy, uy′,

and excluding uw, uw′, uz, uz′.

Useful theorems on var and scope listed in Chapter 2 still hold with the re-definitions for lazy

programs. In addition, we state one more on scope and backward assignment:

• (scope m · P . u=:e) = (scope m · P) . u=:e

(scope m · u=:e . P) = u=:e . (scope m · P)

provided u is in scope and e does not mention any variable forbidden by the scope

4.3 Lazy Recursive Time

Recursive calls pose several possible degrees of laziness, similar to branching statements in the

previous section:

• High precision and laziness: Knowing precisely which memory variables are and are not

affected by a recursive call, execution enters or skips the recursive call accordingly.

• Low precision and laziness: Not knowing which memory variables are and are not affected

by a recursive call, execution plays safe by entering the recursive call when any memory

variable in scope is used, and skipping the recursive call otherwise.

Again as with branching statements, we adopt the latter choice in this thesis, and note that higher

precision and laziness is possible with aggressive analysis and/or programmer-provided informa-

tion.

Consequently, recursive time under lazy evaluation is marked as follows. Each recursive call

takes 1 unit time if any of the usage variables in scope is not �, and 0 units time otherwise. This



Chapter 4. Lazy Timing 63

can be written as the following time increment, supposing that the usage variables in scope are ux

and uy:

t :=t+if ux′,�∨uy′,� then 1 else 0

We sequentially compose this after each recursive call. (It is after for lazy programs so that ux′ and

uy′ refers to the desired usage.) So for example, the recursive call to R is annotated as:

R . t :=t+if ux′,�∨uy′,� then 1 else 0

The interaction between recursive calls and scope constructs is most noteworthy. Suppose the

memory variables are x, y, z, and a scope statement shrinks that to x, y, inside which a recursive

call R occurs:

z:=0 . scope x, y · x:=0 .R

The recursive call occurs with only x and y in scope, and so the above program is annotated as:

uz=:� . z:=0 . scope x, y · ux=:� . x:=0 . R . t :=t+if ux′,�∨uy′,� then 1 else 0

The body of scope, including the recursive program R stands for, has memory access to x and y

only; if they are unused, the recursive call is skipped. Execution bypasses it and proceeds to z:=0

if uz′ so requires. In other words, the program takes 0 recursive time:

uz=:� . z:=0 . (scope x, y · ux=:� . x:=0 . R . t :=t+if ux′,�∨uy′,� then 1 else 0) . ux=:� . uy=:�

⇒ 〈several steps and weakening〉

t′=t

We do not necessarily consider all calls to be recursive calls, just like in the eager case. In

examples in this thesis, we typically have a main program that initializes and then calls a helper,

and we do not have a time increment for this call; but the helper calls itself, and we have a time

increment for this call.



Chapter 4. Lazy Timing 64

4.4 Automatic Annotation of Usage and Time

We have described the necessary time increments and usage variable assignments to be inserted

into refinements for accounting of lazy recursive time. These annotations can be added mechani-

cally, and our description above is close to an informal algorithm. We can get this far because:

• For data operations, strictness is known, e.g., x+y is fully strict in both operands, and

cons x xs is non-strict in both operands. This determines the corresponding usage assign-

ments.

• For branching statements, we have chosen low precision and laziness (Section 4.2.7). Usage

annotation is determined by the memory variables in scope.

• For recursive calls, we have also chosen low precision and laziness (Section 4.3). Time

increment is determined by the memory variables in scope.

If we change branching statements and recursive calls to have higher precision and laziness, then

their annotations become harder or less mechanical, requiring more analysis or information from

the programmer.

In specifications to be refined, especially those refined recursively, usage and timing parts can-

not be automatically determined in general, but well-understood subclasses of practical interest

can be automated.

4.5 Small Example

A major application of lazy evaluation is the construction of infinite data structures to be consumed

finitely. For example, an infinite cons-list is created by a recursive definition, and then only the

first cons cell is ever used. The computer should spend no more time than is necessary for the

construction of the needed cons cell.

An infinite cons-list of 0’s, written as (µs · cons 0 s) below, may be created by a program like

xs′=(µs · cons 0 s) ⇐ xs′=(µs · cons 0 s) . xs:=cons 0 xs



Chapter 4. Lazy Timing 65

The unusual position of the recursion is derived from a Haskell program for the same task:

p :: () -> [Int]

p = (0:) . p

i.e., functional composition f◦g typically becomes sequential composition g . f .

(The above solution—both renditions—takes n recursive time to fulfill a demand for n+1 cons

cells. This is of course not the cheapest solution; the cheapest solution just takes 1 step to build

1 self-referencing cons cell. We choose the expensive solution for an easy example of on-demand

unlimited recursive time.)

The program augmented with usage and timing is then:

with memory variable xs:

Repeat ⇐ Repeat . t :=t+if uxs′,� then 1 else 0 .

uxs=:tail uxs′ . xs:=cons 0 xs

where

Repeat = uxs′vxs′ ⇒ xs′=(µs · cons 0 s) ∧ t′ = t+ulen (tail uxs′)

In the specification of Repeat, we add the assumption uxs′vxs′, which is always fulfilled in prac-

tice, and is needed in the proof below.

The refinement can be proved this way:

Repeat . t :=t+if uxs′,� then 1 else 0 .

uxs=:tail uxs′ . xs:=cons 0 xs

= 〈definition of Repeat〉

uxs′vxs′ ⇒ xs′=(µs · cons 0 s) ∧ t′ = t+ulen (tail uxs′) .

t :=t+if uxs′,� then 1 else 0 .

uxs=:tail uxs′ . xs:=cons 0 xs

⇒ 〈2.1.3-engulf-assignment (for t :=t+. . .), simplify〉

uxs′vxs′ ⇒ xs′=(µs · cons 0 s) ∧ t′ = t+ulen (tail uxs′)+(if uxs′,� then 1 else 0) .



Chapter 4. Lazy Timing 66

uxs=:tail uxs′ . xs:=cons 0 xs

= 〈in context uxs′vxs′=(µs · cons 0 s), simplify time bound〉

uxs′vxs′ ⇒ xs′=(µs · cons 0 s) ∧ t′ = t+ulen uxs′ .

uxs=:tail uxs′ . xs:=cons 0 xs

= 〈4.2.1-assignment-after (for uxs=:tail uxs′)〉

tail uxs′vxs′ ⇒ xs′=(µs · cons 0 s) ∧ t′ = t+ulen (tail uxs′) .

xs:=cons 0 xs

⇒ 〈2.1.3-engulf-assignment (for xs:=cons 0 xs), simplify〉

tail uxs′vtail xs′ ⇒ xs′=cons 0 (µs · cons 0 s) ∧ t′ = t + ulen (tail uxs′)

⇒ 〈tail uxs′vtail xs′ ⇐ uxs′vxs′〉

uxs′vxs′ ⇒ xs′=cons 0 (µs · cons 0 s) ∧ t′ = t + ulen (tail uxs′)

= 〈definition of Repeat〉

Repeat

We can write a consumer that tests whether the produced xs is empty or not, which consumes

one cons cell (and does not use its components). For simplicity, we assert right here that the answer

is used and the list is not used further:

with memory variables xs and y:

Null = uy=:� . uxs=:uxs′t(uy′�case xs of nil→nil | cons h t→cons��) .

y:=(case xs of nil→> | cons h t→⊥) .

uy=:y . uxs=:�

This consumer can be simplified to:

uy=:� . uxs=:uxs′t(uy′�case xs of nil→nil | cons h t→cons��) .

y:=case xs of nil→> | cons h t→⊥ .

uy=:y . uxs=:�

= 〈simplify sequential composition (merge 2nd and 3rd lines)〉



Chapter 4. Lazy Timing 67

uy=:� . uxs=:uxs′t(uy′�case xs of nil→nil | cons h t→cons��) .

xs′=xs∧ y′=(case xs of nil→> | cons h t→⊥)∧ uy=y∧ uxs=�∧ t′=t

= 〈simplify sequential composition〉

xs′=xs∧ y′=(case xs of nil→> | cons h t→⊥)

∧ uy=�∧ uxs=(case xs of nil→nil | cons h t→cons��)∧ t′=t

When composing Repeat with Null, exactly 0 time unit should be spent in Repeat (1 top-level

non-recursive call and 0 recursive calls to produce 1 cons cell). We can prove:

(scope xs · Repeat) .Null

= 〈definitions of Repeat and scope; Null as calculated above〉

(uxs′vxs′ ⇒ xs′=µs · cons 0 s ∧ t′ = t+ulen (tail uxs′))∧ y′=y∧ uy=uy′ .

xs′=xs∧ y′=(case xs of nil→> | cons h t→⊥)

∧ uy=�∧ uxs=(case xs of nil→nil | cons h t→cons��)∧ t′=t

= 〈definition of sequential composition〉

∃xs′′, y′′, uxs′′, uy′′ · (uxs′′vxs′′ ⇒ xs′′=µs · cons 0 s ∧ t′′ = t+ulen (tail uxs′′))

∧ y′′=y∧ uy=uy′′

∧ xs′=xs′′ ∧ y′=(case xs′′ of nil→> | cons h t→⊥)

∧ uy′′=�∧ uxs′′=(case xs′′ of nil→nil | cons h t→cons��)∧ t′=t′′

= 〈in context: uxs′′=(case xs′′ of nil→nil | cons h t→cons��)vxs′′〉

∃xs′′, y′′, uxs′′, uy′′ · xs′′=µs · cons 0 s ∧ t′′ = t+ulen (tail uxs′′) ∧ y′′=y ∧ uy=uy′′

∧ xs′=xs′′ ∧ y′=(case xs′′ of nil→> | cons h t→⊥)

∧ uy′′=�∧ uxs′′=(case xs′′ of nil→nil | cons h t→cons��)∧ t′=t′′

= 〈in context: xs′′ is a cons〉

∃xs′′, y′′, uxs′′, uy′′ · xs′′=µs · cons 0 s ∧ t′′ = t+ulen (tail uxs′′) ∧ y′′=y ∧ uy=uy′′

∧ xs′=xs′′ ∧ y′=⊥∧ uy′′=�∧ uxs′′=cons��∧ t′=t′′

= 〈predicate calculus〉



Chapter 4. Lazy Timing 68

xs′=µs · cons 0 s ∧ y′=⊥ ∧ uy=� ∧ t′ = t+ulen (tail (cons��))

= 〈definitions of ulen and tail〉

xs′=µs · cons 0 s∧ y′=⊥∧ uy=�∧ t′=t+0

This kind of reasoning is compositional with respect to program structure: the proof of the

refinement of Repeat is independent of Null, the simplification of Null is independent of Repeat,

and calculating their sequential composition requires just their respective specifications, not their

implementation details.

4.6 Larger Example

In this example, we have a less trivial pair of producer and consumer, involving most programming

constructs introduced. First the producer: It produces an infinite list consisting of the positive

integers 1, 2. . . in that order.

with memory variable xs:

xs′=from 1 ⇐ var c · c:=1 . xs′=from c

with memory variables c and xs:

xs′=from c ⇐ var c0 · c0:=c . c:=c+1 . (scope c, xs · xs′=from c) . xs:=cons c0 xs

where we define

from k = cons k (from (k+1))

for infinite lists of natural numbers from a given start

We focus on the second, recursive refinement. After usage annotation and guessing a specifi-

cation, it is:

with memory variables c and xs:

Pos ⇐ var c0 · uc0=:� . uc=:uc′tuc0′ . c0:=c .



Chapter 4. Lazy Timing 69

uc=:uc′�c . c:=c+1 .

(scope c, xs · Pos . t :=t+if uc′,�∨uxs′,� then 1 else 0) .

uxs=:tail uxs′ . uc0 =: uc0′thead uxs′ . xs:=cons c0 xs .

uc0=:�

where

Pos = uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from c

We give our specification Pos the precondition uc′=� as we know it from the context (inside a

var c), and the precondition uxs′vxs′ again. Having these right here shortens the specification

(e.g., so we do not bother to say what happens if uc′,�) and helps simplifications in the proof of

the refinement.

The proof: first the right-hand side without the var c0:

uc0=:� . uc=:uc′tuc0′ . c0:=c .

uc=:uc′�c . c:=c+1 .

(scope c, xs · Pos . t′ :=t+if uc′,�∨uxs′,� then 1 else 0) .

uxs=:tail uxs′ . uc0 =: uc0′thead uxs′ . xs:=cons c0 xs .

uc0=:�

= 〈definition of Pos〉

uc0=:� . uc=:uc′tuc0′ . c0:=c .

uc=:uc′�c . c:=c+1 .

(scope c, xs · uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from c .

t :=t+if uc′,�∨uxs′,� then 1 else 0) .

uxs=:tail uxs′ . uc0 =: uc0′thead uxs′ . xs:=cons c0 xs .

uc0=:�

⇒ 〈2.1.3-engulf-assignment (for t :=t+. . .), simplify〉

uc0=:� . uc=:uc′tuc0′ . c0:=c .



Chapter 4. Lazy Timing 70

uc=:uc′�c . c:=c+1 .

(scope c, xs · uc′=�∧uxs′vxs′⇒

t′ = t+ulen (tail uxs′)+(if uxs′,� then 1 else 0) ∧ xs′=from c) .

uxs=:tail uxs′ . uc0 =: uc0′thead uxs′ . xs:=cons c0 xs .

uc0=:�

= 〈simplify time bound〉

uc0=:� . uc=:uc′tuc0′ . c0:=c .

uc=:uc′�c . c:=c+1 .

(scope c, xs · uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen uxs′ ∧ xs′=from c) .

uxs=:tail uxs′ . uc0 =: uc0′thead uxs′ . xs:=cons c0 xs .

uc0=:�

⇒ 〈definition of scope; weaken〉

uc0=:� . uc=:uc′tuc0′ . c0:=c .

uc=:uc′�c . c:=c+1 .

uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen uxs′ ∧ xs′=from c ∧ c0′=c0 ∧ uc0=uc0′ .

uxs=:tail uxs′ . uc0 =: uc0′thead uxs′ . xs:=cons c0 xs .

uc0=:�

= 〈2.1.3-assignment-before (for c:=c+1)〉

uc0=:� . uc=:uc′tuc0′ . c0:=c .

uc=:uc′�c .

uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen uxs′ ∧ xs′=from (c+1) ∧ c0′=c0 ∧ uc0=uc0′ .

uxs=:tail uxs′ . uc0 =: uc0′thead uxs′ . xs:=cons c0 xs .

uc0=:�

⇒ 〈4.2.1-engulf-assignment (for uc=:uc′�c), simplify〉

uc0=:� . uc=:uc′tuc0′ . c0:=c .



Chapter 4. Lazy Timing 71

uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen uxs′ ∧ xs′=from (c+1) ∧ c0′=c0 ∧ uc0=uc0′ .

uxs=:tail uxs′ . uc0 =: uc0′thead uxs′ . xs:=cons c0 xs .

uc0=:�

⇒ 〈2.1.3-assignment-before (for c0:=c),

4.2.1-engulf-assignment (for uc=:uc′tuc0′ then uc0=:�),

simplify〉

uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen uxs′ ∧ xs′=from (c+1) ∧ c0′=c ∧ uc0=� .

uxs=:tail uxs′ . uc0 =: uc0′thead uxs′ . xs:=cons c0 xs .

uc0=:�

⇒ 〈4.2.1-assignment after (for uxs=:tail uxs′ then uc0 =: uc0′thead uxs′),〉

uc′=�∧ tail uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from (c+1) ∧ c0′=c ∧ uc0=� .

xs:=cons c0 xs .

uc0=:�

= 〈expand sequential composition, predicate calculus〉

(∃xs′′ · (uc′=�∧ tail uxs′vxs′′⇒

t′ = t+ulen (tail uxs′) ∧ xs′′=from (c+1) ∧ c0′=c ∧ uc0=�)

∧ xs′=cons c0′ xs′′) .

uc0=:�

= 〈in context xs′=cons c0′ xs′′, xs′′=tail xs′〉

(∃xs′′ · (uc′=�∧ tail uxs′vtail xs′⇒

t′ = t+ulen (tail uxs′) ∧ xs′′=from (c+1) ∧ c0′=c ∧ uc0=�)

∧ xs′=cons c0′ xs′′) .

uc0=:�

⇒ 〈weaken: (p⇒q)∧r ⇒ p⇒q∧r〉

(∃xs′′ · uc′=�∧ tail uxs′vtail xs′⇒



Chapter 4. Lazy Timing 72

t′ = t+ulen (tail uxs′) ∧ xs′′=from (c+1) ∧ c0′=c ∧ uc0=� ∧ xs′=cons c0′ xs′′) .

uc0=:�

= 〈predicate calculus〉

uc′=�∧ tail uxs′vtail xs′⇒

t′ = t+ulen (tail uxs′) ∧ xs′=cons c (from (c+1)) ∧ c0′=c ∧ uc0=� .

uc0=:�

⇒ 〈tail uxs′vtail xs′⇐ uxs′vxs′; definition of from〉

uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from c ∧ c0′=c ∧ uc0=� .

uc0=:�

= 〈4.2.1-assignment after〉

uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from c ∧ c0′=c ∧ uc0=�

and therefore with the var c0:

var c0 · uc0=:� . uc=:uc′tuc0′ . c0:=c .

uc=:uc′�c . c:=c+1 .

(scope c, xs · Pos . t :=t+if uc′,�∨uxs′,� then 1 else 0) .

uxs=:tail uxs′ . uc0 =: uc0′thead uxs′ . xs:=cons c0 xs .

uc0=:�

⇒ 〈the calculation above, 2.3.1-var-mono〉

var c0 · uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from c ∧ c0′=c ∧ uc0=�

= 〈definition of var〉

∃c0, c0′, uc0, uc0′ · uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from c ∧ c0′=c ∧ uc0=�

= 〈predicate calculus〉

uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from c

= 〈definition of Pos〉

Pos



Chapter 4. Lazy Timing 73

The complete producer is

var c · uc=:� . c:=1 .Pos . uc=:�

after usage annotation. We can simplify it to see the overall effect:

var c · uc=:� . c:=1 .Pos . uc=:�

= 〈definition of Pos〉

var c · uc=:� . c:=1 .

uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from c .

uc=:�

= 〈2.1.3-assignment-before, 4.2.1-assignment-after〉

var c · uc=:� .

uc′=�∧uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from 1

= 〈expand sequential composition, predicate calculus〉

var c · uc=�∧(uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from 1)

= 〈definition of var; predicate calculus〉

uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from 1

The complete producer or its recursive part promises an infinite list but takes only as much recursive

time as the length of the actually used prefix.

We now program a consumer: It sums the first n items in the given list xs (or all of the list if it

has fewer than n items).

with memory variables xs, n (type nat), and s:

s′=add n xs ⇐ s:=0 . s′ = s+add n xs

s′ = s+add n xs ⇐ if n=0 then ok

else case xs of nil→ok

| cons h r→(s:= s+h . xs:=r . n:=n−1 . s′ = s+add n xs)



Chapter 4. Lazy Timing 74

where we define

add 0 r = 0

add (k+1) nil = 0

add (k+1) (cons h r) = h+add k r

for the sum of a list up to a given item count

Again, focusing on the second, recursive refinement, we annotate usage and guess a specification:

Sum⇐

∃un′′ · un=un′′t((uxs′, un′, us′)�n)

∧ if n=0 then (subst un′′ for un in ok)

else ∃uxs′′, uh, ur · uxs=uxs′′t((uxs′, un′, us′)�case xs of nil→nil

| cons h r→cons uh ur)

∧ case xs of nil→(subst un′′, uxs′′ for un, uxs in ok)

| cons h r→(subst un′′, uxs′′ for un, uxs in

us=:us′�s . uh=:us′�h . s:= s+h .

uxs=:� . ur=:uxs′ . xs:=r .

un=:un′�n . n:=n−1 .

Sum .

t :=t+if uxs′,�∨un′,�∨us′,� then 1 else 0)

where

Sum = us′,�∧uxs′=� ⇒ s′ = s+add n xs ∧ t′ = t+min n (ulen xs) ∧ uxs=utake n xs

utake 0 r=�

utake (k+1) nil=nil



Chapter 4. Lazy Timing 75

utake (k+1) (cons h r)=cons h (utake k r)

so utake n xs indicates using up to n items of xs but no more

In our specification for Sum, we add the preconditions us′,� and uxs′=� to reflect our intended

use of this program: we will use the final sum s′ but not the final list xs′ (in other words, we do not

use the list any further than what Sum uses). Having these preconditions shortens the specification

to what we want to show here and helps simplifications in the proof of the refinement. And as it

happens, if s′ is used, then whether n′ is used or not does not matter.

To prove the refinement, we distribute∧ and ∃ into if-then-else and case-of (2.1.3-if-distribution

and 2.1.4-case-distribution), then apply 2.3.1-refine-by-if and 2.3.1-refine-by-case to split the re-

finement into 3 smaller refinements, each under its respective assumption:

Assuming n=0:

∃un′′ · un=un′′t((uxs′, un′, us′)�n)

∧ (subst un′′ for un in ok)

= 〈definition of ok and the substitution〉

∃un′′ · un=un′′t((uxs′, un′, us′)�n)

∧ xs′=xs∧n′=n∧ s′=s∧t′=t∧uxs=uxs′∧un′′=un′∧us=us′

⇒ 〈weaken, predicate calculus〉

s′=s∧t′=t∧uxs=uxs′

⇒ 〈weaken〉

us′,�∧uxs′=�⇒ s′=s∧t′=t∧uxs=uxs′

⇒ 〈in context: n=0 and uxs′=�; so uxs=�=utake 0 xs〉

us′,�∧uxs′=� ⇒ s′ = s+add n xs ∧ t′ = t+min n (ulen xs) ∧ uxs=utake n xs

= 〈definition of Sum〉

Sum

Assuming n,0 and xs=nil:

∃un′′ · un=un′′t((uxs′, un′, us′)�n)



Chapter 4. Lazy Timing 76

∧ ∃uxs′′, uh, ur · uxs=uxs′′t((uxs′, un′, us′)�nil)

∧ (subst un′′, uxs′′ for un, uxs in ok)

= 〈definition of ok and the substitution〉

∃un′′ · un=un′′t((uxs′, un′, us′)�n)

∧ ∃uxs′′, uh, ur · uxs=uxs′′t((uxs′, un′, us′)�nil)

∧ xs′=xs∧n′=n∧ s′=s∧t′=t∧uxs′′=uxs′∧un′′=un′∧us=us′

⇒ 〈weaken, predicate calculus〉

s′=s∧ t′=t∧ uxs=uxs′t((uxs′, un′, us′)�nil)

⇒ 〈weaken〉

us′,�∧uxs′=�⇒ s′=s∧ t′=t∧ uxs=uxs′t((uxs′, un′, us′)�nil)

= 〈in context: us′,�∧uxs′=�〉

us′,�∧uxs′=�⇒ s′=s∧t′=t∧uxs=nil

= 〈in context: xs=nil; so ulen xs=0 and nil=utake n xs〉

us′,�∧uxs′=� ⇒ s′ = s+add n xs ∧ t′ = t+min n (ulen xs) ∧ uxs=utake n xs

= 〈definition of Sum〉

Sum

Assuming n,0∧ xs=cons h r, and so n>0: first simplify without the existential quantifier:

us=:us′�s . uh=:us′�h . s:= s+h .

uxs=:� . ur=:uxs′ . xs:=r .

un=:un′�n . n:=n−1 .

Sum .

t :=t+if uxs′,�∨un′,�∨us′,� then 1 else 0

= 〈definition of Sum〉

us=:us′�s . uh=:us′�h . s:= s+h .

uxs=:� . ur=:uxs′ . xs:=r .



Chapter 4. Lazy Timing 77

un=:un′�n . n:=n−1 .

us′,�∧uxs′=� ⇒ s′ = s+add n xs ∧ t′ = t+min n (ulen xs) ∧ uxs=utake n xs .

t :=t+if uxs′,�∨un′,�∨us′,� then 1 else 0

⇒ 〈2.1.3-engulf-assignment, simplify〉

us=:us′�s . uh=:us′�h . s:= s+h .

uxs=:� . ur=:uxs′ . xs:=r .

us′,�∧uxs′=� ⇒ s′ = s+add n xs ∧ t′ = t+min n (ulen xs) ∧ uxs=utake n xs

⇒ 〈2.1.3-assignment-before, 4.2.1-engulf-assignment, simplify;

one detail goes ur=uxs′′=utake (n−1) r〉

us=:us′�s . uh=:us′�h . s:= s+h .

us′,�∧uxs′=�

⇒ s′ = s+add (n−1) r ∧ t′ = t+min (n−1) (ulen r)+1 ∧ ur=utake (n−1) r ∧ uxs=�

⇒ 〈2.1.3-assignment-before, 4.2.1-engulf-assignment, simplify〉

us′,�∧uxs′=�

⇒ s′ = s+h+add (n−1) r ∧ t′ = t+min (n−1) (ulen r)+1 ∧ ur=utake (n−1) r ∧ uxs=�

= 〈in context: n>0, xs=cons h r; definitions of add and ulen〉

us′,�∧uxs′=�

⇒ s′ = s+add n xs ∧ t′ = t+min n (ulen xs) ∧ ur=utake (n−1) r ∧ uh=h ∧ uxs=�

then with the existential quantifier:

∃uxs′′, uh, ur · uxs=uxs′′t((uxs′, un′, us′)�cons uh ur)

∧ (us′,�∧uxs′=�⇒ s′ = s+add n xs ∧ t′ = t+min n (ulen xs)

∧ ur=utake (n−1) r ∧ uh=h ∧ uxs′′=�)

⇒ 〈weaken; in context uxs′′=�, us′,�〉

∃uxs′′, uh, ur · us′,�∧uxs′=�⇒ uxs=cons uh ur ∧ s′ = s+add n xs ∧ t′ = t+min n (ulen xs)

∧ ur=utake (n−1) r ∧ uh=h ∧ uxs′′=�



Chapter 4. Lazy Timing 78

⇒ 〈predicate calculus〉

us′,�∧uxs′=� ⇒ uxs=cons h (utake (n−1) r) ∧ s′ = s+add n xs ∧ t′ = t+min n (ulen xs)

= 〈defintion of utake; in context xs=cons h r〉

us′,�∧uxs′=� ⇒ uxs=utake n xs ∧ s′ = s+add n xs ∧ t′ = t+min n (ulen xs)

= 〈definition of Sum〉

Sum

The complete consumer is us=:� . s:=0 . Sum after usage annotation. We can simplify it to see

the overall effect too:

us=:� . s:=0 . Sum

= 〈definition of Sum〉

us=:� . s:=0 . (us′,�∧uxs′=� ⇒ uxs=utake n xs ∧ s′ = s+add n xs ∧ t′ = t+min n (ulen xs))

= 〈2.1.3-assignment-before, simplify sequential composition〉

us=�∧(us′,�∧uxs′=� ⇒ uxs=utake n xs ∧ s′=add n xs ∧ t′ = t+min n (ulen xs))

The complete consumer or its recursive part takes n recursive time (or as much as the length of xs

if shorter) to compute the sum, and uses just the portion of the list being summed, provided that

the sum is used but the list is not used further.

Putting the producer and the consumer together, and enforcing our intended usage at the end,

we have:

with memory variables xs, n, and s:

(scope xs · var c · uc=:� . c:=1 .Pos . uc=:�) .

us=:� . s:=0 . Sum .

uxs=:� . us=:s

= 〈as calculated before〉

(scope xs · uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from 1) .

us=�∧(us′,�∧uxs′=� ⇒ uxs=utake n xs ∧ s′=add n xs ∧ t′ = t+min n (ulen xs)) .



Chapter 4. Lazy Timing 79

uxs=:� . us=:s

= 〈4.2.1-assignment-after〉

(scope xs · uxs′vxs′ ⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from 1) .

us=� ∧ uxs=utake n xs ∧ s′=add n xs ∧ t′ = t+min n (ulen xs)

= 〈definition of scope〉

(uxs′vxs′⇒ t′ = t+ulen (tail uxs′) ∧ xs′=from 1)∧ n′=n∧ s′=s∧ un=un′ ∧ us=us′ .

us=� ∧ uxs=utake n xs ∧ s′=add n xs ∧ t′ = t+min n (ulen xs)

= 〈sequential composition in detail〉

∃xs′′, n′′, s′′, uxs′′, un′′, us′′ · (uxs′′vxs′′ ⇒ t′′ = t+ulen (tail uxs′′) ∧ xs′′=from 1) ∧

n′′=n∧ s′′=s∧un=un′′∧us=us′′ ∧

us′′=� ∧ uxs′′=utake n′′ xs′′ ∧ s′=add n′′ xs′′ ∧

t′ = t′′+min n′′ (ulen xs′′)

= 〈utake n′′ xs′′vxs′′; ulen (tail (utake n′′ xs′′))=max 0 (n′′−1); ulen (from 1)=∞〉

∃xs′′, n′′, s′′, uxs′′, un′′, us′′ · t′′ = t+max 0 (n′′−1) ∧ xs′′=from 1 ∧

n′′=n∧ s′′=s∧un=un′′∧us=us′′ ∧

us′′=�∧ uxs′′=utake n′′ xs′′ ∧ s′=add n′′ xs′′ ∧ t′=t′′+n′′

= 〈predicate calculus〉

us=� ∧ s′=add n (from 1) ∧ t′ = t+n+max 0 (n−1)

= 〈definitions of add and from; algebra〉

us=� ∧ s′=n×(n+1)/2 ∧ t′ = t+n+max 0 (n−1)

The composition computes the sum of 1 to n (inclusive) and takes n+max 0 (n−1) recursive time,

where max 0 (n−1) units are spent in the producer and another n are in the consumer.



Chapter 4. Lazy Timing 80

4.7 Related Work

4.7.1 Lazy UTP (Guttmann)

Guttmann also has a predicative theory of lazy imperative programming [10, 9], with termination

(or liveness) rather than time, and with higher-order procedures. In this theory, programs are again

relations (or boolean expressions) between pre-values and post-values, but the state space consists

of all extended values (whereas our memory state space contains only complete values), and there

are further restrictions or healthiness conditions. The most important healthiness conditions are

downward closure in pre-values and upward closure in post-values: Predicate P satisfies them iff:

ρvσ∧Pσσ′⇒ P ρσ′

Pσσ′∧σ′vτ′⇒ Pστ′

Recursive programs are defined by greatest (weakest, least refined) fixed points.

Compared to Guttmann’s theory, our theory has time but does not have higher-order procedures,

its memory state space remains simple, and it uses post-fixed points (refinements) for recursion, so

that specifications or summaries of recursive programs do not have to be exact. Post-fixed points

together with timing and a soundness theorem (next chapter) is as adequate as fixed points.

4.7.2 Context Analysis (Wadler and Hughes, Sands)

Our usage variables, extended types, and usage transformations are a vast simplification of con-

text analysis of Wadler and Hughes, which is used for lazy timing of first-order functional pro-

grams [37, 36]. On top of that, Sands adds higher-order functional programs [31, 32], which we

omit. Below, we explain context analysis, why it needs its complexity, and why our scheme does

not need that complexity.

Both our usage scheme and context analysis begin with the design that demands on answers

are represented by incomplete versions of the answers, so that what is omitted in the incomplete

version stands for what is unused. But functional programming tries not to refer to the answer

directly, and so context analysis does not name and pass around the incomplete version either.



Chapter 4. Lazy Timing 81

Instead, it abstracts answer usage into a function that maps answers to incomplete versions; such a

function is called a context. For example, to say that the answer, a cons-list, is used for just its first

nil or cons, a context function α is defined to satisfy

α nil=nil

α (cons h t)=cons��

And so α ( f m) is analogous to our um′, but it is never used. There is a validity condition ∀y ·

α (α y)=α yvy , analogous to our um′vm′. Lazy time is an expression in m and α constructed to

examine the function α, which essentially lifts examining um′ to the function level. To treat the

propagation from answer usage to parameter usage, a second-order function Fc that maps contexts

for answers to contexts for parameters is derived, under the constraint ∀x · α ( f x)v f (Fcα x) ,

analogous to our um′v f um . Lazy time expressions typically expand to mention Fcα, which lifts

usage transformation to the second-order function level.

The space of incomplete answers in context analysis has one more element � than our extended

type, with �<� . This extra element serves two technical purposes. First, a context can indicate the

rejection of certain answers as wrong answers by mapping them to �, e.g., to say that the answer

must be a cons, not a nil, and that the cons cell is just used for its being cons, a context function α

is defined to satisfy

α nil=�

α (cons h t)=cons��

Second, context analysis takes � to mean both “unused” and “no answer” (the latter because of

erroneous programs such as head nil=�). Some context functions must reject “no answer” as a

wrong answer, too, to express strictness, e.g.,

α�=�

α nil=�

α (cons h t)=cons��

As a validity condition, every context maps � to �.



Chapter 4. Lazy Timing 82

Our scheme uses incomplete answers themselves for usage directly because we already re-

fer to complete answers directly; accordingly, our usage transformation needs only be first-order

functions over incomplete answers. Our scheme does not need � because predicative program-

ming already provides mechanisms against wrong answers: the specification of a producer asserts

postconditions on answers, and the specification of a consumer asserts preconditions on param-

eters; wrong answers can be neglected or handled arbitrarily. Our scheme takes � to mean only

“unused” because predicative programming already expresses “no answer” by under-specification.

Essentially, we have an expressive specification language and we intend to use it.

All in all, in context analysis, the desire to abstract away from the final value leads to lifting

usage representation and manipulation by one function order, and together with lack of expressive

specifications, also leads to lifting all partial orders involved by one more bottom to account for

errors. Both kinds of lifting add complexity and corner cases. Our scheme does not need the

abstraction or more error handling, and so it is both one function-order lower and one point lower,

skipping a lot of machinery and case analyses.



Chapter 5

Lazy Execution

Lazy execution roughly means that some parts of a program are not executed until demanded

(there is a specified root demand to start the process) and the answers thus computed are shared

and reused if aliased. In more detail: The environment specifies a root demand on certain post-

values of the whole program, or an output command constitutes a root demand on some of the

post-values of the program statement just before it. Lazy execution traces backwards for program

statements that affect the demanded values, propagating demands to other values; this determines

which statements to execute and how many recursive calls to make. The exact rules are in this

chapter.

5.1 Lazy Operational Semantics

Our operational semantics is a small-step semantics with a high-level execution state, i.e., a col-

lection of rewrite rules over expressions that look like programs.

In more detail, our execution state is a sequential composition of programs and bindings. A

binding stores memory variables and usage as a conjunction of equations, each equation taking the

form variable′=expression for memory variables and variable=expression for usage variables. An

example execution state is

xs′=nil∧y′=0 .

y:=y+1 . xs:=cons y xs .

83



Chapter 5. Lazy Execution 84

xs′=xs∧y′=y∧uy=�∧uxs=case xs of nil→nil | cons h r→cons��

The binding on the left stores initial values (it lacks usage variables for reasons below). The

program to be executed is (y:=y+1 . xs:=cons y xs) (we omit usage and time annotations for reasons

below). The binding on the right contains usage and will store final answers; currently it stands for

a demand on just the tag of xs and no demand on y.

An example of execution illustrates how the execution state evolves:

xs′=nil∧y′=0 .

y:=y+1 . xs:=cons y xs .

xs′=xs∧y′=y∧uy=�∧uxs=case xs of nil→nil | cons h r→cons��

−→ 〈memory assignment rule (given below)〉

xs′=nil∧y′=0 .

y:=y+1 .

xs′=cons y xs∧ y′=y∧ uy=�∧ uxs=�

and we stop now because all demands are fulfilled: the final xs is now known to be a cons, leading

to no further demand on the penultimate xs. So in general, the rightmost binding serves to store

incomplete answers, which may actually be adequate to fulfill demands. (We see that it is not

needed for eager execution in Chapter 3.) Also, in general, the usage part of the rightmost binding

represents demands on the penultimate variables rather than the final ones.

Here is the operation semantics. At the beginning, sequentially compose a binding on the left

of the program to store initial values, and sequentially compose a binding on the right for final

answers and usage. Let m stand for the memory variables and um for the usage variables:

m′=initial . Main . m′=m∧um=demand

(We either strip annotations in Main before execution or keep but ignore them during execution.)

In general, an execution state may contain more bindings than the leftmost and the rightmost ones.

The execution rules below will show how they come up.

To carry out an execution step, find the rightmost subprogram that matches one of the LHS’s

of the following rules (they are mutually exclusive), and apply the matching rule to the matching



Chapter 5. Lazy Execution 85

subprogram. Since we strip or ignore annotations, there are no rules for usage backward assign-

ments or time increments. Some rules spawn subexecutions. Each rule also indicates its recursive

time cost on its arrow.

• Skip:

ok . m′=a∧um=d

0
−→ m′=a∧um=d

• Memory assignment:

x:=e . m′=a∧um=d

0
−→ m′=(subst e for x in a)∧um=d1

where d1 is updated usage from d and usage transformation according to x:=e.

Example:

x:=y+2 . x′=x+1∧ y′=x∧ ux=x∧ uy=�

0
−→ x′=y+2+1∧ y′=y+2∧ ux=�∧ uy=y

• Recursive call:

Label . m′=a∧um=d

1
−→ Body . m′=a∧um=d

given the refinement Label⇐Body

• Non-recursive call: Some calls are not considered recursive calls (e.g., a main program

calling a helper just once), and so they do not cost recursive time:

Label . m′=a∧um=d

0
−→ Body . m′=a∧um=d

given the refinement Label⇐Body



Chapter 5. Lazy Execution 86

• Local variable introduction:

(var v · P) . m′=a∧um=d

0
−→ P . v′=v∧m′=a∧uv=�∧um=d

Note: it may be necessary to perform a renaming on var v · P before using this rule, so as to

avoid name clashes with what’s already in m′=a. Example:

(var v · v:=x . x:=x+1) . v′=x∧ x′=x+1∧ uv=v∧ ux=x

= 〈rename〉

(var w · w:=x . x:=x+1) . v′=x∧ x′=x+1∧ uv=v∧ ux=x

0
−→ 〈local variable introduction〉

w:=x . x:=x+1 . w′=w∧ v′=x∧ x′=x+1∧ uw=�∧ uv=v∧ ux=x

• Scope used: To execute

(scope v · P) . m′=a∧um=d

where um=d says that some of v is demanded:

(scope v · P) . m′=a∧um=d

0
−→ P . m′=a∧um=d

• Scope unused: Assume that the memory variables are partitioned into v and y. To execute

More . (scope v · P) . v′=av∧y′=ay∧uv=�∧uy=d

where none of v is demanded: first perform a subexecution on

More . v′=v∧y′=y∧uv=�∧uy=d

until it stops. Suppose the subexecution can be summarized as



Chapter 5. Lazy Execution 87

More . v′=v∧y′=y∧uv=�∧uy=d

n
−→ More1 . z′=e∧v′=b∧y′=c∧uz=�∧uv=�∧uy=�

(The extra z′=e and uz stand for possible extra variables gained when executing More; omit

if that does not happen.) Then we continue with

More . (scope v · P) . v′=av∧y′=ay∧uv=�∧uy=d

n
−→ More1 . v1′=v∧y1′=y∧z′=e∧v′=b∧y′=c . (scope v · P) .

v1′=v1∧y1′=y1

∧ v′=(subst (subst v1,y1 for v,y in c) for y in av)

∧ y′=(subst (subst v1,y1 for v,y in c) for y in ay)

∧ uv=�∧uy=�

where v1 and y1 are fresh names.

This requires some explanation. We skip the (scope v ·P) fragement in our execution because

v is not demanded, but we keep the fragment for possible future execution (there may be an

outer execution re-visiting it later). And we like to copy the result c of y to the rightmost

binding; this copying must be done carefully because c may contain references to variables

before the scope statement; we add the local variables v1 and y1 to set up that reference

correctly.

On the other hand, when v1 or y1 is unnecessary for the copying, we omit it. Here we show

omitting both in the parent execution, if copying c needs neither:

More . (scope v · P) . v′=av∧y′=ay∧uv=�∧uy=d

n
−→ More1 . z′=e∧v′=b∧y′=c . (scope v · P) .

v′=(subst c for y in av)

∧ y′=(subst c for y in ay)

∧ uv=�∧uy=�



Chapter 5. Lazy Execution 88

Example of needing v1 and y1: (with abbreviation ytag=case y of nil→nil | cons h r→cons��)

Execute

y:=nil . v:=0 . y:=cons v y .

(scope v · v:=1) .

v′=v+1∧ y′=y∧ uv=�∧ uy=ytag

Subexecution for scope unused:

– y:=nil . v:=0 . y:=cons v y . v′=v∧y′=y∧uv=�∧uy=ytag

−→ 〈assignment〉

y:=nil . v:=0 . v′=v∧ y′=cons v y∧ uv=�∧ uy=�

Subexecution stops.

Continue:

y:=nil . v:=0 . y:=cons v y .

(scope v · v:=1) .

v′=v+1∧ y′=y∧ uv=�∧ uy=ytag

−→ 〈after subexecution for scope unused〉

y:=nil . v:=0 . v1′=v∧ y1′=y∧ v′=v∧ y′=cons v y .

(scope v · v:=1) .

v1′=v1∧ y1′=y1∧ v′=v+1∧ y′=cons v1 y1∧ uv=�∧ uy=�

• Conditional branch: to execute

More . (if cond then P else Q) . m′=a∧um=d

first perform a subexecution on

More . m′=m∧um=d1



Chapter 5. Lazy Execution 89

where d1 has just the demands for deciding cond. Suppose the subexecution stops and can

be summarized as

More . m′=m∧um=d1

n
−→ More1 . z′=bz∧m′=b∧uz=�∧um=�

(The extra z′=bz and uz stand for possible extra variables gained when executing More; omit

if that does not happen.) Then we continue with

More . (if cond then P else Q) . m′=a∧um=d

n
−→ More1 . z′=bz∧m′=b . P . m′=a∧um=d

if (subst b for m in cond) evaluates to >; or

More . (if cond then P else Q) . m′=a∧um=d

n
−→ More1 . z′=bz∧m′=b . Q . m′=a∧um=d

if (subst b for m in cond) evaluates to ⊥

• Case branch: to execute

More . (case x of tag w→P | . . .) . m′=a∧um=d

first perform a subexecution on

More . m′=m∧um=d1

where d1 just demands the tag of x, e.g., um=d1 contains

ux=case x of tag w→tag� | tag2 h r→tag2�� | . . .

Suppose the subexecution stops and can be summerized as

More . m′=m∧um=d1

n
−→ More1 . z′=bz∧m′=b∧uz=�∧um=�



Chapter 5. Lazy Execution 90

where m′=b contains x′=tag e. (The extra z′=bz and uz stand for possible extra variables

gained when executing More; omit if that does not happen.) Then we continue with

More . (case x of tag w→P | . . .) . m′=a∧um=d

n
−→ More1 . w′=e∧z′=bz∧m′=b . P . w′=w∧m′=a∧uw=�∧um=d

It may be necessary to rename w to a fresh name, just like local variable introduction.

This generalizes to tags of other arities in the obvious way.

• Binding merge:

m′=b . m′=a∧um=d

0
−→ m′=(subst b for m in a)∧um=d1

where d1 is updated usage from d by usage transformation according to expressions in b

(think of m′=b as m:=b).

Because both main executions and subexecutions may encounter local variable introduction,

it is possible that the left binding has extra variables not in the right binding, and vice versa.

Suppose the left binding has an extra variable z and the right binding has an extra variable v.

The binding merge rule is then

z′=bz∧m′=b . v′=av∧m′=a∧uv=dv∧um=d

0
−→ z′=bz∧v′=(subst b for m in av)∧m′=(subst b for m in a)∧uz=�∧uv=dv1∧um=d1

where dv1 and d1 are updated usage from dv and d by usage transformation according to

expressions in b (think of m′=b as m:=b).

Example:

z′=x∧ x′=y+2∧ y′=y . v′=x∧ x′=x+1∧ y′=x∧ uv=�∧ ux=x∧ uy=�

0
−→ z′=x∧ v′=y+2∧ x′=y+2+1∧ y′=y+2∧ uz=�∧ uv=�∧ ux=�∧ uy=y



Chapter 5. Lazy Execution 91

The above rules add local variables but do not drop them. The right moment for dropping local

variables is subtle: for example, a local variable may become irrelevant in a subexecution, but it

may still be relevant in a parent execution. The safety of dropping local variables depends on all

ancestor execution states.

• Garbage collection: If a local variable v is no longer mentioned globally, except as v′ in a

rightmost binding, then it can be dropped:

v′=a∧m′=A∧uv=�∧um=d

0
−→ m′=A∧um=d

(We assume that local variables are properly initialized one way or another, so that by the

time they can be discarded, there is no pending demand on them.

Expressions in bindings may be ready for evaluation after certain memory assignments and binding

merges; conditional branching also involves evaluation. We use these simple evaluations:

• Primitive operations: evaluate when all necessary operands are literals, e.g.,

1+1

−→ 2

Otherwise leave unevaluated, e.g., leave x+1 as is.

• Conditional expression: evaluate when the condition is a literal:

if > then e0 else e1

−→ e0

if ⊥ then e0 else e1

−→ e1

Otherwise leave unevaluated, e.g., leave if x=0 then e0 else e1 unevaluated.



Chapter 5. Lazy Execution 92

• Case analysis expression: evaluate when the argument has its tag exposed, e.g.,

case tag e0 of tag w→e1 | . . .

−→ (subst e0 for w in e1)

Otherwise leave unevaluated, e.g., leave case xs of nil→e1 | . . . unevaluated.

An execution or subexecution stops when the rightmost binding has um=� in its usage part, so

that there is no pending demand. Of course, as said in the above rules, when a subexecution stops,

the parent execution may have to continue (until the parent execution in turn meets the stopping

criterion).

We omit annotations during execution (except for usage in the rightmost binding) for several

reasons. The initial time is usually inaccessible, making the time variable less useful. Usage

annotations of branching statements are too bulky to keep during execution; moreover, actual usage

values at any given point of time can be strictly less than those annotations: The annotation has the

least upper bound of

• what the branching condition needs

• what the taken branch needs

but as seen in the execution rules, we first spawn a subexecution using only the former, and then

we resume with only the latter. It is less useful to carry this annotation around.

5.2 Example

Here is an example of lazy execution, using a pair of producer and consumer from the previous

chapter. The given refinements are:

with memory variables c and xs:

Pos ⇐ var c0 · c0:=c . c:=c+1 . (scope c, xs · Pos) . xs:=cons c0 xs



Chapter 5. Lazy Execution 93

with memory variables xs, n (type nat), and s:

Sum ⇐ if n=0 then ok

else case xs of nil→ok

| cons h r→(s:= s+h . xs:=r . n:=n−1 . Sum)

and the program to be executed is

with memory variables xs, n (type nat), and s:

initial values n=1, xs=nil (should not matter), and s=2 (should not matter)

(scope xs · var c · c:=1 .Pos) . s:=0 . Sum

we demand only the final s

n′=1∧xs′=nil∧ s′=2 .

(scope xs · var c · c:=1 .Pos) . s:=0 . Sum .

n′=n∧xs′=xs∧ s′=s∧un=�∧uxs=�∧us=s

−→ 〈non-recursive call〉

n′=1∧xs′=nil∧ s′=2 .

(scope xs · var c · c:=1 .Pos) . s:=0 .

if n=0 then ok

else case xs of nil→ok

| cons h r→(s:= s+h . xs:=r . n:=n−1 . Sum) .

n′=n∧xs′=xs∧ s′=s∧un=�∧uxs=�∧us=s

Subexecution for conditional branch:

• n′=1∧xs′=nil∧ s′=2 .

(scope xs · var c · c:=1 .Pos) . s:=0 .

n′=n∧xs′=xs∧ s′=s∧un=n∧uxs=�∧us=�

−→ 〈memory assignment〉



Chapter 5. Lazy Execution 94

n′=1∧xs′=nil∧ s′=2 .

(scope xs · var c · c:=1 .Pos) .

n′=n∧xs′=xs∧ s′=0∧un=n∧uxs=�∧us=�

Subexecution for scope unused:

– n′=1∧xs′=nil∧ s′=2 .

n′=n∧xs′=xs∧ s′=s∧un=n∧uxs=�∧us=�

−→ 〈binding merge〉

n′=1∧xs′=nil∧ s′=2∧un=�∧uxs=�∧us=�

Subexecution stops.

Continue:

n′=1∧xs′=nil∧ s′=2 .

(scope xs · var c · c:=1 .Pos) .

n′=n∧xs′=xs∧ s′=0∧un=n∧uxs=�∧us=�

−→ 〈after subexecution for scope unused〉

n′=1∧xs′=nil∧ s′=2 .

(scope xs · var c · c:=1 .Pos) .

n′=1∧xs′=xs∧ s′=0∧un=�∧uxs=�∧us=�

Subexecution stops.

Continue (note n′=1 makes n=0 false, choose the else branch):

n′=1∧xs′=nil∧ s′=2 .

(scope xs · var c · c:=1 .Pos) . s:=0 .

if n=0 then ok

else case xs of nil→ok

| cons h r→(s:= s+h . xs:=r . n:=n−1 . Sum) .



Chapter 5. Lazy Execution 95

n′=n∧xs′=xs∧ s′=s∧un=�∧uxs=�∧us=s

−→ 〈after subexecution for conditional branch〉

n′=1∧xs′=nil∧ s′=2 .

(scope xs · var c · c:=1 .Pos) .

n′=1∧xs′=xs∧ s′=0 .

case xs of nil→ok

| cons h r→(s:= s+h . xs:=r . n:=n−1 . Sum) .

n′=n∧xs′=xs∧ s′=s∧un=�∧uxs=�∧us=s

Subexecution for case branch:

• (abbreviate xstag=case xs of nil→nil | cons h r→cons��)

n′=1∧xs′=nil∧ s′=2 .

(scope xs · var c · c:=1 .Pos) .

n′=1∧xs′=xs∧ s′=0 .

n′=n∧xs′=xs∧ s′=s∧un=�∧uxs=xstag∧us=�

−→ 〈binding merge〉

n′=1∧xs′=nil∧ s′=2 .

(scope xs · var c · c:=1 .Pos) .

n′=1∧xs′=xs∧ s′=0∧un=�∧uxs=xstag∧us=�

−→ 〈scope used〉

n′=1∧xs′=nil∧ s′=2 .

(var c · c:=1 .Pos) .

n′=1∧xs′=xs∧ s′=0∧un=�∧uxs=xstag∧us=�

−→ 〈local variable introduction〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .Pos .



Chapter 5. Lazy Execution 96

c′=c∧n′=1∧xs′=xs∧ s′=0∧uc=�∧un=�∧uxs=xstag∧us=�

−→ 〈non-recursive call〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

(var c0 · c0:=c . c:=c+1 . (scope c, xs · Pos) . xs:=cons c0 xs) .

c′=c∧n′=1∧xs′=xs∧ s′=0∧uc=�∧un=�∧uxs=xstag∧us=�

−→ 〈local variable introduction〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) . xs:=cons c0 xs .

c0′=c0∧c′=c∧ n′=1∧ xs′=xs∧ s′=0∧ uc0=�∧ uc=�∧ un=�∧ uxs=xstag∧ us=�

−→ 〈memory assignment〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

c0′=c0∧ c′=c∧ n′=1∧ xs′=cons c0 xs∧ s′=0∧ uc0=�∧ uc=�∧ un=�∧ uxs=�∧ us=�

Subexecution stops.

Continue:

n′=1∧xs′=nil∧ s′=2 .

(scope xs · var c · c:=1 .Pos) .

n′=1∧xs′=xs∧ s′=0 .

case xs of nil→ok

| cons h r→(s:= s+h . xs:=r . n:=n−1 . Sum) .

n′=n∧xs′=xs∧ s′=s∧un=�∧uxs=�∧us=s

−→ 〈after subexecution for case branch:



Chapter 5. Lazy Execution 97

the first 4 lines come from the subexecution,

extended with h′=c0∧r′=xs for the cons case;

the 5th line is the chosen branch of case,

the last 2 lines are the bindings after,

extended with h′=h∧r′=r for the cons case〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

h′=c0∧ r′=xs∧ c0′=c0∧ c′=c∧ n′=1∧ xs′=cons c0 xs∧ s′=0 .

s:= s+h . xs:=r . n:=n−1 . Sum .

h′=h∧r′=r∧n′=n∧xs′=xs∧ s′=s

∧ uh=�∧ur=�∧un=�∧uxs=�∧us=s

1
−→ 〈recursive call〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

h′=c0∧ r′=xs∧ c0′=c0∧ c′=c∧ n′=1∧ xs′=cons c0 xs∧ s′=0 .

s:= s+h . xs:=r . n:=n−1 .

if n=0 then ok

else case xs of nil→ok

| cons h r→(s:= s+h . xs:=r . n:=n−1 . Sum) .

h′=h∧r′=r∧n′=n∧xs′=xs∧ s′=s

∧ uh=�∧ur=�∧un=�∧uxs=�∧us=s

Subexecution for conditional branch (demands n):

• n′=1∧xs′=nil∧ s′=2 .



Chapter 5. Lazy Execution 98

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

h′=c0∧ r′=xs∧ c0′=c0∧ c′=c∧ n′=1∧ xs′=cons c0 xs∧ s′=0 .

s:= s+h . xs:=r . n:=n−1 .

h′=h∧r′=r∧c0′=c0∧c′=c∧n′=n∧xs′=xs∧ s′=s

∧ uh=�∧ur=�∧uc0=�∧uc=�∧un=n∧uxs=�∧us=�

−→ 〈memory assignment (3 times)〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

h′=c0∧ r′=xs∧ c0′=c0∧ c′=c∧ n′=1∧ xs′=cons c0 xs∧ s′=0 .

h′=h∧ r′=r∧ c0′=c0∧ c′=c∧ n′=n−1∧ xs′=r∧ s′= s+h

∧ uh=�∧ ur=�∧ uc0=�∧ uc=�∧ un=n∧ uxs=�∧ us=�

−→ 〈binding merge〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

h′=c0∧ r′=r∧ c0′=c0∧ c′=c∧ n′=1−1∧ xs′=xs∧ s′=0+c0

∧ uh=�∧ ur=�∧ uc0=�∧ uc=�∧ un=�∧ uxs=�∧ us=�

−→ 〈evaluate 1−1〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

h′=c0∧ r′=r∧ c0′=c0∧ c′=c∧ n′=0∧ xs′=xs∧ s′=0+c0

∧ uh=�∧ ur=�∧ uc0=�∧ uc=�∧ un=�∧ uxs=�∧ us=�



Chapter 5. Lazy Execution 99

Subexecution stops.

Continue (note that n′=0 makes n=0 true, choose the then branch):

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

h′=c0∧ r′=xs∧ c0′=c0∧ c′=c∧ n′=1∧ xs′=cons c0 xs∧ s′=0 .

s:= s+h . xs:=r . n:=n−1 .

if n=0 then ok

else case xs of nil→ok

| cons h r→(s:= s+h . xs:=r . n:=n−1 . Sum) .

h′=h∧r′=r∧n′=n∧xs′=xs∧ s′=s

∧ uh=�∧ur=�∧un=�∧uxs=�∧us=s

−→ 〈after subexecution for conditional branch〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

h′=c0∧ r′=r∧ c0′=c0∧ c′=c∧ n′=0∧ xs′=xs∧ s′=0+c0 .

ok .

h′=h∧r′=r∧n′=n∧xs′=xs∧ s′=s

∧ uh=�∧ur=�∧un=�∧uxs=�∧us=s

−→ 〈skip〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

h′=c0∧ r′=r∧ c0′=c0∧ c′=c∧ n′=0∧ xs′=xs∧ s′=0+c0 .



Chapter 5. Lazy Execution 100

h′=h∧r′=r∧n′=n∧xs′=xs∧ s′=s

∧ uh=�∧ur=�∧un=�∧uxs=�∧us=s

−→ 〈binding merge〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

h′=c0∧ r′=r∧ c0′=c0∧ c′=c∧ n′=0∧ xs′=xs∧ s′=0+c0

∧ uh=�∧ ur=�∧ uc0=c0∧ uc=�∧ un=�∧ uxs=�∧ us=�

−→ 〈garbage collection: h and r〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

c0′=c0∧ c′=c∧ n′=0∧ xs′=xs∧ s′=0+c0∧ uc0=c0∧ uc=�∧ un=�∧ uxs=�∧ us=�

Subexecution for scope unused:

• n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 .

c0′=c0∧c′=c∧n′=n∧xs′=xs∧ s′=s∧uc0=c0∧uc=�∧un=�∧uxs=�∧us=�

−→ 〈memory assignment〉

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c .

c0′=c0∧ c′=c+1∧ n′=n∧ xs′=xs∧ s′=s∧ uc0=c0∧ uc=�∧ un=�∧ uxs=�∧ us=�

−→ 〈memory assignment〉

n′=1∧xs′=nil∧ s′=2 .



Chapter 5. Lazy Execution 101

c:=1 .

c0′=c∧ c′=c+1∧ n′=n∧ xs′=xs∧ s′=s∧ uc0=�∧ uc=c∧ un=�∧ uxs=�∧ us=�

−→ 〈memory assignment〉

n′=1∧xs′=nil∧ s′=2 .

c0′=1∧ c′=1+1∧ n′=n∧ xs′=xs∧ s′=s∧ uc0=�∧ uc=�∧ un=�∧ uxs=�∧ us=�

−→ 〈evaluate 1+1〉

n′=1∧xs′=nil∧ s′=2 .

c0′=1∧c′=2∧n′=n∧xs′=xs∧ s′=s∧uc0=�∧uc=�∧un=�∧uxs=�∧us=�

Subexecution stops.

Continue:

n′=1∧xs′=nil∧ s′=2 .

c:=1 .

c0:=c . c:=c+1 . (scope c, xs · Pos) .

c0′=c0∧ c′=c∧ n′=0∧ xs′=xs∧ s′=0+c0∧ uc0=c0∧ uc=�∧ un=�∧ uxs=�∧ us=�

−→ 〈after subexecution for scope unused〉

n′=1∧xs′=nil∧ s′=2 .

c0′=1∧c′=2∧n′=n∧xs′=xs∧ s′=s .

(scope c, xs · Pos) .

c0′=1∧ c′=2∧ n′=0∧ xs′=xs∧ s′=0+1∧ uc0=�∧ uc=�∧ un=�∧ uxs=�∧ us=�

−→ 〈evaluate 0+1〉

n′=1∧xs′=nil∧ s′=2 .

c0′=1∧c′=2∧n′=n∧xs′=xs∧ s′=s .

(scope c, xs · Pos) .

c0′=1∧c′=2∧n′=0∧xs′=xs∧ s′=1∧uc0=�∧uc=�∧un=�∧uxs=�∧us=�



Chapter 5. Lazy Execution 102

Execution stops now. The rightmost binding has the answer s′=1. The number of recursive calls

used is 1, as predicated on page 79 by t′ = t+n+max 0 (n−1) with n=1.

5.3 The Prospect of Speculative Execution

The execution rules above are not the laziest possible. It is possible to be lazier in conditional

branching: concurrently execute both branches, and if they give the same result, we can ignore the

condition. More generally, if the results are possibly different but the same up to what is demanded,

we can still ignore the condition. For example:

More . (if b then xs:=cons y nil else xs:=cons 0 xs) . xs′=xs∧y′=y

−→ More . if b then (xs:=cons y nil . xs′=xs∧y′=y) else (xs:=cons 0 xs . xs′=xs∧y′=y)

−→ More . if b then xs′=cons y nil∧ y′=y else xs′=cons 0 xs∧ y′=y

If the only demand is on the tag of xs, this can stop now, and without a subexecution to resolve b,

since in both branches xs has the same tag cons. (If the demand is more than that, a subexecution

to resolve b will start sooner or later.) Similar speculative executions are also possible for case

branching.

Although not covered in this thesis, these speculative executions can be made precise by ap-

propriate usage transformations and execution rules—possibly more complicated ones. There is

also space for variations.

5.4 Soundness Theorem

We now state and prove the soundness theorem that lazy execution takes no more recursive time

than promised by refinements according to the previous chapter. Like in the eager case, there are

premises.

Theorem 5.1 Using m for memory variables, um for usage variables, and t for time variables, we

suppose these premises on programs and refinements:

1. Refinements have usage and recursive time annotations as in the previous chapter.



Chapter 5. Lazy Execution 103

2. Every non-compound program P (memory assignment statements, labels) used in the refine-

ments satisfies

∀m, t, um′ · ∃m′, t′, um · P∧t′≥t

we call this implementable in this chapter.

3. The starting program Main satisfies

∀m: M · ∀um′: U · ∀m′, t, t′, um · um′vm′∧Main⇒ t′ ≤ t+ f m um′

given memory state subspace M, usage subspace U, and a nat-valued function f .

For example Main may be the specification

x,nil∧ux′,� ⇒ x′=nil ∧ t′ = t+ulen ux′

Then M is the subspace for x,nil, and U is the subspace for ux′,�

Then we have

• for each memory pre-value i: M and usage d :U satisfying (∀m′ · (m:=i .Main)⇒dvm′), ex-

ecution of (m′=i . Main . m′=m∧u=d) stops in at most f i d recursive call steps

2

As in the eager case, to prove this using induction, we will prove a stronger statement (generalize

f m um′ to n in the consequent, specialize m to i and um′ to d in the antecedent):

∀n: nat · ∀P, i, d · (∀m′, u, t, t′ · (m:=i . P . um=:d)⇒ t′≤t+n)∧(∀m′ · (m:=i . P)⇒dvm′)

⇒ (m′=i . P . m′=m∧u=d stops in n recursive calls)

where P ranges over all programs satisfying the premises.

• Base case: Let annotated program P, initial value a, and demand d be given and assume

∀m′, u, t, t′ · (m:=a . P . um=:d)⇒ t′≤t+0



Chapter 5. Lazy Execution 104

Let sP be P without annotation (usage or time). So the starting execution state is

m′=a . sP . m′=m∧um=d

If the recursive call rule is used (in the main execution or a subexecution), i.e., we hit an

execution state

sMore1 . Label . m′=b∧um=d1

and d1 has enough demands so the recursive call is executed, then, putting back usage and

time for reasoning at the refinement level (let More1 be sMore1 with annotations):

More1 . Label . t :=t+if um′,� then 1 else 0 . m′=b∧um=d1∧t′=t

= 〈simplify rightmost composition; d1 has enough demands〉

More1 . Label . m′=b∧ um=d1∧ t′=t+1

= 〈create assignment〉

More1 . Label . m′=b∧um=d1∧t′=t . t :=t+1

We note that each execution step and subexecution takes a prefix subprogram of the par-

ent execution state and simplifies, so (More1 . Label . m′=b∧um=d1∧t′=t . t :=t+1) is es-

sentially a prefix subprogram of (m:=a . P . um=:d) with simplifications. Since the parent

program refines t′≤t, the prefix subprogram does too. But this reaches a contradiction:

Let

Q = More1 . Label . m′=b∧um=d1∧t′=t

Q12 = (subst m′′,um′′,t′′ for m′,um′,t′ in Q)

We prove:

¬∀m,m′, um, um′, t, t′ · (Q . t :=t+1)⇒t′≤t

= 〈expand assignment〉

¬∀m,m′, um, um′, t, t′ · (Q . m′=m∧ um=um′ ∧ t′=t+1)⇒t′≤t



Chapter 5. Lazy Execution 105

= 〈de Morgan and variations〉

∃m,m′, um, um′, t, t′ · (Q . m′=m∧ um=um′ ∧ t′=t+1)∧t′>t

= 〈expand sequential composition〉

∃m,m′,m′′, um, um′, um′′, t, t′, t′′ · Q12∧m′=m′′ ∧ um′′=um′ ∧ t′=t′′+1∧ t′>t

= 〈predicate calculus〉

∃m,m′′, um, um′′, t, t′′ · Q12∧ t′′+1>t

= 〈arithmetic〉

∃m,m′′, um, um′′, t, t′′ · Q12∧t′′≥t

= 〈rename〉

∃m,m′, um, um′, t, t′ · Q∧t′≥t

⇐ 〈generalize〉

∀m, um′, t · ∃m′, um, t′ · Q∧t′≥t

= 〈Q is implementable (premise 2)〉

>

• Induction step: Let annotated program P, initial value a, and demand d be given, and assume

∀m′, um, t, t′ · (m:=a . P . um=:d)⇒ t′≤t+n+1

Let sP be P without annotation. So the starting execution state is

m′=a . sP . m′=m∧um=d

There are two cases. If execution does not use the recursive call rule, we are done. If the

recursive call rule is used, then we proceed as follows.

Take note of the first time the recursive call rule is used. We focus on the first instance

because we will go back to P and inline the call there:

Let iP be P modified by inlining non-recursive calls (replace labels by what they are refined

by) and inlining the recursive call noted above, without the time increment: replace



Chapter 5. Lazy Execution 106

Label . t :=t+(if um′,� then 1 else 0)

by Body, where the refinement used for the recursive call is Label⇐Body.

Let siP be iP without annotations. Then we note that

∀m′, um, t, t′ · (m:=a . iP . um=:d)⇒ t′≤t+n

Then by induction, m′=a . siP . m′=m∧um=d finishes execution using at most n recursive

call steps. Therefore, m′=a . sP . m′=m∧um=d follows the same steps plus one more recur-

sive call step, and so it takes at most n+1 recursive call steps.

5.5 Related Work

Launchbury describes an operational semantics for lazy functional programs [22] at a similar level

as ours. Its execution state looks like a special program fragment, and the memory store is repre-

sented by let-bindings. It uses big steps, while ours uses small steps; our choice of the small-step

way is fairly arbitrary, although an upside is that some rules are more succint. The two operational

semantics have the same essence, apart from the divide between functional and imperative, and

between big-step and small-step. Our contribution is not in inventing a lazy operational semantics,

but rather in writing it imperatively and linking it to refinements and their time predictions.

Sinot improves upon Launchbury’s operational semantics to correspond better to code opti-

mizations done by modern compilers [34]; those code optimizations concern higher-order func-

tions, e.g., lambda-lifting. Since this thesis does not cover higher-order functions, it makes little

difference whether one compares ours with Launchbury’s older or Sinot’s newer.

Although Wadler and Hughes [37, 36] and Sands [31, 32] have calculi for lazy timing based on

context analysis, they are not proved sound with respect to a lazy operational semantics. In Sands’s

case, there is a partial proof: the lazy time calculus is bounded above by an eager time calculus,

and the eager time is proved sound with respect to an eager operational semantics, provided that

the program does not run into an error (such as the head of an empty list).



Chapter 5. Lazy Execution 107

Lastly, this author has also written a lazy operational semantics [21] for a subset of Haskell. It

uses small steps and expression graphs; the latter are equivalent to Launchbury’s use of let-bindings

but more succint and visually clearer. It is unrefereed and unofficial, as its main purpose is tutorial.



Chapter 6

A Space of Operational Semantics

In this chapter, we outline a possible space of operational semantics for the predicative program-

ming theory in Chapter 2. It is small-step and high-level, i.e., rewrite rules over expressions that

are close to programs. It contains eager execution (Chapter 3) and lazy execution (Chapter 5) as

instances (except each has its own additions for book-keeping); it can also be a space for exploring

speculative execution and other orders.

6.1 Execution State

An execution state is a program with bindings sequentially composed to some subprograms. Bind-

ings store memory variables (can be initial, final, or intermediate). In the following example,

bindings are x′=3, x′=x×2, and x′=x.

x′=3 . x:=x+1 .

if x>0 then (x:=x+1 . x′=x×2) else (x′=x . x:=x−1)

A binding stores state variables as a conjunction of equations, each equation taking the form

variable′=expression.

108



Chapter 6. A Space of Operational Semantics 109

6.2 Execution rules

Here are the execution rules. They can be applied to any matching subprogram in any order. Some

rules use the bidirectional arrow←→ to mean that they can be applied in either direction.

Let σ stand for the state variables, a, b, e stand for expressions.

• Binding creation:

P

←→ P . σ′=σ

P

←→ σ′=σ. P

• Binding merge:

σ′=a . σ′=b

←→ σ′=(subst a for σ in b)

• Skip:

ok . σ′=a

←→ σ′=a

σ′=a . ok

←→ σ′=a

• Assignment:

σ:=e . σ′=a

←→ σ′=(subst e for σ in a)



Chapter 6. A Space of Operational Semantics 110

σ′=a . σ:=e

←→ σ′=(subst a for σ in e)

• Call (recursive or non-recursive): given refinement Label ⇐ Body

Label

−→ Body

• Local variable introduction:

(var v · P) . σ′=a

←→ (var v · P . v′=v∧σ′=a)

σ′=a . (var v · P)

←→ (var v · v′=v∧σ′=a . P)

It may be necessary to rename v to a fresh name before using this rule to avoid name clashes.

• Osmosis:

(var v · P) . σ:=e

←→ (var v · P . σ:=e)

σ:=e . (var v · P)

←→ (var v · σ:=e . P)

It may be necessary to rename v to a fresh name before using this rule to avoid name clashes.

• Local variable elimination:

(var v · v′=b∧σ′=a)

←→ σ′=a



Chapter 6. A Space of Operational Semantics 111

It may be necessary to rename v to a fresh name before using this rule to avoid name clashes

(especially when running this rule backwards).

• Scope:

σ′=a . (scope v · P)

−→ σ′=a . P

(scope v · P) . σ′=a

−→ P . σ′=a

• Conditional branch step 1:

σ′=a . if cond then P else Q

←→ if (subst a for σ in cond) then (σ′=a . P) else (σ′=a .Q)

• Conditional branch step 2:

if > then P else Q

−→ P

if ⊥ then P else Q

−→ Q

• Case branch: Suppose the binding σ′=a contains x′=tag e.

σ′=a . case x of tag w→P | . . .

←→ (var w · w′=e∧σ′=a . P)

Similarly for tags with other arities.

It may be necessary to rename w to a fresh name before using this rule to avoid name clashes.



Chapter 6. A Space of Operational Semantics 112

• Branch distribution:

(if cond then P else Q) .R

←→ if cond then (P .R) else (Q .R)

(case x of tag w→P | . . .) .R

←→ case x of tag w→(P .R) | . . .

Expressions in bindings and branching conditions may be ready for evaluation after some assign-

ments, binding merges, and conditional branching steps 1. We use these simple evaluations:

• Primitive operations: evaluate when all necessary operands are literals, e.g.,

1+1

←→ 2

• Conditional expression: evaluate when the condition is a literal:

if > then e0 else e1

←→ e0

if ⊥ then e0 else e1

←→ e1

• Case analysis expression: evaluate when the argument has its tag exposed, e.g.,

case tag e0 of tag w→e1 | . . .

←→ (subst e0 for w in e1)



Chapter 6. A Space of Operational Semantics 113

6.2.1 Execution and Refinement

Most rules are designed so that, if P −→ Q, then we have (∀σ,σ′ · P⇐Q). (And so if P ←→ Q

then (∀σ,σ′ · P=Q).) An exception is when the scope rule is involved: execution strips scope for

convenience, so from the execution

x′=0∧v′=1 . (scope v · v′≤v+3)

−→ 〈scope〉

x′=0∧v′=1 . v′≤v+3

−→ 〈call, with refinement v′≤v+3 ⇐ v:=v+1 . v′≤v+2〉

x′=0∧v′=1 . v:=v+1 . v′≤v+2

we cannot deduce

∀x, v, x′, v′ · (x′=0∧v′=1 . (scope v · v′≤v+3))

⇐ (x′=0∧v′=1 . v:=v+1 . v′≤v+2)

However, this violation is technical rather than essential. If we put back the scope construct at the

refinement level, we can deduce

∀x, v, x′, v′ · (x′=0∧v′=1 . (scope v · v′≤v+3))

⇐ (x′=0∧v′=1 . (scope v · (v:=v+1 . v′≤v+2)))

6.3 Examples

Here are two short examples of uncommon execution orders. Though uncommon, they have some

practical uses.

Example 6.1 The first example mixes lazy execution with speculative execution. At a branching

statement, it is possible to carry out lazy execution in both branches (in parallel or interleaved)

without waiting for the branching condition:

R .



Chapter 6. A Space of Operational Semantics 114

if n=0

then (P . xs:=cons 3 xs . xs:=cons 1 xs)

else (Q . xs:=cons 2 xs . xs:=cons 1 xs) .

xs′=xs∧n′=n

−→ 〈branch distribution〉

R.

if n=0

then (P . xs:=cons 3 xs . xs:=cons 1 xs . xs′=xs∧n′=n)

else (Q . xs:=cons 2 xs . xs:=cons 1 xs . xs′=xs∧n′=n)

−→ 〈assignment〉

R.

if n=0

then (P . xs:=cons 3 xs . xs′=cons 1 xs∧ n′=n)

else (Q . xs:=cons 2 xs . xs′=cons 1 xs∧ n′=n)

−→ 〈branch distribution in reverse〉

R .

if n=0

then (P . xs:=cons 3 xs)

else (Q . xs:=cons 2 xs) .

xs′=cons 1 xs∧ n′=n

If this suffices for a certain demand (for example, only the first item of xs′ is required), then

execution stops here, without executing R to resolve the condition n=0. (It is also possible to

execute R in parallel with the above.)

2

Example 6.2 The second example mixes speculative execution with eager execution. At a branch-

ing statement, both branches are executed eagerly without waiting for the branching condition:



Chapter 6. A Space of Operational Semantics 115

n′=2∧y′=1 . if p y then (n:=n×n . P) else (n:=n+n . Q)

−→ 〈conditional branch step 1〉

if p 1 then (n′=2∧y′=1 . n:=n×n . P) else (n′=2∧y′=1 . n:=n+n . Q)

−→ 〈assignment〉

if p 1 then (n′=4∧y′=1 . P) else (n′=4∧y′=1 . Q)

This order may achieve good performance if there are spare processors to execute both branches

concurrently, p takes a long time to compute or y takes a long time to load, and n is already in

cache/register.

2

The decision to use these and other speculative execution orders could be made at compile time

based on aggressive analysis, at run time based on monitoring, or a mixture of both. How to reason

about their timing in refinements is future work.

6.4 Parallel Execution

Our execution rules allow some kind of parallel execution of sequential programs, since bindings

can occur at multiple points in the program, and execution rules can be applied to those points

simultaneously. For example:

x′=2∧y′=2 . x:=x+1 . P . y:=1 .Q

−→ 〈binding creation; add parentheses for emphasis〉

(x′=2∧y′=2 . x:=x+1 . P) . (x′=x∧y′=y . y:=1 . Q)

−→ 〈assignment at both bindings〉

(x′=3∧y′=2 . P) . (x′=x∧y′=1 . Q)

For more parallelism, it is also possible to extend the programming language by a parallel

operator. Following Hehner [15], we introduce independent composition P‖Q (same operator

precedence as sequential composition) with this meaning: partition the memory variables into two



Chapter 6. A Space of Operational Semantics 116

disjoint sets, say x and y; then P owns x (can read and write) and sees y as a constant, and Q owns

y (can read and write) and sees x as a constant. This ensures freedom from conflicts, and so at the

refinement level, ignoring time and space, we have

P‖Q = P∧Q

At the execution level, we now add these rules:

• Fork:

x′=a∧y′=b . (P‖Q)

←→ (x′=a∧y′=b . P)‖(x′=a∧y′=b . Q)

• Join:

x′=a1∧y′=b ‖ x′=a∧y′=b1

←→ x′=a1∧y′=b1

(The left operand owns x, and so we only care about its x′=a1. The right operand owns y,

and so we only care about its y′=b1.)

Example 6.3 Using parallel assignment to swap two variables:

x′=0∧y′=1 . (x:=y‖y:=x)

−→ 〈fork〉

(x′=0∧y′=1 . x:=y)‖(x′=0∧y′=1 . y:=x)

−→ 〈assignment〉

x′=1∧y′=1 ‖ x′=0∧y′=0

−→ 〈join〉

x′=1∧y′=0

2

The fork rule favours eager execution. Adding independent composition to lazy execution is

future work.



Chapter 6. A Space of Operational Semantics 117

6.5 Related Work

As mentioned in Chapters 3 and 5, there are other operational semantics for eager predicative

programming [18] and lazy functional programming [22, 34]. As for a whole space of operational

semantics, although the lambda calculus has enjoyed one since its conception, ours is new for

predicative programming.



Chapter 7

Conclusion

7.1 Summary of Contributions

Using a predicative programming theory without built-in termination as the substrate, we have

contributed an eager operational semantics, a lazy operational semantics, and a space for more

operational semantics. These operational semantics are high-level and small-step, i.e., execution

states are close to program expressions, and execution goes through transition rules. The transition

rules have a close relation with refinements.

Using the eager operational semantics, we have proved soundness of refinements that assume

eager timing: If refinements promise a recursive time bound, then execution stops in at most that

many recursive calls.

On the laziness front, we have contributed a method of stating and proving refinements that

assumes lazy timing. It consists of usage variables and values to express how much of the fi-

nal answer is demanded, usage transformations to propagate them (backwards) to the middle of

programs, and demand-dependent recursive time. The method is compositional with respect to

program structure (usage variables serve as the interface) and mathematically simpler than previ-

ous compositional methods. We have proved soundness of this method using the lazy operational

semantics, while previous compositional methods do not have similar soundness proofs.

118



Chapter 7. Conclusion 119

7.2 Summary of Related Work

We have discussed related work and comparisons in most chapters. Here we recapitulate some

noteworthy ones and add a few on automatic finding of time bounds.

Our eager operational semantics is close to that of Hoare and He in Unifying Theories of

Programming [18]. Their execution state is a tuple of memory variable bindings and a program;

ours represents the bindings as a special specification (e.g., x′=2∧y′=0 to bind x to 2 and y to 0),

and so we can replace the tuple by a sequential composition. This allows us to relate execution with

refinement more smoothly. It is also easier to modify for laziness and other execution strategies,

where it is convenient to insert bindings into arbitrary points in the program.

Our usage variables, usage values, and usage transformations for lazy refinements are vastly

simpler than context analysis used by Wadler and Hughes [37, 36] and by Sands [31, 32]. Whereas

we propagate usage values backwards, they propagate contexts (functions from usage values to

usage values) backwards. Whereas our usage transformations map usage values to usage values,

they need context transformations—functions from contexts to contexts, which is second-order.

On top of that, they need an extra element in their partial orders to stand for errors in programs

(such as the head of the empty list), whereas we have a full-fledged specification language and we

can use preconditions to guard against such errors. Our work’s shortcoming compared to Sands’s

is that ours does not cover higher-order functions; however, we have a soundness proof.

Our lazy operational semantics is new for imperative and predicative programming, but it has

the same essence as those for lazy functional programming by Launchbury [22] and by Sinot [34].

Both the eager timing scheme of Hehner’s theory [14, 15] and our lazy time scheme are for

verification rather than synthesis: they give the proof obligations for given time bounds, but they

do not give the time bounds. Automatic computing of time bounds and other bounds for common,

practical cases is covered by other work, and here we just cite a few recent examples: Albert et

al. [1], Hoffmann et al. [19], and Zuleger et al. [40].



Chapter 7. Conclusion 120

7.3 Future Work

To most programmers who use lazy programming languages, the two difficulties and mysteries

are time costs and space costs. We have given a compositional solution to that of time costs; it

remains to give a compositional solution to that of space costs. Existing work consists of global,

non-compositional approaches using a space operational semantics directly [4], and compositional

methods that do not calculate space costs, but only prove that certain program replacements do not

increase space costs [8].

Our method for lazy timing covers only first-order programming. There is future prospect in

adding higher-order functions and procedures. As Hughes points out, better modularization of

programs is enabled by both laziness and higher-order functions [20], and we have only covered

laziness. It may be possible to improve upon existing work by Sands [31, 32] and by Guttmann [10,

9].

Our method for lazy timing supports only memory variables and sequential programs. Extend-

ing it for I/O, communication, and concurrency is future work.

We have touched upon more possibilities of execution strategies by outlining a space of opera-

tional semantics. Some partly lazy strategies and some partly speculative strategies are appearing

in practical software and hardware, and it will be useful to find formal methods to calculate their

time and space costs.



Appendix A

Notation and Precedence

In decreasing order of precedence:

• >, ⊥ (boolean values “true” and “false” respectively)

� (domain-theoretic bottom, Section 4.1)

literals

parenthesized expressions

• function application written as juxtaposition, e.g., f x

• ×, / (arithmetic)

• infix +, − (arithmetic)

• t (domain-theoretic least upper bound, Section 4.2.1)

• � (Section 4.2.2)

• =, ,, <, >, ≤, ≥ (equality and inequalities)

v, < (domain-theoretic order, Section 4.1)

(all continuing, e.g., a=b≤c means a=b and b≤c)

• ¬ (boolean “not”)

• ∧ (boolean “and”)

121



Appendix A. Notation and Precedence 122

• ∨ (boolean “or”)

• ⇒,⇐ (boolean implication, continuing)

• :=, =: (assignment, Section 2.1.2)

• if then else (conditional)

case of (Section 2.1.4)

• . (sequential composition, Section 2.1.2)

‖ (parallel composition, Section 6.4

• ∀, ∃ (predicate logic quantifiers)

var, scope (Section 2.1.2)

• =,⇒,⇐ (same meaning as =,⇒, and⇐ respectively, and continuing, but lowest prece-

dence)

−→,
n
−→ (execution, continuing, Sections 3.1, 5.1, 6.2)



Bibliography

[1] Elvira Albert, Samir Genaim, and Abu Naser Masud. More precise yet widely applicable

cost analysis. In VMCAI 2011, 2011.

[2] Ralph-Johan Back, Anna Mikhajlova, and Joakim von Wright. Class refinement as semantics

of correct object substitutability. Formal Aspects of Computing, 12:18–40, 2000. Also as

TUCS Technical Report 333.

[3] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic Introduction.

Graduate Texts in Computer Science. Springer, 1998.

[4] Adam Bakewell and Colin Runciman. A space semantics for core Haskell. In 2000 ACM

SIGPLAN Haskell Workshop, September 2000.

[5] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.

Communications of the ACM, 18(8):453–457, August 1975.

[6] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Semantics.

Springer, 1990.

[7] Rutger M. Dijkstra. Relational calculus and relational program semantics. Computer Sci-

ence Report CS-R9408, Department of Computing Science, University of Groningen, The

Nethelands, 1994.

[8] Jörgen Gustavsson and David Sands. Possibilities and limitations of call-by-need space im-

provement. In Proceeding of the Sixth ACM SIGPLAN International Conference on Func-

tional Programming (ICFP’01), pages 265–276. ACM Press, September 2001.

123



Bibliography 124

[9] Walter Guttmann. Imperative abstractions for functional actions. The Journal of Logic and

Algebraic Programming, 79:768–793, 2010.

[10] Walter Guttmann. Lazy UTP. In Second International Symposium on Unifying Theories of

Programming, volume 5713 of Lecture Notes in Computer Science, pages 82–101. Springer-

Verlag, 2010.

[11] Eric C. R. Hehner. Predicative programming. Communications of the ACM, 27(2):134–151,

February 1984.

[12] Eric C. R. Hehner. Termination is timing. In J. L. A. van de Snepscheut, editor, Mathematics

of Program Construction, volume 375 of Lecture Notes in Computer Science, pages 36–47,

Groningen, The Netherlands, June 1989. Springer.

[13] Eric C. R. Hehner. A practical theory of programming. Science of Computer Programming,

14(2,3):133–158, October 1990.

[14] Eric C. R. Hehner. A Practical Theory of Programming. Texts and Monographs in Computer

Science. Springer, 1993.

[15] Eric C. R. Hehner. A Practical Theory of Programming. http://www.cs.toronto.edu/

~hehner/aPToP/, 2002–2011.

[16] Eric C. R. Hehner, Lorene E. Gupta, and Andrew J. Malton. Predicative methodology. Acta

Informatica, 23(5):487–505, September 1986.

[17] Eric C. R. Hehner and Andrew J. Malton. Termination conventions and comparative seman-

tics. Acta Informatica, 25(1):1–14, January 1988.

[18] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall International

Series in Computer Science. Prentice Hall, 1998.

[19] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amortized resource analysis.

In POPL 2011, 2011.

http://www.cs.toronto.edu/~hehner/aPToP/
http://www.cs.toronto.edu/~hehner/aPToP/


Bibliography 125

[20] John Hughes. Why functional programming matters. The Computer Journal, 32(2):98–107,

1989.

[21] Albert Y. C. Lai. Lazy evaluation of Haskell. http://www.vex.net/~trebla/haskell/

lazy.xhtml, 2011.

[22] John Launchbury. A natural semantics for lazy evaluation. In Conference Record of the

Twentieth ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

pages 144–154, 1993.

[23] M. Douglas McIlroy. Enumerating the strings of regular languages. Journal of Functional

Programming, 14(5):503–518, 2004.

[24] Ali Mili, Jules Desharnais, and Fatma Mili. Computer Program Construction. Oxford Uni-

versity Press, 1994.

[25] Carroll Morgan. The specification statement. ACM Transactions on Programming Languages

and Systems, 10(3):403–419, July 1988.

[26] Joseph M. Morris. A theoretical basis for stepwise refinement and the programming calculus.

Science of Computer Programming, 9(3):287–306, December 1987.

[27] Thomas Nordin and Andrew Tolmach. Modular lazy search for constraint satisfaction prob-

lems. Journal of Functional Programming, 11(5):557–587, 2001.

[28] David Lorge Parnas. A generalized control structure and its formal definition. Communica-

tions of the ACM, 26(8):572–581, August 1983.

[29] Peter Naur (editor) et al. Revised report on the algorithmic language ALGOL 60. Communi-

cations of the ACM, 6(1):1–17, January 1963.

[30] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Sci-

ence, 1:125–129, 1975.

[31] David Sands. Calculi for Time Analysis of Functional Programs. PhD thesis, Department of

Computing, Imperial College, University of London, September 1990.

http://www.vex.net/~trebla/haskell/lazy.xhtml
http://www.vex.net/~trebla/haskell/lazy.xhtml


Bibliography 126

[32] David Sands. Complexity analysis for a lazy higher-order language. In Proceedings of the

Third European Symposium on Programming, volume 432 of Lecture Notes in Computer

Science, pages 361–376. Springer-Verlag, 1990.

[33] D. S. Scott. Continuous lattices, toposes, algebraic geometry and logic. In Proc. 1971 Dal-

housie Conference, volume 274 of Lecture Notes in Mathematics, pages 97–136. Springer-

Verlag, 1972.

[34] François-Régis Sinot. Complete laziness: a natural semantics. Electronic Notes in Theoretical

Computer Science, 204:129–145, April 2008.

[35] M. B. Smyth and G. D. Plotkin. The category-theoretic solution of recursive domain equa-

tions. SIAM Journal on Computing, 11(4):761–783, November 1982.

[36] Philip Wadler. Strictness analysis aids time analysis. In 15’th ACM Symposium on Principles

of Programming Languages, San Diego, California, January 1988.

[37] Philip Wadler and R. J. M. Hughes. Projections for strictness analysis. In 3’rd International

Conference on Functional Programming Languages and Computer Architecture, Portland,

Oregon, USA, September 1987.

[38] Niklaus Wirth. Program development by stepwise refinement. Communications of the ACM,

14(4):221–227, April 1971.

[39] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof. Prentice Hall,

1996.

[40] Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound analysis of impera-

tive programs with the size-change abstraction. In SAS 2011, 2011.


	Introduction
	Lazy Execution and Applications
	The Question of Lazy Execution Time
	Predicative Programming
	Structure of This Thesis

	A Practical Theory of Programming
	Specifications
	Quantities of Interest
	Boolean Expressions
	Useful Theorems
	Data Types

	Syntax of Programs
	Satisfaction—Refinement
	Useful Theorems
	Example
	On Termination

	Termination and Timing
	The Soundness Question
	Bibliographical Notes on Termination

	Eager Execution
	Eager Operational Semantics
	Soundness Theorem
	Bootstrapping of Implementability
	Related Work

	Lazy Timing
	Representing Demand: Usage Variables
	Propagating Demand: Usage Transformation
	Assignments without Operations
	Operations on Primitive Data
	Constructions of Algebraic Data
	Case Analyses of Algebraic Data
	Conditional Expressions
	General Principle
	Branching
	Adding and Hiding Variables

	Lazy Recursive Time
	Automatic Annotation of Usage and Time
	Small Example
	Larger Example
	Related Work
	Lazy UTP (Guttmann)
	Context Analysis (Wadler and Hughes, Sands)


	Lazy Execution
	Lazy Operational Semantics
	Example
	The Prospect of Speculative Execution
	Soundness Theorem
	Related Work

	A Space of Operational Semantics
	Execution State
	Execution rules
	Execution and Refinement

	Examples
	Parallel Execution
	Related Work

	Conclusion
	Summary of Contributions
	Summary of Related Work
	Future Work

	Notation and Precedence
	Bibliography

