
Codifying Probabilities with The Last Full
Measure

Albert Lai

November 1, 2023

1 / 39

Introduction

2 / 39

Motivating Example
Laplace’s Rule of Succession

Let n, k ∈ N, 0 ≤ k ≤ n, be given/fixed.

1. pick r from Uniform(0, 1)

2. pick c from Binomial(n, r)

3. on condition / restrict to c = k

Expected value of r = (k + 1)/(n + 2)

How do I work that out? Technical challenges:

▶ Hybrid continuous-discrete.
▶ Randomly choose a binomial distribution.

(Finishing what 3Blue1Brown started: probabilities of probabilities part 1, part 2.)

3 / 39

https://youtu.be/8idr1WZ1A7Q
https://youtu.be/ZA4JkHKZM50

Motivating Example
Laplace’s Rule of Succession

Let n, k ∈ N, 0 ≤ k ≤ n, be given/fixed.

1. pick r from Uniform(0, 1)

2. pick c from Binomial(n, r)

3. on condition / restrict to c = k

Expected value of r = (k + 1)/(n + 2)

How do I work that out? Technical challenges:

▶ Hybrid continuous-discrete.
▶ Randomly choose a binomial distribution.

(Finishing what 3Blue1Brown started: probabilities of probabilities part 1, part 2.)

3 / 39

https://youtu.be/8idr1WZ1A7Q
https://youtu.be/ZA4JkHKZM50

Motivating Example
Laplace’s Rule of Succession

Let n, k ∈ N, 0 ≤ k ≤ n, be given/fixed.

1. pick r from Uniform(0, 1)

2. pick c from Binomial(n, r)

3. on condition / restrict to c = k

Expected value of r = (k + 1)/(n + 2)

How do I work that out? Technical challenges:

▶ Hybrid continuous-discrete.
▶ Randomly choose a binomial distribution.

(Finishing what 3Blue1Brown started: probabilities of probabilities part 1, part 2.)

3 / 39

https://youtu.be/8idr1WZ1A7Q
https://youtu.be/ZA4JkHKZM50

Programming Probabilities

4 / 39

Random Number Generators
RNG X is set/type of programs that output a random X element
(probability depends on program)

Uniform : R × R→ RNGR
Uniform(a, b) picks real number from [a, b] evenly.

Binomial : N × [0, 1]→ RNGN
Binomial(n, r) tosses coin n times, head probability r, count heads.

UnitX : X → RNG X
UnitX(x) Always outputs x. “Rare desert of determinism in vast
oasis of randomization.” I omit subscript X if inferrable.

5 / 39

Random Number Generators
RNG X is set/type of programs that output a random X element
(probability depends on program)

Uniform : R × R→ RNGR
Uniform(a, b) picks real number from [a, b] evenly.

Binomial : N × [0, 1]→ RNGN
Binomial(n, r) tosses coin n times, head probability r, count heads.

UnitX : X → RNG X
UnitX(x) Always outputs x. “Rare desert of determinism in vast
oasis of randomization.” I omit subscript X if inferrable.

5 / 39

Chaining
Chaining operator “bind”, “then”, “flat-map”
≫= : RNG X × (X → RNG Y)→ RNG Y

g≫= k passes output of g to parametrized RNG k

Example:

1. pick r from Uniform(0, 1)

2. pick c from Binomial(n, r)

3. output (r, c)

Uniform(0, 1)≫= (λr·Binomial(n, r)≫= (λc·Unit(r, c))
or
Uniform(0, 1)≫= λr·Binomial(n, r)≫= λc·Unit(r, c)

6 / 39

Chaining
Chaining operator “bind”, “then”, “flat-map”
≫= : RNG X × (X → RNG Y)→ RNG Y

g≫= k passes output of g to parametrized RNG k

Example:

1. pick r from Uniform(0, 1)

2. pick c from Binomial(n, r)

3. output (r, c)

Uniform(0, 1)≫= (λr·Binomial(n, r)≫= (λc·Unit(r, c))
or
Uniform(0, 1)≫= λr·Binomial(n, r)≫= λc·Unit(r, c)

6 / 39

Restriction/Conditional
Restriction operator
| : RNG X × (X → B)→ RNG X
(B = {false, true})

g | pred = restrict g to when pred is true.

(Rejection sampling: Keep retrying g until output satisfies pred.)

Example:

1. pick x from Uniform(0, 1)

2. on condition x > 0.3

3. (output x)

Uniform(0, 1) | (λx· x > 0.3)

7 / 39

Restriction/Conditional
Restriction operator
| : RNG X × (X → B)→ RNG X
(B = {false, true})

g | pred = restrict g to when pred is true.

(Rejection sampling: Keep retrying g until output satisfies pred.)

Example:

1. pick x from Uniform(0, 1)

2. on condition x > 0.3

3. (output x)

Uniform(0, 1) | (λx· x > 0.3)

7 / 39

Express as Program
Define

g = Uniform(0, 1)≫= λr·Binomial(n, r)≫= λc·Unit(r, c)

g′ = g | (λ(r, c)· c = k)

µ = g′≫= λ(r, c)·Unit(r)

Then µ generates an r as prescribed.

Re-run many times to approximate distribution and expected value.

(Actual Haskell code modulo syntax.)

8 / 39

Re-read Program as Probability Measure
There is also a measure-theory reading of

g = Uniform(0, 1)≫= λr·Binomial(n, r)≫= λc·Unit(r, c)

g′ = g | (λ(r, c)· c = k)

µ = g′≫= λ(r, c)·Unit(r)

Then µ is the probability distribution/measure of the r in question.

Can find expected value and pdf.

“Codifying probability with the last full measure.”

9 / 39

Re-read Program as Probability Measure
There is also a measure-theory reading of

g = Uniform(0, 1)≫= λr·Binomial(n, r)≫= λc·Unit(r, c)

g′ = g | (λ(r, c)· c = k)

µ = g′≫= λ(r, c)·Unit(r)

Then µ is the probability distribution/measure of the r in question.

Can find expected value and pdf.

“Codifying probability with the last full measure.”

9 / 39

10 / 39

Probability Measures

11 / 39

Measure Theory: Motivation 1/2
Integration by Lateral Thinking. Literally.

Riemann integral: Pixelate the x-axis.∑
i f (xi) × length[xi, xi + ϵ)

Lebesgue integral: Pixelate the y-axis.∑
i yi × length

(
f −1[yi, yi + ϵ)

)
Need “length” for fairly general subsets. Require:

length(
⋃

i Ai) =
∑

i length(Ai) (countable disjoint union)

Turns out problematic for all subsets. Settle for large enough family
closed under complement, countable union.

12 / 39

Measure Theory: Motivation 1/2
Integration by Lateral Thinking. Literally.

Riemann integral: Pixelate the x-axis.∑
i f (xi) × length[xi, xi + ϵ)

Lebesgue integral: Pixelate the y-axis.∑
i yi × length

(
f −1[yi, yi + ϵ)

)

Need “length” for fairly general subsets. Require:

length(
⋃

i Ai) =
∑

i length(Ai) (countable disjoint union)

Turns out problematic for all subsets. Settle for large enough family
closed under complement, countable union.

12 / 39

Measure Theory: Motivation 1/2
Integration by Lateral Thinking. Literally.

Riemann integral: Pixelate the x-axis.∑
i f (xi) × length[xi, xi + ϵ)

Lebesgue integral: Pixelate the y-axis.∑
i yi × length

(
f −1[yi, yi + ϵ)

)
Need “length” for fairly general subsets. Require:

length(
⋃

i Ai) =
∑

i length(Ai) (countable disjoint union)

Turns out problematic for all subsets. Settle for large enough family
closed under complement, countable union.

12 / 39

Measure Theory: Motivation 2/2
Probability Theory

Sample space Ω.

Pr : subsets of Ω→ [0, 1]

Require:

Pr(
⋃

i Ai) =
∑

i Pr(Ai) (countable disjoint union)

Hmm déjà vu. . .

Moreover, expected value of f : Ω→ R = use Pr for “length” in
Lebesgue integration!∑

i yi × Pr
(
f −1[yi, yi + ϵ)

)
Riemann may not work: Ω may not even have “intervals”.

13 / 39

Measure Theory: Motivation 2/2
Probability Theory

Sample space Ω.

Pr : subsets of Ω→ [0, 1]

Require:

Pr(
⋃

i Ai) =
∑

i Pr(Ai) (countable disjoint union)

Hmm déjà vu. . .

Moreover, expected value of f : Ω→ R = use Pr for “length” in
Lebesgue integration!∑

i yi × Pr
(
f −1[yi, yi + ϵ)

)

Riemann may not work: Ω may not even have “intervals”.

13 / 39

Measure Theory: Motivation 2/2
Probability Theory

Sample space Ω.

Pr : subsets of Ω→ [0, 1]

Require:

Pr(
⋃

i Ai) =
∑

i Pr(Ai) (countable disjoint union)

Hmm déjà vu. . .

Moreover, expected value of f : Ω→ R = use Pr for “length” in
Lebesgue integration!∑

i yi × Pr
(
f −1[yi, yi + ϵ)

)
Riemann may not work: Ω may not even have “intervals”.

13 / 39

Measurable Space; σ-Algebra
Data of a measurable space:

▶ Set of points X.
▶ σ-algebraM orMX, ⊆ ℘(X), closed under:

▶ owning X, owning ∅
▶ complement, countable union
▶ (corollary: also subtraction, countable intersection)

Members “measurable subsets”.

Examples:

▶ X countable set,M = ℘(X)
▶ X = R,M Borel algebra: smallest σ-algebra owning open

sets.
▶ X = R,M Lebesgue-measurable subsets (appendix). Larger

than Borel algebra. Default.

14 / 39

Measurable Space; σ-Algebra
Data of a measurable space:

▶ Set of points X.
▶ σ-algebraM orMX, ⊆ ℘(X), closed under:

▶ owning X, owning ∅
▶ complement, countable union
▶ (corollary: also subtraction, countable intersection)

Members “measurable subsets”.

Examples:

▶ X countable set,M = ℘(X)

▶ X = R,M Borel algebra: smallest σ-algebra owning open
sets.

▶ X = R,M Lebesgue-measurable subsets (appendix). Larger
than Borel algebra. Default.

14 / 39

Measurable Space; σ-Algebra
Data of a measurable space:

▶ Set of points X.
▶ σ-algebraM orMX, ⊆ ℘(X), closed under:

▶ owning X, owning ∅
▶ complement, countable union
▶ (corollary: also subtraction, countable intersection)

Members “measurable subsets”.

Examples:

▶ X countable set,M = ℘(X)
▶ X = R,M Borel algebra: smallest σ-algebra owning open

sets.

▶ X = R,M Lebesgue-measurable subsets (appendix). Larger
than Borel algebra. Default.

14 / 39

Measurable Space; σ-Algebra
Data of a measurable space:

▶ Set of points X.
▶ σ-algebraM orMX, ⊆ ℘(X), closed under:

▶ owning X, owning ∅
▶ complement, countable union
▶ (corollary: also subtraction, countable intersection)

Members “measurable subsets”.

Examples:

▶ X countable set,M = ℘(X)
▶ X = R,M Borel algebra: smallest σ-algebra owning open

sets.
▶ X = R,M Lebesgue-measurable subsets (appendix). Larger

than Borel algebra. Default.

14 / 39

Measures; Probability Measures
[Positive] Measure µ over measurable space (X,M):

▶ µ : M→ [0,∞]
▶ µ(

⋃
i Ai) =

∑
i µ(Ai) for countable disjoint union

“countably additive”
▶ (corollary: µ(∅) = 0)
▶ (corollary: if A ⊆ B then µ(A) ≤ µ(B))

Probability measure a.k.a. distribution: Furthermore:

▶ µ(X) = 1
▶ (corollary: µ : M→ [0, 1])

Define ΠX = set of probability measures over (X,MX).

15 / 39

Measures; Probability Measures
[Positive] Measure µ over measurable space (X,M):

▶ µ : M→ [0,∞]
▶ µ(

⋃
i Ai) =

∑
i µ(Ai) for countable disjoint union

“countably additive”
▶ (corollary: µ(∅) = 0)
▶ (corollary: if A ⊆ B then µ(A) ≤ µ(B))

Probability measure a.k.a. distribution: Furthermore:

▶ µ(X) = 1
▶ (corollary: µ : M→ [0, 1])

Define ΠX = set of probability measures over (X,MX).

15 / 39

Discrete Measures
Counting measure: X countable set,M = ℘(X)
: ℘(X)→ N ∪ {∞} ⊆ [0,∞]

#(A) =

|A| A finite

∞ A infinite

Binomial distribution: X = N (for simplicity),M = ℘(X)
Binomial : N × [0, 1]→ ΠN

Binomial(n, r)(A) =
∑
i∈A

0≤i≤n

(
n
i

)
ri(1 − r)n−i

16 / 39

Discrete Measures
Counting measure: X countable set,M = ℘(X)
: ℘(X)→ N ∪ {∞} ⊆ [0,∞]

#(A) =

|A| A finite

∞ A infinite

Binomial distribution: X = N (for simplicity),M = ℘(X)
Binomial : N × [0, 1]→ ΠN

Binomial(n, r)(A) =
∑
i∈A

0≤i≤n

(
n
i

)
ri(1 − r)n−i

16 / 39

Continuous Measures
Lebesgue measure: X = R,M Lebegue-measurable subsets.
m : M→ [0,∞]
m([a, b]) = b − a, same for (a, b] etc. Full defn in appendix.
Default.

Uniform distribution: Lebesgue measure with rescaling:
Uniform : R × R→ ΠR

Uniform(a, b)(A) =
1

b − a
m(A ∩ [a, b])

Other continuous distributions mentioned later after integration.

17 / 39

Continuous Measures
Lebesgue measure: X = R,M Lebegue-measurable subsets.
m : M→ [0,∞]
m([a, b]) = b − a, same for (a, b] etc. Full defn in appendix.
Default.

Uniform distribution: Lebesgue measure with rescaling:
Uniform : R × R→ ΠR

Uniform(a, b)(A) =
1

b − a
m(A ∩ [a, b])

Other continuous distributions mentioned later after integration.

17 / 39

Continuous Measures
Lebesgue measure: X = R,M Lebegue-measurable subsets.
m : M→ [0,∞]
m([a, b]) = b − a, same for (a, b] etc. Full defn in appendix.
Default.

Uniform distribution: Lebesgue measure with rescaling:
Uniform : R × R→ ΠR

Uniform(a, b)(A) =
1

b − a
m(A ∩ [a, b])

Other continuous distributions mentioned later after integration.

17 / 39

The Unit Measure
UnitX : X → ΠX

UnitX(x)(A) = χA(x) =

0 x < A
1 x ∈ A

(χA characteristic function of set A)

Deterministic corner case.

X can be discrete or continuous or any measurable space.

In the continuous case, no probability density function.

18 / 39

The Unit Measure
UnitX : X → ΠX

UnitX(x)(A) = χA(x) =

0 x < A
1 x ∈ A

(χA characteristic function of set A)

Deterministic corner case.

X can be discrete or continuous or any measurable space.

In the continuous case, no probability density function.

18 / 39

Measurable Functions
We will only integrate functions that satisfy:

f : X → [−∞,∞] measurable function iff any of:

▶ for all open B, f −1(B) ∈ MX

▶ for all y ∈ R, {x | f (x) > y} ∈ MX

▶ or ≥, or <, or ≤

Motivation: Need µ
(
f −1[y, y + ϵ)

)
, makes sense forMX only.

Easy: f : N→ [−∞,∞] is measurable usingM = ℘(N).

Theorem: Piecewise continuous f : R→ R is measurable using
Lebesgue-measurable subsets.

19 / 39

Measurable Functions
We will only integrate functions that satisfy:

f : X → [−∞,∞] measurable function iff any of:

▶ for all open B, f −1(B) ∈ MX

▶ for all y ∈ R, {x | f (x) > y} ∈ MX

▶ or ≥, or <, or ≤

Motivation: Need µ
(
f −1[y, y + ϵ)

)
, makes sense forMX only.

Easy: f : N→ [−∞,∞] is measurable usingM = ℘(N).

Theorem: Piecewise continuous f : R→ R is measurable using
Lebesgue-measurable subsets.

19 / 39

Lebesgue Integration: Idea
Notation:

∫
f dµ integrates f over all of X using measure µ.

Assume f ≥ 0 for now. Approximate from below by simple
functions (finite range).

Example: X = [−4, 4], f (x) = x2, an approximation is

s(x) = 4 · χ(−3,−2]∪[2,3)(x) + 9 · χ[−4,−3]∪[3,4](x)

“Clearly”∫
s dµ = 4 · µ((−3,−2] ∪ [2, 3)) + 9 · µ([−4,−3] ∪ [3, 4])

Take supremum over all approximations.

For general f , split into positive and negative parts, both treatable
as above.

20 / 39

Lebesgue Integration
Simple functions (finite range):∫ n∑

i=1

ai χEi dµ =
n∑

i=1

ai µ(Ei) (ai ∈ R, Ei ∈ M)

Extend to non-negative f : X → [0,∞]∫
f dµ = sup{

∫
s dµ | s simple, 0 ≤ s ≤ f }

Extend to full range f : X → [−∞,∞]∫
f dµ =

(∫
max(0, f) dµ

)
−

(∫
−min(f , 0) dµ

)
assuming not ∞−∞.

21 / 39

Lebesgue Integration
Notation:

∫
A f dµ is over arbitrary A ∈ M, instead of all X.

Two equivalent treatments:

▶ Revise the definitions, change µ(Ei) to µ(Ei ∩ A).
▶ Just use

∫
f χA dµ

22 / 39

Discrete Integration
X countable set,M = ℘(X), counting measure:∫

f d# =
∑
i∈X

f (i)

(assume f ≥ 0 or else absolute convergence or other conditions)

Binomial expressible as integral d#:

Binomial(n, r)(A) =
∫

A
λi·

(
n
i

)
ri(1 − r)n−i d#

Hence λi·
(
n
i

)
ri(1 − r)n−i is probability mass function.∫

f d(Binomial(n, r)) =
∫
λi· f (i)

(
n
i

)
ri(1 − r)n−i d#

23 / 39

Discrete Integration
X countable set,M = ℘(X), counting measure:∫

f d# =
∑
i∈X

f (i)

(assume f ≥ 0 or else absolute convergence or other conditions)

Binomial expressible as integral d#:

Binomial(n, r)(A) =
∫

A
λi·

(
n
i

)
ri(1 − r)n−i d#

Hence λi·
(
n
i

)
ri(1 − r)n−i is probability mass function.∫

f d(Binomial(n, r)) =
∫
λi· f (i)

(
n
i

)
ri(1 − r)n−i d#

23 / 39

Continuous Integration (Sorry!)∫
f dm default for X = R or subspace. Riemann toolbox reusable

because:

Theorem: For Riemann-integrable f : [a, b]→ R,∫
[a,b]

f dm = Riemann
∫ b

a
f (x) dx

Uniform distribution: Reuse m with rescaling:∫
f d(Uniform(a, b)) =

1
b − a

∫
[a,b]

f dm

Most continuous distributions have probability density functions:

µ(A) =
∫

A
pdf dm∫

f dµ =
∫

f pdf dm

24 / 39

Continuous Integration (Sorry!)∫
f dm default for X = R or subspace. Riemann toolbox reusable

because:

Theorem: For Riemann-integrable f : [a, b]→ R,∫
[a,b]

f dm = Riemann
∫ b

a
f (x) dx

Uniform distribution: Reuse m with rescaling:∫
f d(Uniform(a, b)) =

1
b − a

∫
[a,b]

f dm

Most continuous distributions have probability density functions:

µ(A) =
∫

A
pdf dm∫

f dµ =
∫

f pdf dm

24 / 39

Continuous Integration (Sorry!)∫
f dm default for X = R or subspace. Riemann toolbox reusable

because:

Theorem: For Riemann-integrable f : [a, b]→ R,∫
[a,b]

f dm = Riemann
∫ b

a
f (x) dx

Uniform distribution: Reuse m with rescaling:∫
f d(Uniform(a, b)) =

1
b − a

∫
[a,b]

f dm

Most continuous distributions have probability density functions:

µ(A) =
∫

A
pdf dm∫

f dµ =
∫

f pdf dm

24 / 39

Unit Integration
Sifting property: ∫

f d(Unit(x)) = f (x)

Integral well defined (and beautiful), even in continuous case, even
if no pdf. The power of measure theory!

25 / 39

Chaining Probability Measures
Chaining operator “bind”, “then”, “flat-map”
≫= : ΠX × (X → ΠY)→ ΠY

Intuition for (µ≫= k)(B): For each x ∈ X, k(x) ∈ ΠY, k(x)(B) is
probability of B. Average over X according to µ. (Total probability).

Likewise for expected values.

(µ≫= k)(B) =
∫
λx· k(x)(B) dµ∫

f d(µ≫= k) =
∫ (
λx·

∫
f d(k(x))

)
dµ

(Require k : X → ΠY measurable function. Boils down to (λx· k(x)(B)) : X → [0, 1]

measurable function for all B ∈ MY .)

26 / 39

Interlude
Happy Belated Halloween!

(Π,Unit,≫=) is a programmer-friendly version of. . .

The Giry monad! Due to Michèle Giry. More in appendix.

27 / 39

Restricting Probability Measures
Restriction operator
| : ΠX × (X → B)→ ΠX

Conditional probability.

(µ | pred)(A) = µ(A ∩ B)/µ(B)∫
f d(µ | pred) =

1
µ(B)

∫
f χB dµ

where B = {x | pred(x)}, assuming ∈ M.

(One may say: pred is a measurable predicate.)

28 / 39

Re-read Program as Probability Measure
Define

g = Uniform(0, 1)≫= λr·Binomial(n, r)≫= λc·Unit(r, c)

g′ = g | (λ(r, c)· c = k)

µ = g′≫= λ(r, c)·Unit(r)

Then µ is the probability measure of the r in question.

expected =
∫
λr· r dµ

= (n + 1)
∫ 1

0
r
(
n
k

)
rk(1 − r)n−k dr appendix

=
k + 1
n + 2

pdf(r) = (n + 1)
(
n
k

)
rk(1 − r)n−k

29 / 39

Conclusion

30 / 39

Conclusion
Formal constructs for expressing probabilistic models.

Program interpretation gives executable samplers.

Meaure-theory interpretation gives resulting distributions.

Works the same way for discrete, continuous, hybrid, nested.

31 / 39

Bibliography

32 / 39

Bibliography
H. L. Royden. Real Analysis.

Walter Rudin. Real And Complex Analysis.

Philip Wadler. Monads for functional programming. In
Marktoberdorf Summer School on Program Design Calculi, 1993.
(copy)

Michèle Giry. A categorical approach to probability theory. In
Categorical Aspects of Topology and Analysis, LNM 915, 1982.

Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and
monads of probability distributions. In POPL ’02, 2002. (copy)

E. C. R. Hehner. A probability perspective. In Formal Aspects of
Computing 23(4), 2011. (copy, video)

Bart Jacobs. Structured Probabilistic Reasoning. WIP. (copy)

33 / 39

https://homepages.inf.ed.ac.uk/wadler/topics/monads.html#marktoberdorf
https://www.cs.tufts.edu/~nr/pubs/pmonad-abstract.html
https://www.cs.toronto.edu/~hehner/ProPer.pdf
https://www.cs.toronto.edu/~hehner/ProPervideo.mp4
https://www.cs.ru.nl/B.Jacobs/PAPERS/ProbabilisticReasoning.pdf

Appendix

34 / 39

Lebesgue Measure And Measurable Subsets
The following is well-defined for all A ∈ ℘(R); denoted m∗(A):

▶ let {In} be sequence of disjoint open intervals,
⋃

n In ⊇ A
▶

∑
n length(In) uncontroversial

▶ take infinum over all possibilities

Only issue: Not countably additive for some subsets.

Carathéodory’s solution: Restrict to

M = {A | ∀B·m∗(B) = m∗(B ∩ A) + m∗(B − A)}

Adopted for Lebesgue-measurable subsets.

Then define Lebesgue measure m = m∗|M

35 / 39

The Giry Monad 1/2
Prologue: Generalize “measurable functions” from X → [−∞,∞] to
X → Y, with Y any measurable space:
h : X → Y measurable iff ∀B ∈ MY · h−1(B) ∈ MX

Π as endofunctor (on category of measurable spaces):

Object map: ΠX = set of probability measures over (X,MX).
σ-algebra: Smallest s.t. for all A ∈ MX, (λµ· µ(A)) : ΠX → [0, 1]
measurable function.

Morphism map: For measurable h : X → Y, Π h : ΠX → ΠY

(Π h)(µ)(B) = µ(h−1(B))∫
f d((Π h)(µ)) =

∫
f ◦ h dµ

36 / 39

The Giry Monad 2/2
Π as monad:

UnitX : X → ΠX as defined earlier.

Multiplication FlatX : Π(ΠX)→ ΠX

Flat(µ)(A) =
∫
λν· ν(A) dµ∫

f d(Flat(µ)) =
∫ (
λν·

∫
f dν

)
dµ

Flattens “probability of probabilities” to total probability.

Then define µ≫= k = Flat((Π k)(µ)).

37 / 39

Detailed Calculation 1/2
Let B = {(r, c) | c = k} = [0, 1] × {k}.∫

f dg =
∫ (
λr·

∫ (
λc·

∫
f d(Unit(r, c))

)
d(Binomial(n, r))

)
d(Uniform(0, 1))

=

∫ 1

0

n∑
c=0

f (r, c)
(
n
c

)
rc(1 − r)n−c dr

g(B) =
∫
χB dg

=

∫ 1

0

(
n
k

)
rk(1 − r)n−k dr

=

(
n
k

)
k!(n − k)!
(n + 1)!

(Beta functions)

=
1

n + 1

38 / 39

Detailed Calculation 2/2

∫
λr· r dµ =

∫ (
λ(r, c)·

∫
λr· r d(Unit(r))

)
dg′

=

∫
(λ(r, c)· r) dg′

=
1

g(B)

∫
(λ(r, c)· r χB(r, c)) dg

=
1

g(B)

∫ 1

0
r
(
n
k

)
rk(1 − r)n−k dr

= (n + 1)
(
n
k

)
(k + 1)!(n − k)!

(n + 2)!
(Beta functions)

=
k + 1
n + 2

39 / 39

	Introduction
	Programming Probabilities
	Probability Measures
	Conclusion
	Bibliography
	Appendix

