
Folding: Motivation

We wrote a function to add up a list:

sumList [] = 0
sumList (x:xs) = x + sumList xs

In the assignment, we also wrote a function to multiply up a list:

prodList [] = 1
prodList (x:xs) = x * prodList xs

There is a lot of similarity here; only the binary operator and the initial
value are different.
We can generalize this pattern and reduce boring coding.

FP Lecture 4 1



Folding

The library function foldr captures the pattern in sumList and prodList.
Here is what it looks like. We need to give it as parameters:

• the initial value init for the empty list case, e.g., 0
• the binary function f to be used, e.g., addition

foldr f init [] = init
foldr f init (x:xs) = x ‘f‘ foldr f init xs

--same as f x (foldr f init xs)
foldr :: (a->b->b) -> b -> [a] -> b

Examples:

sumList xs = foldr (+) 0 xs
prodList xs = foldr (*) 1 xs

FP Lecture 4 2



Folding: Left and Right

The r in foldr means it computes from the right hand side:

foldr (+) 0 [1,2,3] = 1+(2+(3+0))

Similarly, there is a foldl that computes from the left hand side:

foldl (+) 0 [1,2,3] = ((0+1)+2)+3

It looks like this:

foldl :: (a->b->b) -> b -> [a] -> b
foldl f init [] = init
foldl f init (x:xs) = foldl f (init ‘f‘ x) xs

FP Lecture 4 3



Folding: When to Use Which

Which of foldl and foldr should we use? It depends on the situation.

• We probably want to use foldl to add up integers. It is tail-recursive.

• But we probably want to use foldr to join a list of strings.

foldl (++) "" ["abc","abc","abc"]

takes quadratic time, while

foldr (++) "" ["abc","abc","abc"]

takes linear time. This is because (++) is linear in its first argument.

FP Lecture 4 4



Currying: Introduction

Consider the following function:

myadd :: Int -> Int -> Int -> Int
myadd x y z = x+y+z

The type could be read as “a function that takes three numbers and returns
a number”. But it could also be read as:

• myadd :: Int -> Int -> (Int -> Int)

takes two numbers and returns a function Int->Int.

• myadd :: Int -> (Int -> Int -> Int)

takes one number and returns a function Int->Int->Int.

FP Lecture 4 5



Currying

So you can give one parameter at a time and get intermediate functions:

• myadd 1 :: Int -> Int -> Int

a function that takes two numbers and add them to 1

• myadd 1 2 :: Int -> Int

a function that takes a number and add it to 1 + 2

• myadd 1 2 3 :: Int

finally the number 6

This ability is called currying.

FP Lecture 4 6



Currying: Examples

Using currying, we can shorten the definition of sumList a bit. Recall:

sumList :: [Int] -> Int
sumList xs = foldr (+) 0 xs

Look at the right hand side. If we omit the third parameter, we will have:

foldr (+) 0 :: [Int] -> Int

This is precisely what we want for sumList, matching both the type
specification and the content! So we will write:

sumList = foldr (+) 0
prodList = foldr (*) 1

FP Lecture 4 7



Composition

Recall that we had a function that sums up the areas of a list of shapes. It
can now be written as:

areaList xs = sumList (map area xs)

This is saying: pass xs to a function f (map area), then take the result
and pass it to another function g (sumList). This is function composition.
There is an operator for this:

(.) :: (b->c) -> (a->b) -> (a->c)
(g.f) x = g (f x)

So g.f is a function that, when you give it a parameter x, it will compute
f(x), and then use it to compute g(f(x)).

FP Lecture 4 8



Composition: Example

Look at areaList again:

areaList xs = sumList (map area xs)

Using composition, we can rewrite it as:

areaList xs = (sumList . map area) xs

But then we can apply currying:

areaList = sumList . map area

FP Lecture 4 9



Anonymous Functions: Motivation

There are times when we want to write a function without giving it a name.
E.g.,

square n = n*n

is silly if all we want is just:

map square [1,2,3]

Even this:

let square n = n*n in map square [1,2,3]

is too tedious. We would like to write functions without giving them names.

FP Lecture 4 10



Anonymous Functions

Here is how. A function that squares its parameter:

\n -> n*n

So to square a list of numbers,

map (\n -> n*n) [1,2,3]

More parameters can be accomodated too, e.g.,

\x y z -> x+y+z

This is a shorthand for:

\x -> \y -> \z -> x+y+z

FP Lecture 4 11



Sections
Binary operators can be turned into unary functions by giving them a
constant argument and using the following syntax:

(1+) means \x -> 1+x
(+1) means \x -> x+1

E.g., a function that increments very number in a list:

map (+1)

A function that tests if all numbers in a list are negative:

foldl (&&) True . map (<0)

The library has a function to do the foldl (&&) True part:

and . map (<0)

FP Lecture 4 12


