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All lecture slides will be available as .pdf on the course website: 
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CSC2515_Winter15.html 

Many of the figures are provided by Chris Bishop  
from his textbook: ”Pattern Recognition and Machine Learning” 



Mixture models and Distributed Representations 

•  One problem with mixture models: each observation 
assumed to come from one of K prototypes 

•  Can think of as graphical model with K binary hidden 
variables 

•  But constraint that only one active (responsibilities sum 
to one) limits representational power 

•  Alternative: Distributed representation, with several 
latent variables relevant to each observation 

•  Can be several binary/discrete variables, or continuous 



Example: continuous underlying variables 

•  What are the intrinsic latent dimensions in these two 
datasets? 

•  How can we find these dimensions from the data? 



Principal	  Components	  Analysis	  

PCA: most popular instance of second main class of 
unsupervised learning methods, projection 
methods, aka dimensionality-reduction methods 

Aim: find small number of “directions” in input 
space that explain correlations in input data; re-
represent data by projecting along those 
directions 

Data is assumed to be continuous: linear 
relationship between data and learned 
representation 



PCA:	  Common	  tool	  

•  Handles high-dimensional data – if data has thousands of 
dimensions, can be difficult for classifier to deal with 

•  Often can be described by much lower dimensional 
representation 

•  Useful for 
–  Visualization 
–  Preprocessing  
–  Modeling – prior for new data 
–  Compression 



PCA:	  Intui3on	  
•  Assume start with N data vectors, 

of dimensionality D 

•  Aim to reduce dimensionality – 
linearly project (multiply by matrix) 
to much lower dimensional space,    
M << D 

•  Search for orthogonal directions in 
space w/ highest variance – project 
data onto this subspace 

•  Structure of data vectors is 
encoded in sample covariance 



Finding	  principal	  components	  
To find the principal component directions, we 

center the data (subtract the sample mean from 
each variable) 

Calculate the empirical covariance matrix: 

Find the M eigenvectors with largest eigenvalues 
of C – these are the principal components 

Assemble these eigenvectors into a DxM matrix U 

We can now express D-dimensional vectors x  by 
projecting them to M-dimensional z: z = UT x 



Standard	  PCA	  
•  Algorithm: to find M components underlying D-

dimensional data  
–  select the top M eigenvectors of C (data covariance matrix): 

–  U: orthogonal, columns = unit-length eigenvectors (UTU =UUT=1)  
–  Λ: eigenvalue = variance in direction of eigenvector 

–  project each input vector x into this subspace, e.g., 

•  Two views/derivations: 
–  Maximize variance (scatter of green points) 
–  Minimize error (red-green distance per datapoint) 



Applying	  PCA	  to	  faces	  

•  Run PCA on 2429 19x19 grayscale images (CBCL data) 

•  Compresses the data: can get good reconstructions with 
only 3 components 

•  PCA for pre-processing: can apply classifier to latent 
representation -- PPCA w/ 3 components obtains 79% 
accuracy on face/non-face discrimination in test data vs. 
76.8% for m.o.G with 84 states  

•  Can also be good for visualization 



Applying	  PCA	  to	  faces:	  Learned	  basis	  



Applying	  PCA	  to	  digits	  



PCA:	  Details	  &	  Deriva3ons	  
PCA can be viewed as finding a low-dimensional 

hyperplane  on which to project the data 

Ideally this projection will preserve information in the 
data while reducing dimensionality 

Idea: first basis vector of the hyperplane points in the 
direction of maximum variance of data 

The second basis vector points in the direction of 
maximum variance given that it is orthogonal to first 

Each subsequent basis vector, or principal 
component, is the direction of maximum 
variance that is orthogonal to all previous 
principal components  



Standard	  PCA:	  Variance	  Maximiza3on	  

Start with one dimension 
Aim: maximize projected variance: find w1 that maximizes 

    where C is the data covariance, sample mean 
Constrain ||w1||=1, via Lagrange multipliers – find that 

optimal w1 = u1, the first eigenvector of C (eigenvector 
with maximal eigenvalue), and w1

TCw1 = λ1 

Can extend to multiple dimensions – maximize |Cov(Z)|, find 
that optimal W1:M = U1:M  



Standard	  PCA:	  Extending	  to	  higher	  dimensions	  

•  Can consider forming components sequentially: find 
variance-maximizing directions orthogonal to previous 
ones 

•  Equivalent to Gaussian approximation to data 
•  Think of Gaussian as football (hyperellipsoid) 

–  Mean is center of football 
–  Eigenvectors of covariance matrix are axes of football 
–  Eigenvalues are lengths of axes 

•  PCA can be thought of as fitting the football to the 
data:  maximize volume of data projections in M-
dimensional subspace 

•  Alternative formulation: minimize error, equivalent to 
minimizing average distance from datapoint to its 
reconstruction from its projection in subspace 



Standard	  PCA:	  Error	  minimiza3on	  

•  Data points represented by projection onto M-dimensional 
subspace, plus some distortion: 

•  Objective: minimize distortion w.r.t.  U1 (reconstruction 
error of xn) 

•  The objective is minimized when the D-M components are 
eigenvectors of S with lowest eigenvalues !  same result 



Return	  to	  Graphical	  Model	  View	  

•  Last time we discussed 
latent variable models 

•  The latent variables in 
mixture models are 
multinomials (referring 
to cluster identity).  

•  Today we’ve been 
considering continuous 
latent variables 

Hidden cause 

Visible  
effect 



Dimensionality	  Reduc3on	  vs.	  Clustering	  
•  Training continuous latent variable models often called 

dimensionality reduction, since there are typically many 
fewer latent dimensions 

•  Examples: Principal Components Analysis, Factor 
Analysis, Independent Components Analysis 

•  Continuous causes often more efficient at representing 
information than discrete 

•  For example, if there are two factors, with about 256 
settings each, we can describe the latent causes with 
two 8-bit numbers 

•  If we try to cluster the data, we need 216 ~= 105 numbers 



Genera3ve	  View	  

•  Each data example generated by first selecting a point 
from a distribution in the latent space, then generating a 
point from the conditional distribution in the input space 

•  Mixture models have multinomial latents 

•  For continuous latents, and inputs, now looking at simple 
models: Gaussian distributions in both latent and data 
space, linear relationship betwixt 

•  This view underlies Probabilistic PCA, Factor Analysis 



Probabilis3c	  PCA	  
•  Probabilistic, generative view of data 
•  Assumptions:  

–  underlying latent variable has a Gaussian distribution 
–  linear relationship between latent and observed variables 
–  isotropic Gaussian noise in observed dimensions 



Probabilis3c	  PCA:	  Marginal	  data	  density	  



Probabilis3c	  PCA:	  Joint	  distribu3on	  



Probabilis3c	  PCA:	  Posterior	  distribu3on	  



Standard	  PCA:	  Zero-‐noise	  limit	  of	  PPCA	  



Probabilis3c	  PCA:	  Constrained	  covariance	  



Probabilis3c	  PCA:	  Maximizing	  likelihood	  



Probabilis3c	  PCA:	  EM	  



Probabilis3c	  PCA:	  Why	  bother?	  

•  Seems like a lot of formulas, algebra to get to similar 
model to standard PCA, but… 

•  Leads to understanding of underlying data model, 
assumptions (e.g., vs. standard Gaussian, other 
constrained forms) 

•  Derive EM version of inference/learning: more efficient 
•  Can understand other models as generalizations, 

modifications 
•  More readily extend to mixtures of PPCA models 
•  Principled method of handling missing values in data 
•  Can generate samples from data distribution 



Factor	  Analysis	  



Factor	  Analysis:	  Distribu3ons	  



•  Parameters are coupled, making it impossible to solve for 
ML parameters directly, unlike PCA  

•  Must use EM, or other nonlinear optimization 
•  E step: compute posterior p(z|x) – use matrix inversion 

to convert D x D matrix inversions to M x M  
•  M step: take derivatives of expected complete log 

likelihood with respect to parameters 

Factor	  Analysis:	  Op3miza3on	  



Factor	  Analysis	  vs.	  PCA:	  Rota3ons	  



Factor	  Analysis	  vs.	  PCA:	  Scale	  



Factor	  Analysis	  :	  Iden3fiability	  

•  Factors in FA are non-identifiable: not guaranteed to 
find same set of parameters – not just local minimum 
but invariance  

•  Rotate W by any unitary Q and model stays the same – 
W only appears in model as outer product WWT 

•  Replace W with WQ: (WQ)(WQ)T = W(Q QT) WT = 
WWT 

•  So no single best setting of parameters 
•  Degeneracy makes unique interpretation of learned 

factors impossible 



Independent	  Components	  Analysis	  (ICA)	  

•  ICA is another continuous latent variable model, but it 
has a non-Gaussian and factorized prior on the latent 
variables  

•  Good in situations where most of the factors are small 
most of the time, do not interact with each other 

•  Example: mixtures of speech signals 

•  Learning problem same as before: find weights from 
factors to observations, infer the unknown factor 
values for given input 

•  ICA: factors are called “sources”, learning is “unmixing” 



ICA	  Intui3on	  



ICA	  Details	  



Summary	  of	  Latent	  Factor	  Methods	  

•  Aim to find low-dimensional subspace that captures 
essential properties of data 

•  Assumes that even though data is high-dimensional, 
there are some small number of continuous underlying 
(latent) factors, whose variability accounts for variations 
in observations 

•  Example: latent factors underlying images are lighting, 
object identities, pose, etc. 

•  Different methods vary in terms of their assumptions 
about these factors, and how the observations relate to 
the factors 


