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Today
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Mixture models and Distributed Representations

One problem with mixture models: each observation assumed to come from
one of K prototypes

Constraint that only one active (responsibilities sum to one) limits
representational power

Alternative: Distributed representation, with several latent variables relevant
to each observation

Can be several binary/discrete variables, or continuous
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Example: continuous underlying variables

What are the intrinsic latent dimensions in these two datasets?

How can we find these dimensions from the data?
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Principal Components Analysis

PCA: most popular instance of second main class of unsupervised learning
methods, projection methods, aka dimensionality-reduction methods

Aim: find small number of ”directions” in input space that explain variation
in input data; re-represent data by projecting along those directions

Important assumption: variation contains information

Data is assumed to be continuous:

I linear relationship between data and learned representation
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PCA: Common tool

Handles high-dimensional data

I if data has thousands of dimensions, can be difficult for classifier to
deal with

Often can be described by much lower dimensional representation

Useful for:

I Visualization
I Preprocessing
I Modeling – prior for new data
I Compression
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PCA: Intuition

Assume start with N data vectors, of dimensionality D

Aim to reduce dimensionality:
I linearly project (multiply by matrix) to much lower dimensional space,

M << D

Search for orthogonal directions in space w/ highest variance
I project data onto this subspace

Structure of data vectors is encoded in sample covariance
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Finding principal components

To find the principal component directions, we center the data (subtract the
sample mean from each variable)

Calculate the empirical covariance matrix:

C =
1

N

N∑
n=1

(x(n) − x̄)(x(n) − x̄)T

with x̄ the mean

What’s the dimensionality of x?

Find the M eigenvectors with largest eigenvalues of C : these are the
principal components

Assemble these eigenvectors into a D ×M matrix U

We can now express D-dimensional vectors x by projecting them to
M-dimensional z

z = UTx
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Standard PCA

Algorithm: to find M components underlying D-dimensional data

1. Select the top M eigenvectors of C (data covariance matrix):

C =
1

N

N∑
n=1

(x(n) − x̄)(x(n) − x̄)T = UΣUT ≈ UΣ1:MUT
1:M

where U: orthogonal, columns = unit-length eigenvectors

UTU = UUT = 1

and Σ: matrix with eigenvalues in diagonal = variance in direction of
eigenvector

2. Project each input vector x into this subspace, e.g.,

zj = uTj x; z = UT
1:Mx
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Two Derivations of PCA

Two views/derivations:

I Maximize variance (scatter of green points)
I Minimize error (red-green distance per datapoint)

Urtasun & Zemel (UofT) CSC 411: 14-PCA & Autoencoders Nov 4, 2015 10 / 18



PCA: Minimizing Reconstruction Error

We can think of PCA as projecting the data onto a lower-dimensional
subspace

One derivation is that we want to find the projection such that the best
linear reconstruction of the data is as close as possible to the original data

J =
∑
n

||x(n) − x̃(n)||2

where

x̃(n) =
M∑
j=1

z
(n)
j uj +

D∑
j=M+1

bjuj

Objective minimized when first M components are the eigenvectors with the
maximal eigenvalues

z
(n)
j = (x(n))Tuj ; bj = x̄Tuj
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Applying PCA to faces

Run PCA on 2429 19x19 grayscale images (CBCL data)

Compresses the data: can get good reconstructions with only 3 components

PCA for pre-processing: can apply classifier to latent representation

I PCA w/ 3 components obtains 79% accuracy on face/non-face
discrimination in test data vs. 76.8% for m.o.G with 84 states

Can also be good for visualization
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Applying PCA to faces: Learned basis
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Applying PCA to digits
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Relation to Neural Networks

PCA is closely related to a particular form of neural network

An autoencoder is a neural network whose outputs are its own inputs

The goal is to minimize reconstruction error
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Autoencoders

Define
z = f (W x); x̂ = g(V z)

Goal:

min
W,V

1

2N

N∑
n=1

||x(n) − x̂(n)||2

If g and f are linear

min
W,V

1

2N

N∑
n=1

||x(n) − VW x(n)||2

In other words, the optimal solution is PCA.
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Autoencoders: Nonlinear PCA

What if g() is not linear?

Then we are basically doing nonlinear PCA

Some subtleties but in general this is an accurate description
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Comparing Reconstructions
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