Support Vector Machines

CSC 411 Tutorial

November 10, 2015

Tutor: Renjie Liao

Many thanks to Jake Snell, Yujia Li and Kevin Swersky for much of the following material.

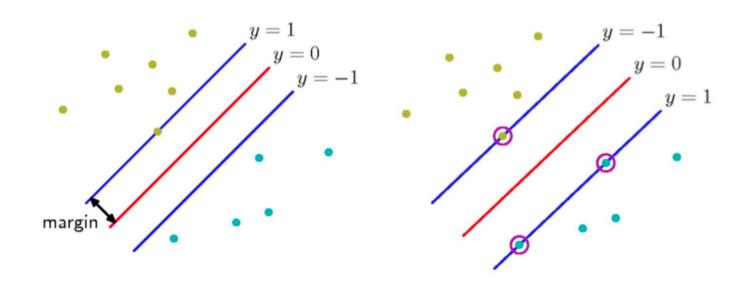
Brief Review of SVMS

Out[40]:

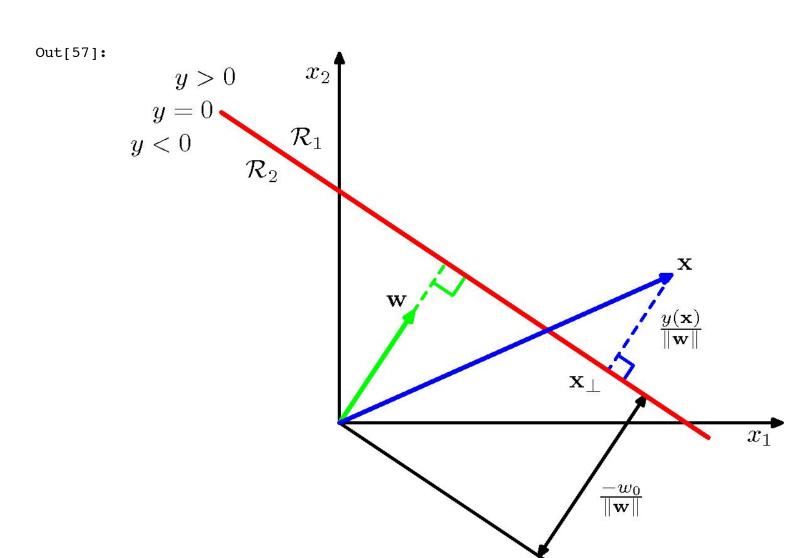
Click here to toggle on/off the raw code.

Geometric Intuition

Out[48]:



Margin Derivation



Margin Derivation

Compute the distance d_n of an arbitrary point x_n in the (+) class to the separating hyperplane.

$$w^{T} \left(x_{n} - d_{n} \frac{w}{\|w\|} \right) + b = 0$$

$$w^{T} x_{n} - d_{n} \frac{w^{T} w}{\|w\|} + b = 0$$

$$w^{T} x_{n} + b = d_{n} \|w\|$$

$$d_{n} = \frac{w^{T} x_{n} + b}{\|w\|}$$

If we let $t_n \in \{1, -1\}$ denote the class of x_n , then the distance becomes

$$d_n = \frac{t_n(w^T x_n + b)}{\|w\|}$$

We can set $d_n = \frac{1}{\|y_n\|}$ for the point x_n closest to the decision boundary, leading to the problem:

$$\max \frac{1}{\|w\|}$$
s.t. $t_n(w^T x_n + b) \ge 1$, for $n = 1 ... N$

SVM Problem

But scaling $w \to \kappa w$ and $b \to \kappa b$ doesn't change $d_n = \frac{t_n(w^T x_n + b)}{\|w\|}$.

or equivalently:

$$\min \frac{1}{2} ||w||^2$$
s.t. $t_n(w^T x_n + b) \ge 1$, for $n = 1 ... N$

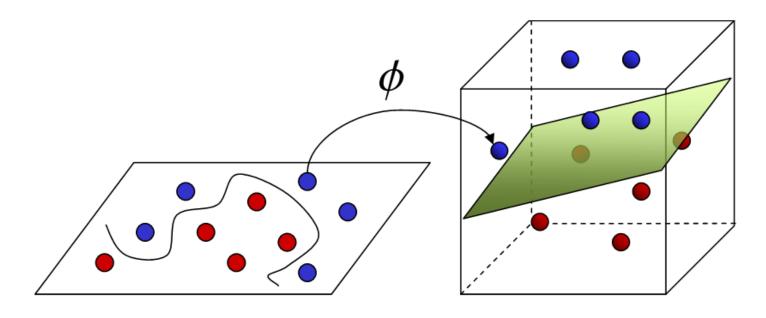
Non-linear SVMs

For a linear SVM, $y(x) = w^T x + b$.

We can just as well work in an alternate feature space: $\tilde{y}(x) = w^T \phi(x) + b$.

http://i.imgur.com/WuxyO.png

Out[29]:



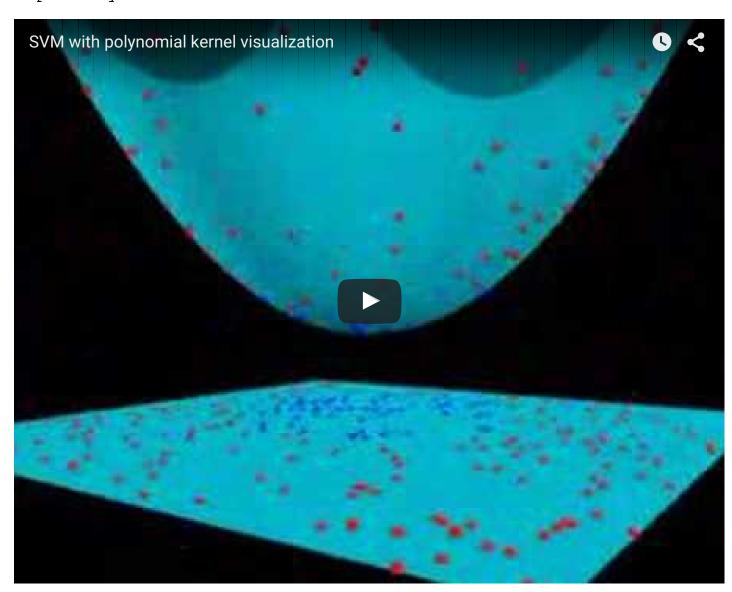
Input Space

Feature Space

Non-linear SVMs

http://www.youtube.com/watch?v=3liCbRZPrZA

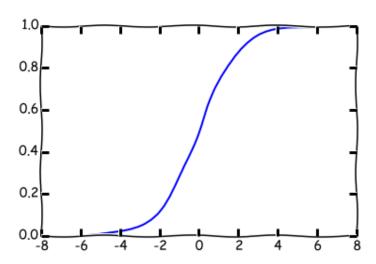
Out[31]:



SVMs vs Logistic Regression

Logistic Regression

Out[32]: [<matplotlib.lines.Line2D at 0x109413090>]



Logistic Regression

• Assign probability to each outcome $P(y = 1|x) = \sigma(w^T x + b)$

• Train to maximize likelihood

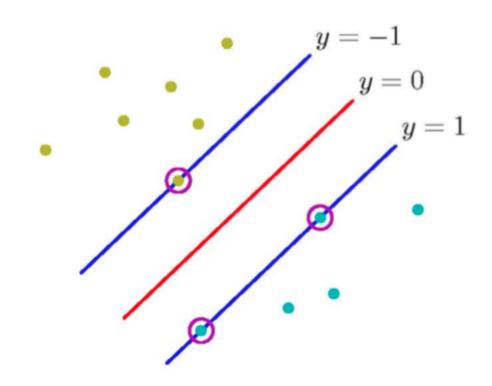
$$\mathcal{L}(w) = \prod_{n=1}^{N} \sigma(w^{T} x_n + b)^{y_n} (1$$
$$-\sigma(w^{T} x_n + b))^{1-y_n}$$

• Linear decision boundary

$$\hat{y} = I[w^T x + b \ge 0]$$

SVMs

Out[33]:



SVMs

- Enforce a margin of separation $y_n(w^Tx_n + b) \ge 1$, for n = 1 ... N
- Linear decision boundary $\hat{y} = I[w^T x + b \ge 0]$

• Train to find the maximum margin

$$\min \frac{1}{2} ||w||^2$$
s.t. $(2y_n - 1)(w^T x_n + b) \ge 1$, for $n = 1 \dots N$

Comparison

- Logistic regression wants to maximize the probability of the data.
 - The greater the distance from each point to the decision boundary, the better.
- **SVMs** want to maximize the distance from the closest points to the decision boundary.
 - Doesn't care about points that aren't support vectors.

Consider an alternate form of the logistic regression decision function:

$$\hat{y} = \begin{cases} 1 & \text{if } P(y = 1|x) \ge P(y = 0|x) \\ 0 & \text{otherwise} \end{cases}$$

$$P(y = 1|x) \propto \exp(w^{T}x + b)$$

$$P(y = 0|x) \propto 1$$

Suppose we don't actually care about the probabilities. All we want to do is make the right decision.

We can put a constraint on the likelihood ratio, for some constant c>1:

$$\frac{P(y=1|x_n)}{P(y=0|x_n)} \ge c$$

Take the log of both sides:

$$\log P(y = 1|x_n) - \log P(y = 0|x_n) \ge \log c$$

Recalling that $P(y = 1|x_n) \propto \exp(w^T x_n + b)$ and $P(y = 0|x_n) \propto 1$:

$$w^{T}x_{n} + b - 0 \ge \log c$$
$$w^{T}x_{n} + b \ge \log c$$

But c is arbitrary, so set it s.t. $\log c = 1$:

$$w^T x_n + b \ge 1$$

So now we have $(2y_n - 1)(w^Tx_n + b) \ge 1$, for n = 1 ... N. But this may not have a unique solution, so put a quadratic penalty on the weights to make the solution unique:

$$\min \frac{1}{2} ||w||^2$$
s.t. $(2y_n - 1)(w^T x_n + b) \ge 1$, for $n = 1 ... N$

By asking logistic regression to make the right **decisions** instead of maximizing the **probability** of the data, we derived an SVM.

Likelihood Ratio

The likelihood ratio drives this derivation:

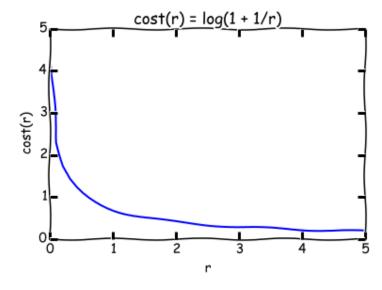
$$r = \frac{P(y = 1|x)}{P(y = 0|x)} = \frac{\exp(w^{T}x + b)}{1} = \exp(w^{T}x + b)$$

Different classifiers assign **different costs** to r.

LR Cost

$$\mathsf{Choose}\,\mathsf{cost}(r) = \log\left(1 + \frac{1}{r}\right)$$

Out[34]: <matplotlib.text.Text at 0x109348810>



LR Cost

$$\log\left(1 + \frac{1}{r}\right) = \log\left(1 + \exp(-(w^T x + b))\right)$$
$$= -\log\frac{1}{1 + \exp(-(w^T x + b))}$$
$$= -\log\sigma(w^T x + b)$$

Minimizing cost(r) is the same as minimizing the negative log-likelihood objective for logistic regression!

SVM with Slack Variables

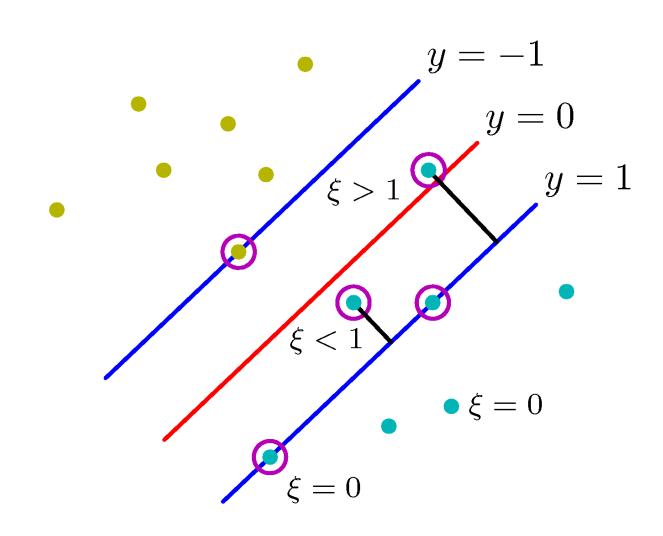
If the data is not linearly separable, we can introduce slack variables.

$$\min \frac{1}{2} ||w||^2 + C \sum_{n=1}^{N} \xi_n$$

s.t. $(2y_n - 1)(w^T x_n + b) \ge 1 - \xi_n$, for $n = 1 \dots N$
and $\xi_n \ge 0$, for $n = 1 \dots N$

SVM with Slack Variables

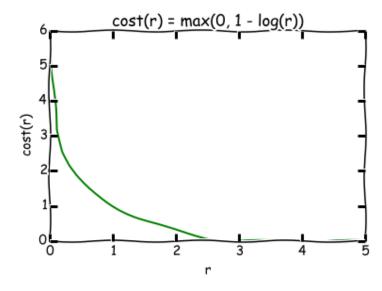
Out[58]:



SVM Cost

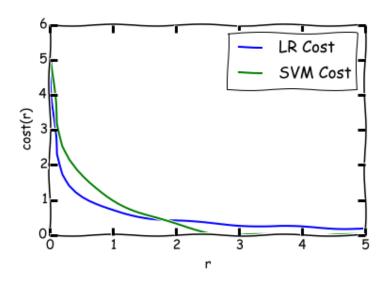
Choose $cost(r) = max(0, 1 - log(r)) = max(0, 1 - (w^T x + b))$

Out[59]: <matplotlib.text.Text at 0x109d2fd90>



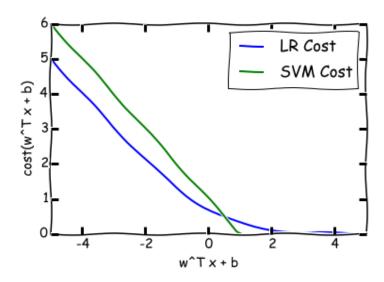
Plotted in terms of r

Out[60]: <matplotlib.legend.Legend at 0x10a5a8910>



Plotted in terms of $\mathbf{w}^{\mathrm{T}}\mathbf{x} + \mathbf{b}$

Out[61]: <matplotlib.legend.Legend at 0x10a6e8950>



Exploiting the Connection between LR and SVMs

Kernel Trick for LR

In the dual form, the SVM decision boundary is

$$y(x) = w^{T} \phi(x) + b = \sum_{n=1}^{N} \alpha_{n} t_{n} K(x, x_{n}) + b = 0$$

We could plug this into the LR cost:

$$\log\left(1+\exp\left(-\sum_{n=1}^{N}\alpha_{n}t_{n}K(x,x_{n})-b\right)\right)$$

Multi-class SVMS

Recall multi-class logistic regression

$$P(y = i|x) = \frac{\exp(w_i^T x + b_i)}{\sum_k \exp(w_k^T x + b_k)}$$

Multi-class SVMS

Suppose that we just want the decision rule to satisfy

$$\frac{P(y = i|x)}{P(y = k|x)} \ge c, \text{ for } k \ne i$$

Taking logs as before,

$$(w_i^T x + b_i) - (w_k^T x + b_k) \ge 1$$
, for $k \ne i$

Multi-class SVMS

Now we have the quadratic program for multi-class SVMs.

$$\min \frac{1}{2} ||w||^2$$

s.t. $(w_{y_n}^T x_n + b_{y_n}) - (w_k^T x_n + b_k) \ge 1$, for $n = 1 ... N, k \ne y_n$

LR and SVMs are closely linked

- Both can be viewed as taking a probabilistic model and miminizing some cost associated with the likelihood ratio.
- This allows use to extend both models in principled ways.

Which to Use?

Logistic regression

- Gives calibrated probabilities that can be interpreted as confidence in a decision.
- Unconstrained, smooth objective.
- Can be used within Bayesian models.

SVMs

- No penalty for examples where the correct decision is made with sufficient confidence, which can lead to good generalization.
- Dual form gives sparse solutions when using the kernel trick, leading to better scalability.