
Lagrange Duality & PCA
CS 411 Tutorial

Wenjie Luo
 November 7, 2014



Lagrange 
Duality 



PCA 
Tutorial



Dimensionality Reduction 
  We have some data 

  D may be huge, etc. 

  We would like to find a new representation 
where K << D. 
  For computational reasons. 
  To better understand (e.g., visualize) the data. 
  For compression. 
  … 

  We will restrict ourselves to linear transformations 
for the time being. 



Example 
  In this dataset, there are only 3 degrees of  

freedom: horizontal and vertical translations, and 
rotations. 

  Yet each image contains 784 pixels, so X will be 
784 elements wide. 



Abstract Visualization 



What is a Good 
Transformation? 

  Goal is to find good directions u 
that preserves “important” aspects of  
the data. 

  In a linear setting: 

  This will turn out to be the 
top-K eigenvalues of  the 
data covariance. 

  Two ways to view this: 
1.  Find directions of  maximum variation 

2.  Find projections that 
minimize reconstruction error 



Principal Component Analysis 
(Maximum Variance) 

where the sample mean and covariance are given by: 

i.e.,
variance of  
the projected 
data 



Finding u1 
We want to maximize

subject to  
(since we are finding a direction) 

 Use Lagrange multiplier  to express this as 



Finding u1 
  Take derivative and set to 0 

  So      is an eigenvector of  S with eigenvalue 

  In fact it must be the eigenvector with maximum 
eigenvalue, since this minimizes the objective. 



Finding u2 

Lagrange form: 

Finding β: 



Finding u2 

0 

Lagrange form: 

Finding α2: 

So α2 must be the second largest eigevalue of  S. 



PCA in General 
  We can compute the entire PCA solution by just 

computing the eigenvectors with the top-k 
eigenvalues. 

  These can be found using the singular value 
decomposition of  S. 



  How do we choose the number of  components? 

  Look at the spectrum of  covariance, pick K to capture most of  
the variation. 

  More principled: Bayesian treatment (beyond this course). 



Demo 
  Eigenfaces 



Principal Component Analysis 
(Minimum Reconstruction Error) 
  We can also think of  PCA as minimizing the 

reconstruction error of  the compressed data. 

  We will omit the details for now, but the key is that we 
define some K-dimensional basis such that: 

  The solution will turn out to be the same as the 
minimum variance formulation. 



Reconstruction 
  PCA learns to represent vectors in terms of  sums 

of  basis vectors. 

  For images, e.g., 



PCA for Compression 

D in this slide is the same as K in the previous slides 



Summary



Thank You ;-)
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