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Abstract. Existing approaches to non-rigid 3D reconstruction either
are specifically designed for feature point correspondences, or require
a good shape initialization to exploit more complex image likelihoods.
In this paper, we formulate reconstruction as inference in a graphical
model, where the variables encode the rotations and translations of the
facets of a surface mesh. This lets us exploit complex likelihoods even in
the absence of a good initialization. In contrast to existing approaches
that set the weights of the likelihood terms manually, our formulation
allows us to learn them from as few as a single training example. To
improve efficiency, we combine our structured prediction formalism with
a gradient-based scheme. Our experiments show that our approach yields
tremendous improvement over state-of-the-art gradient-based methods.

1 Introduction

Monocular non-rigid surface reconstruction has received increasing attention in
recent years. Existing approaches to tackling this problem can be classified into
(i) non-rigid structure-from-motion techniques [4, 27, 8] that exploit the avail-
ability of multiple images of different deformations to reconstruct both 3D points
and camera motion, and (ii) template-based methods [23, 18, 5] that rely on a
reference image with known 3D shape to perform reconstruction from a single
additional image of the deformed surface. In most cases, the aforementioned
methods are specifically designed to handle feature point correspondences, and
as a consequence, cannot make use of richer image information, such as full sur-
face texture, or surface boundaries. More importantly, these methods become
unsuitable when too few feature points can be reliably detected and matched.

Several attempts have been proposed to leverage more complex image likeli-
hoods [20, 21]. However, the resulting methods rely on gradient-based optimiza-
tion schemes that can easily get trapped in the many local maxima of these
complex, non-smooth likelihoods. As a consequence, these methods have only
been used either for frame-to-frame tracking, where the previous frame provides
a good initialization [20], or when large amounts of training data are available
to learn a discriminative predictor that produces a good initialization [21].

In contrast, in this paper we propose to employ a global optimization frame-
work to exploit complex image likelihoods for monocular non-rigid reconstruc-
tion. As our optimization is more global than gradient-based methods, it is also
more robust to local maxima, thus yielding accurate reconstructions even in the
absence of a good initialization, as illustrated in Fig. 1. More specifically, we
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Gradient-based method Our approach

Fig. 1. Reconstructing a piece of cardboard from a single input image. (Left)
Reconstruction obtained with a gradient-based method. (Right) Our reconstruction.

represent a surface as a triangulated mesh and formulate the 3D reconstruc-
tion problem as inference in a conditional Markov random field (CRF), where
the variables to recover are the rotations and translations of the individual mesh
facets. To handle such continuous variables, we adopt particle convex belief prop-
agation [16] as our inference algorithm: We iteratively draw random samples
around the current solution for each variable, compute the MAP estimate of
the discrete CRF defined by these samples using convex belief propagation [12],
and update the current solution with this MAP estimate. This strategy lets us
effectively explore the 3D shape space even when no good initialization is pro-
vided. Furthermore, given very few training pairs of images and 3D shapes, we
employ a structured prediction learning algorithm [11] to find the weights of the
individual terms in the likelihood, thus avoiding having to set them manually as
is traditionally done in 3D reconstruction algorithms (e.g., [20, 18, 21, 5]).

To reduce the computational burden of performing global optimization on
large graphs (i.e., fine meshes), we introduce a coarse-to-fine scheme that com-
bines the advantages of global optimization and gradient-based approaches. Our
strategy consists in first performing structured prediction with a coarse mesh,
and then using the coarse solution as initialization to a gradient-based method.
Since our coarse structured prediction yields a good initial shape estimate, this
strategy has proven very effective in practice. We demonstrate the benefits of
our approach in a variety of scenarios ranging from well-textured surfaces to
very poorly-textured ones. Comparison against gradient-based techniques clearly
shows that our approach is much better adapted to 3D reconstruction from a
single image than state-of-the-art methods.

2 Related Work

Monocular non-rigid 3D shape recovery is a very challenging problem with many
ambiguities due to noisy measurements, as well as to the wide range of deforma-
tions that objects may undergo. Throughout the years, approaches to tackling
this problem have evolved, starting from the early methods that attempted to
model the physical behavior of deformable surfaces [13, 17, 14, 15], to the more
recent ones that tried to learn this behavior from data [6, 3].

In recent years, two main trends have emerged for non-rigid 3D shape recov-
ery: Non-rigid structure-from-motion (NRSfM) and template-based reconstruc-
tion. NRSfM techniques [4, 27, 25, 1, 8] work under the assumption that multiple
images of the surface undergoing different deformations are available. These
methods try to recover the 3D locations of feature points, as well as the cam-
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era motion. As in our approach, [24] also reconstructs individual triangles, but
in the NRSfM setting. [19] utilizes discrete optimization for NRSfM. However,
their discrete problem is not directly for reconstruction purposes, but only to
assign feature points to local patches. As opposed to NRSfM, template-based ap-
proaches [23, 18, 5] work with a single input image, but assume that the camera
is calibrated and that a reference image with known surface shape is available.
A successful shape prior in these methods is to encourage the surface to deform
isometrically. Our work falls into the template-based category and exploits a
similar isometry prior. However, whereas all the above-mentioned methods rely
on feature points, our approach lets us exploit much richer image information.

Techniques that employ different sources of information, such as shading [26]
or contours [10], have been developed. However, contour-based approaches are
only applicable to a specific class of surfaces, and shape-from-shading methods
make strong assumptions on the lighting conditions. More directly related to
our approach are the methods of [20, 21], where general image losses were also
employed. However, due to the non-convexity of such losses and the use of a
gradient-based method, [20] was only applied in a frame-to-frame tracking sce-
nario. Furthermore, both techniques heavily rely on the availability of relatively
large amounts of training data to learn either a deformation model [20], or a dis-
criminative predictor to initialize a gradient-based method [21]. While we also
exploit training data to learn the weights of the different terms in our likelihood,
we require much fewer training examples. Furthermore, we utilize a global op-
timization method, which lets us reconstruct surfaces from individual images.

3 Structured Prediction for Non-rigid Surfaces

In this section, we introduce our surface parametrization and then present our
structured prediction approach to non-rigid 3D reconstruction. Finally, we de-
scribe the gradient-based method used to refine the structured prediction results.

3.1 Surface Parametrization

We represent non-rigid surfaces as triangulated meshes, and, following a popular
and effective trend [23, 18, 5], encourage the surface to deform isometrically by
preserving the distances between neighboring mesh vertices. Furthermore, as our
method falls into the template-based category, we assume that we are given a
reference image in which the 3D shape of the surface is known.

Since the mesh already forms a graph, it might seem natural to use the 3D
vertex positions as variables. However, some image likelihoods, such as template
matching, are defined over a facet. Therefore, employing a parametrization in
terms of 3D vertices will require 3-way potentials, i.e., terms that involve three
variables. As the complexity of message passing inference in graphical models is
a function of the order of the potentials, as well as of the cardinality of the label
set for each random variable, employing 3-way potentials is computationally pro-
hibitive, thus making this parametrization unappealing. Instead, as illustrated in
Fig. 2(a,b), we parametrize the surface in terms of the rotations and translations
of the mesh facets, which, as shown below, only requires pairwise potentials.
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(a) (b) (c) (d)

Fig. 2. Structured prediction with a mesh. (a) Triangulated mesh. (b)
Parametrization in terms of facet rotations and translations. (c) Graphical model. Note
that, to avoid clutter, only two longer range (dashed) edges are shown. (d) Illustration
of the facet coherence potential (top) and the smoothness potential (bottom).

More specifically, the 3D location of the kth vertex of facet i is given by

yki = Ri(ỹ
k
i − c̃i) + ti , Riȳ

k
i + ti , (1)

where Ri and ti are the rotation matrix and translation of the facet, respectively,
ỹki is the location of the kthvertex of facet i in the reference mesh, and c̃i is the
centroid of facet i in the reference mesh. We represent the rotation Ri in terms
of a 3D vector of Euler angles θi. Note that other parameterizations, such as
quaternions are also possible. The location of a 3D mesh vertex can then be
obtained by averaging the above locations over all the facets that contain this
vertex. Of course, this requires preventing the rotations and translations of these
facets from disagreeing over the location of the shared vertex. As will be shown
in the next section, this can be expressed as a pairwise potential.

3.2 Non-rigid 3D Reconstruction as Inference in a Graphical Model

Given our parametrization in terms of facet rotations and translations, we now
describe our approach to non-rigid 3D reconstruction. We formulate monocular
shape recovery as an inference problem in a CRF, where the random variables are
continuous. The joint distribution over the random variables can be factorized
into a product of non-negative potentials

p(z) = p(R, t) = Z−1
∏

i
ψi(zi)

∏
α
ψα(zα) , (2)

where z = (R, t) is the set of all random variables, with R and t containing
the rotations and translations for all facets, and Z is the partition function. The
potentials ψi(zi) and ψα(zα) encode functions over single variables and groups of
variables, respectively. Inference is performed by computing the MAP estimate

z∗ = argmaxz

∏
i
ψi(zi)

∏
α
ψα(zα) . (3)

To solve our inference problem over continuous variables, we rely on particle
convex belief propagation (PCBP) [16]. PCBP is an iterative algorithm that
works as follows: Particles are sampled around the current solution for each
random variable. These samples act as labels in a discrete CRF which is solved
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to convergence using convex belief propagation [12]. The current solution is then
updated with the MAP estimate returned by convex BP. This process is repeated
for a fixed number of iterations. In practice, we use the distributed message
passing algorithm of [22] to solve the discrete CRF at each iteration.

Algorithm 1 depicts PCBP for our formulation of non-rigid 3D reconstruc-
tion. In the algorithm, we denote by R̂i and t̂i the discretized variables, which
are grouped in the set ẑ. At each iteration, to increase the accuracy of the re-
construction, we decrease the values of the standard deviations σr and σt of the
Gaussian distributions from which the discretized random variables are drawn.

Algorithm 1 PCBP for non-rigid 3D reconstruction

Set N , ηr and ηt
Initialize Ri and ti from the template mesh ∀i, as well as σr and σt
for s = 1 to #iters do

Draw N random samples of Euler angles θji ∝ N (0, σr), ∀i
Compute the candidate discretized rotations R̂j

i = Rj
i (θ

j
i )Ri, ∀i, j

Draw N random samples of candidate discretized translations t̂ji ∝ N (ti, σt), ∀i
Solve the discrete CRF: (R̂∗, t̂∗) = argmaxẑ

∏
i ψi(ẑi)

∏
α ψα(ẑα)

Update Ri ← R̂∗
i and ti ← t̂∗i , ∀i

Update σr ← ηrσr and σt ← ηtσt
end for

An artifact of using discretized variables with non-smooth potentials is that a
solution around a local maximum might have a higher value than one around the
global maximum. The iterative scheme will then re-sample around this relatively
bad solution and, with decreasing σr and σt, potentially be driven away from
the global maximum. To circumvent this issue, we introduce a scheme that keeps
track of multiple solutions at each iteration of PCBP. Given all the discrete
candidates for all the variables, we find an approximate MAP solution using
convex BP. We then remove the labels corresponding to this solution and find
an approximate solution to the MAP problem defined by the remaining labels.
This can be done in an iterative manner, thus yielding M solutions around which
we can then sample N/M values for the next iteration of PCBP. Note that even
if we could solve the NP-hard discrete inference problem exactly, these solutions
would not necessarily truly be the M best ones, since combinations of their
labels are not considered as potential solutions (e.g., the second solution cannot
contain labels used in the first solution). However, this allows for more variety in
the candidate solutions, and the labels can potentially be combined at the next
PCBP iteration. Note that other algorithms, such as [9, 2], could also be used to
generate candidate solutions. In the last iteration of PCBP, we only compute a
single MAP estimate, which we take as our final reconstruction.

In the remainder of this section, we describe the different potentials that we
used in our experiments. In particular, we define three types of image potentials
to handle feature point correspondences, template matching and surface bound-
ary likelihoods. These likelihoods are the ones typically used in gradient-based
methods [20, 21]. Additionally we employ two types of shape potentials encoding
coherence of the facets and surface smoothness. Taken together, these potentials
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yield a graph such as the one depicted by Fig. 2(c). For clarity, we describe the
potentials in the log domain, i.e., wTφ = log(ψ). We define a weight for each
type of potential, and as described later, learn the weights using [11].

Feature Point Correspondences: Although our main focus is to go beyond
feature point correspondences, we show that our formulation also remains pair-
wise in this case. We make use of the template mesh to establish correspondences
between a 3D point expressed in barycentric coordinates with respect to the facet
it lies on and a 2D point in the input image. In the camera referential, the fact
that a 3D point j on facet i reprojects at image location (uj , vj) can be written
as

A

3∑
k=1

bkjy
k
i = A

3∑
k=1

bkj
(
Riȳ

k
i + ti

)
= dj

(
uj vj 1

)T
, (4)

where bkj is the barycentric coordinate of point j with respect to the kthvertex yki
of facet i to which the point belongs, A is the matrix of known internal camera
parameters, and dj is an unknown scalar encoding depth.

We define pairwise potentials φrαi
(Ri, ti) by summing the negative reprojec-

tion errors of each detected feature point belonging to one particular facet. To
this end, let us define the projection of point j on facet i as

ûj(Ri, ti) =
A1

∑3
k=1 b

k
j

(
Riȳ

k
i + ti

)
A3

∑3
k=1 b

k
j

(
Riȳki + ti

) , v̂j(Ri, ti) =
A2

∑3
k=1 b

k
j

(
Riȳ

k
i + ti

)
A3

∑3
k=1 b

k
j

(
Riȳki + ti

) , (5)

where Ak is the kth row of A. The potential for facet i can then be written as

φrαi
(Ri, ti) = −

∑
j∈F(i)

∥∥(ûj(Ri, ti)− uj , v̂j(Ri, ti)− vj
)∥∥2

2
, (6)

where F(i) is the set of feature points belonging to facet i. This potential is
pairwise, as it is a function of the rotation and translation of a single facet.

Template Matching: For template matching, each facet in the reference mesh
is treated as a template. We compute the normalized cross-correlation between
the texture under the facet in the reference image and the texture under the
deformed facet in the input image. This can be done by sampling the barycen-
tric coordinates of the facet and retrieving the intensity values at the 2D image
locations corresponding to the projected sampled 3D facet points. In our for-
malism, the intensity values for facet i can be stored in a vector qi, such that
each element j is given by qji = I

(
ûj(Ri, ti), v̂

j(Ri, ti)
)
, where I(u, v) is the

intensity value at image location (u, v), and (ûj , v̂j) are the projections of the
points at the sampled barycentric coordinates.

Let q̂i and q̃i be the mean subtracted vectors of intensity values in the input
image and in the reference image, respectively. A template matching potential
for facet i can then be written as

φtαi
(Ri, ti) =

(
q̂Ti q̃i

)(∑
j

(
q̂ji

)2∑
j

(
q̃ji

)2)−1/2
. (7)
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As for correspondences, this potential only depends on the rotation and trans-
lation of a single facet, and is therefore pairwise. Note that this potential truly
depends on the locations of 3 vertices. Therefore, had we used vertex locations
to parametrize our problem instead of facet rotations and translations, we would
not be able to decompose this term in a sum of unary and pairwise potentials.

Surface Boundary: To account for object boundaries, we make use of the dis-
tance transform D of the edge image obtained from the input image with Canny’s
algorithm. D encodes the distance of each pixel to the closest edge, which has
the advantage of being smoother than the edge image itself. We sample the
barycentric coordinates of the boundary mesh edges, and project the resulting
3D points in D. Given the barycentric coordinates bkj of points sampled on an
edge belonging to facet i, we can then write the edge potential

φeαi
(Ri, ti)=−D

(
ûj(Ri, ti), v̂

j(Ri,Ti)
)
, (8)

where (ûj , v̂j) are the projected sampled barycentric coordinates, which now
only depend on the 2 vertices that define the mesh edge (i.e k ranges up to 2 in
Eq. 5). Once again, this potential depends on a single facet, and is thus pairwise.

Facets Coherence: As mentioned in Section 3.1, optimizing the rotations and
translations of the mesh facets independently may lead to disagreements over the
location of the vertices shared by neighboring facets. As a consequence, 3D ver-
tices belonging to multiple facets, computed by averaging the locations predicted
by the facets, will be distant from the individual predictions. To prevent this,
we include a potential that encourages facets sharing an edge to agree on the
predictions of the two vertices defining the edge. Since this involves two facets,
it may seem that the resulting potential will be of order 4 (i.e., 2 rotations and
2 translations). However, as shown below, our formulation has the advantage of
decomposing the potential into a sum of unary and pairwise terms.

Let i1 and i2 be the indices of two facets sharing a mesh edge, as illustrated
in Fig. 2(d). Let us denote by y1

i1
and y1

i2
the first pair of corresponding vertices

in the two facets. The squared distance between these corresponding points can
be written as

(d1i1,i2)2 =
∥∥y1

i1 − y1
i2

∥∥2
2

=
∥∥Ri1 ȳ

1
i1 + ti1 −Ri2 ȳ

1
i2 − ti2

∥∥2
2
. (9)

By expanding the previous squared distance, we obtain

(d1i1,i2)2 = ȳ1T

i1 RT
i1Ri1 ȳ

1
i1 + tTi1ti1 + ȳ1T

i2 RT
i2Ri2 ȳ

1
i2 + tTi2ti2 + 2ȳ1T

i1 RT
i1t

1
i1 (10)

+ 2ȳ1T

i1 RT
i1Ri2 ȳ

1
i2 + 2ȳ1T

i1 RT
i1ti2 + 2tTi1Ri2 ȳ

1
i2 + 2tTi1ti2 + 2ȳ1T

i2 RT
i2ti2 .

Note that the first and third terms are constant due to the properties of rotation
matrices. More importantly, note that all the terms are only functions of at
most two variables. Therefore, the resulting potential obtained by summing the
squared distances of both pairs of corresponding vertices, written as

φcαi1,i2
(Ri1 , ti1 ,Ri2 , ti2) = −(d1i1,i2)2 − (d2i1,i2)2 , (11)

is a sum of unary and pairwise terms.
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Surface Smoothness: In addition to enforcing coherence of the facets, one
might also want to encode some knowledge about the possible surface defor-
mations. A classical example of this was introduced in the Active Contour
Model [13], where the contour is encouraged to remain smooth by penalizing
a quadratic function that approximates the sum of the square of the curvature
along the contour. Following a similar idea, and assuming that the mesh forms
a regular grid, we enforce smoothness by encouraging two aligned edges (i.e.,
horizontal or vertical edges in the grid) to remain straight.

Let i1 and i2 be the indices of two facets, each of which contains one of two
aligned edges, as illustrated in Fig. 2(d). Furthermore, without loss of generality,
let us assume that y2

i1
and y1

i2
correspond to the vertex shared by both facets.

An energy encoding the squared curvature of these two edges can be written as

c2i1,i2 =
∥∥−Ri1 ȳ

1
i1 − ti1 + Ri1 ȳ

2
i1 + ti1 + Ri2 ȳ

1
i2 + ti2 −Ri2 ȳ

2
i2 − ti2

∥∥2
2

=
∥∥−Ri1 ȳ

1
i1 + Ri1 ȳ

2
i1 + Ri2 ȳ

1
i2 −Ri2 ȳ

2
i2

∥∥2
2
, (12)

where we computed the location of the vertex shared by the two edges as the
average over both facet predictions. Note that the translation variables have
cancelled each other out. As a consequence, it is obvious that this decomposes
into a sum of terms that involve at most two variables. Therefore, we can write
the smoothness potential

φsαi1,i2
(Ri1 ,Ri2) = −c2i1,i2 , (13)

which is purely pairwise, since the unary terms involving the rotations become

constant (i.e., as before, ȳ1T

i1
RT
i1

Ri1 ȳ
1
i1

= cst).
Other shape regularizers have been used for 3D reconstruction and could pos-

sibly be incorporated into our formalism. However, as shown in our experiments,
these general potentials are sufficient to perform accurate 3D reconstruction.

3.3 Learning the Potential Weights

Given a few training examples where both image and ground-truth 3D shape are
available, structured prediction methods can also be used to learn the weights
of the different potentials of interest. This is in contrast with most existing
approaches to non-rigid 3D reconstruction where the weights are typically set
manually. We rely on the family of structured prediction problems introduced
in [11] to learn our weights. In particular, we make use of their CRF formulation
with `2 regularization (i.e., following the notation of [11], ε = 1 and p = 2). Since
this formulation is designed for discrete variables, we draw N sample rotations
and translations for each facet, and keep them fixed for the entire procedure.

In addition to the potentials defined above, learning the weights requires a
loss function encoding the error of a configuration with respect to the ground-
truth reconstruction. Here, we use a squared point-to-point distance. More specif-
ically, for each facet i, the loss can be written as

∆(Ri, ti) =

3∑
k=1

∥∥Riȳ
k
i + ti − y̆ki

∥∥2
2
, (14)
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where y̆ki is the ground-truth location of the vertex corresponding to the kth

vertex of facet i. It can easily be checked that this loss also consists of a sum of
unary and pairwise terms. See [11] for more details on the learning method.

As shown in our experimental evaluation, only very few training examples are
required to learn the potential weights. This is in contrast with reconstruction
techniques that exploit learned deformation models, such as [20], which typically
require many more training examples. This makes our approach more practical
to deploy in general scenarios.

3.4 Shape Refinement with Gradient-based Optimization

Performing PCBP on large graphs (i.e., fine meshes) can quickly become com-
putationally prohibitive. To overcome this issue, we follow a simple coarse-to-
fine strategy: We first compute an initial solution on a coarse mesh using the
structured prediction approach described above, and then refine this solution
using a gradient-based method. Since structured prediction provides us with a
good initial shape estimate, a gradient-based method becomes very well suited.
More specifically, we follow the gradient-based approach of [23] for inextensible
surfaces, which directly optimizes the 3D locations of the mesh vertices. This
approach was extended in [21] to handle more general image likelihoods than
the reprojection error of feature points for which it was originally designed.

Let y be the 3Nv-dimensional vector of mesh vertices, initialized with our
subdivided coarse structured prediction. We refine the 3D surface shape by solv-
ing the optimization problem

min
y
−
∑
i

wiφ
′
i(y)−

∑
α

wαφ
′
α(y) (15)

s. t. ‖yj − yk‖22 = l2j,k ∀(j, k) ∈ E ,

where lj,k is the known reference distance between vertices yj and yk, and E
is the set of mesh edges. φ′i and φ′α are the same potentials as for structured
prediction, but expressed in terms of the mesh vertices.

Following [23, 21], we obtain the solution to this optimization problem by
iteratively linearizing the constraints and performing a few (i.e., 100 in practice)
gradient descent steps in the null space of the linearized constraints. This scheme
is carried out until convergence, or until a maximum number of iterations has
been reached. More details on the overall procedure can be found in [23, 21].

4 Experimental Evaluation

We demonstrate the effectiveness of our method in various scenarios including
feature point correspondences, as well as more complex image likelihoods with
well- and poorly-textured surfaces. For all our experiments, we ran 20 iterations
of PCBP, and initialized σr = π/8 and σt = 10, with ηr = ηt = 0.75. We
used N = 100 states, except for the real images where N = 200. For the first
iteration, we used the reference shape as initialization, thus yielding identity
rotation matrices and translations corresponding to the centroids of the facets.
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Fig. 3. Reconstructing a 2×2 mesh from correspondences. (a) Sample deformed
mesh. 3D error as a function of (b) the 2D input noise, and (c) the number of training
examples. Note that with few training examples, Salz10 performs poorly. In contrast,
our approach performs well independently of the number of training examples.

At each iteration, we kept either M = 1 or M = 3 solutions around which to
re-sample. Corresponding results are denoted by Ours 1 Best and Ours 3 Best.

We compare our results against two baselines. The first one, later denoted
by Shen09, corresponds to [23] initialized with the reference shape, with the
extension of [21] to allow for more general image likelihoods than feature point
reprojection error. The second baseline, later denoted by Salz10, follows the
method of [21] and uses a Gaussian process (GP) predictor to initialize the shape
before gradient-based optimization. To learn the GP predictor, we used the same
training shapes as to learn the potential weights, and employ either noisy 2D
point locations, or PHOG descriptors as input. To confirm that a simple coarse-
to-fine optimization scheme is not enough to solve the problem, we also compare
our results with a coarse-to-fine version of [23], denoted by Shen09 CTF. For all
the baselines, we used the same image likelihoods as for our method, together
with the weights learned with our CRF formulation.

In the remainder of this section, we present our results on synthetic data,
motion capture data, and real images. 3D reconstruction errors are computed
as the mean vertex-to-vertex distance between the ground-truth meshes and the
reconstructions, averaged over 100 test images and for 5 train/test partitions.

Synthetic Data: As a first example, we consider the case of a 100 × 100mm
mesh made of two facets, whose common edge act as a hinge, as depicted by
Fig. 3(a). Deformations of this mesh were generated by randomly setting the
angle between the two facets, as well as the global motion of the mesh. In this
scenario, neither smoothness potential nor coarse-to-fine scheme were used.

To evaluate the performance of our approach on the popular problem of 3D
reconstruction from feature point correspondences, we projected the deformed
meshes in a 512× 512 image using a known camera, added zero mean Gaussian
noise with standard deviations {0, 2, 6, 10} pixels to the 2D projections of the
vertices, and used these noisy 2D locations as image measurements. We learned
our potential weights and the GP predictor of Salz10 with {1, 5, 10} training
examples. Fig. 3(b,c) depict the 3D reconstruction errors as a function of the
2D measurement noise and of the number of training examples. Our approach
outperforms the baselines, especially when keeping multiple solutions throughout
the PCBP iterations. Note that with few training examples, Salz10 performs
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Fig. 4. Reconstructing a 2× 2 mesh from well- and poorly-textured images.
(a) Sample well-textured input image. 3D error as a function of (b) the 2D input noise,
and (c) the number of training examples. (d-f) Similar figures for the poorly-textured
case. Note that our results are much more accurate than the baselines.

quite poorly. In contrast, our approach is very robust to the number of training
examples; Even a single one is enough for us to learn the potential weights.

While feature point correspondences are an interesting source of information,
our goal here is to address the problem of using more complex image likelihoods.
To this end, we applied two different textures to the deformed meshes to create
synthetic images such as those depicted in Fig. 4(a,d). We then added uniform
random noise to the image intensities with maximum values of {0, 100, 200}.
For all approaches, we used template matching and boundary likelihoods to
reconstruct the surfaces. Fig. 4(b,c,e,f) depict the 3D errors as a function of the
noise variance and of the number of training examples. In the well-textured case,
our method yields a huge improvement over the baselines, thus fully showing
the benefits of global optimization over local one. While improvement for the
poorly-textured images is slightly smaller, it remains quite large. The lack of
texture yields more ambiguities, which explains why keeping multiple solutions
throughout PCBP yields significantly better results.

Motion Capture Data: The second set of experiments was performed using
data obtained with a motion capture system [7]. The data consists of 3D recon-
structions of reflective markers placed in a 9 × 9 regular grid of 160 × 160mm
on a piece of cardboard deformed in front of 6 infrared cameras. Therefore, as
opposed to the previous experiments, the deformations come from a real surface.
Since no images are provided with the 3D data, we synthesized well- and poorly-
textured images as before. In this experiment, we made use of our coarse-to-fine
scheme, and performed our initial structured prediction with a 3× 3 mesh. We
used 5 training examples to learn the potential weights. We performed recon-
struction with and without the smoothness prior to evaluate the performance of
our algorithm when relying only on image information, in addition to the facet
coherence term which is equivalent to the distance constraints of the baselines.
Furthermore, since for the same deformation, a fine mesh is actually smoother
than a coarse one, we also computed results by increasing the smoothness weight
manually for refinement. Note that this was also performed for the baselines.
Fig. 5(a,b) depict the 3D errors with no smoothness for the well-textured sur-
face with a coarse mesh and after refinement, respectively. Our approach yields
much more accurate reconstructions than the baselines. In Fig. 5(c-e), we show
the 3D errors when using the smoothness term. Note that with this nice texture,
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Fig. 5. Reconstructing a piece of cardboard from well-textured images. 3D
error when (a) using a coarse (3 × 3) mesh and no smoothness, and (b) refining the
results of (a) with a gradient-based method. (c-d) Similar results as (a-b) but with
smoothness. (e) 3D errors when manually increasing the influence of the smoothness
term for refinement. Shen09 and Salz10 were directly obtained using a fine mesh. Note
that our coarse results give a much better initialization for the refinement step.
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Fig. 6. Reconstructing a piece of cardboard from poorly-textured images.
Similar plots as in Fig. 5. Note that here, the smoothness term has more influence on our
results. Interestingly, increasing smoothness does not help the baselines significantly.

smoothing has very little effect on the results. Fig. 6 depicts similar results for
a poorly-textured surface; Without smoothness, our coarse results are roughly
on par with Shen09. Interestingly, however, we outperform the baselines after
refinement. This shows that our coarse results still provide a better initialization
than the coarse version of Shen09. Note that with this poorly-textured surface,
smoothness improves reconstruction, which seems natural since image informa-
tion is much weaker. This, however, is not noticeably the case for the baselines.

Real Images: Finally, to show that our approach can also be applied to real
images, we used two sequences of different deforming materials [7]. While these
are video sequences, all the images were treated independently and initialized
from the template mesh to illustrate the fact that our approach can perform
reconstruction from a single input image. Since no training data is available
for these surfaces, we used a single training example consisting of the template
mesh with reference image to learn the potential weights. In Fig. 7, we visually
compare our reconstructions to those of Shen09. We do not show the results
of Salz10, since with the template mesh as single training example, it would
always predict the reference shape, and thus perform the same as Shen09. For the
well-textured surface, Shen09 manages to reconstruct fairly large deformations.
However, as illustrated by the two leftmost columns of the figure for two very
similar frames, it is less consistent than our approach. For the poorly-textured
surface, the baseline is completely unable to cope with large deformations. Our
approach, however, still manages to reconstruct the surface. In the rightmost
column of the figure, we show a failure case of our approach, where the facet
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Fig. 7. Reconstructing surfaces from real images. From top to bottom: Our
reconstructions reprojected on the original images, side view of our reconstructions,
reconstructions obtained with Shen09 CTF reprojected on the original images, side
view of those reconstructions. For a well-textured surface, the baseline manages to
reconstruct fairly large deformations, but is less consistent than our approach, as il-
lustrated for two very similar frames. For a poorly-textured surface, the baseline only
manages to reconstruct small deformations, whereas our approach can deal with much
larger ones. The rightmost column shows a failure of our method due to an ambiguity
in the facet reconstruction and to the use of a coarse mesh.

orientation is ambiguous. Furthermore, the topology of the coarse mesh makes it
harder to bend the surface along this diagonal. Note, however, that as opposed
to the baseline, we still recover some degree of surface deformation.

5 Conclusion

We have introduced an approach to non-rigid 3D reconstruction of a potentially
poorly-textured surface from a single image when no good initialization is avail-
able. To this end, we have formulated reconstruction as a structured prediction
problem, and have shown that the popular image likelihoods decompose into
unary and pairwise potentials, thus making inference algorithms practical for
our purpose. We have demonstrated the benefits of our approach over state-of-
the-art gradient-based methods in various scenarios, and have shown tremendous
improvement over existing baselines. The current main limitation of our tech-
nique comes from the computational burden of performing structured prediction
with large graphs. However, as research in that field advances, our approach will
be applicable to denser and denser meshes. Studying these advances, as well as
other image information such as shading, will be the focus of our future work.
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