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Map-Based Probabilistic Visual Self-Localization
Marcus A. Brubaker, Andreas Geiger, and Raquel Urtasun,

Abstract—Accurate and efficient self-localization is a critical problem for autonomous systems. This paper describes an affordable
solution to vehicle self-localization which uses odometry computed from two video cameras and road maps as the sole inputs. The
core of the method is a probabilistic model for which an efficient approximate inference algorithm is derived. The inference algorithm is
able to utilize distributed computation in order to meet the real-time requirements of autonomous systems in some instances. Because
of the probabilistic nature of the model the method is capable of coping with various sources of uncertainty including noise in the visual
odometry and inherent ambiguities in the map (e.g., in a Manhattan world). By exploiting freely available, community developed maps
and visual odometry measurements, the proposed method is able to localize a vehicle to 4m on average after 52 seconds of driving on
maps which contain more than 2,150km of drivable roads.

Index Terms—localization, visual odometry, OpenStreetMaps, map
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1 INTRODUCTION

One of the fundamental tasks necessary for autonomous sys-
tems is to be able to accurately determine its position at all
times. This is necessary not only for core tasks like path
planning [1] and navigation [2], but also to simplify other tasks
such as scene understanding [3], [4], [5]. Despite decades of
research, self-localization is still an exciting open problem. In
this paper we are interested in building affordable and robust
solutions to this problem in the context of autonomous driving.

Currently, the most common self-localization technology is
the Global Positioning System (GPS) which utilizes satellites
in medium Earth orbit to provide location information. While
popular due to its low cost, GPS has limitations which
make it potentially unsuitable as a stand-alone technology for
autonomous systems. Notably, its signal is not always available
and its localization can become imprecise, e.g., in the presence
of skyscrapers, tunnels or jammed signals. While this may not
be problematic when helping a human navigate, it can have
catastrophic consequences for autonomous devices like self-
driving cars. Further, in applications involving underground
or indoor navigation where GPS is completely unavailable an
alternative approach is required.

Several alternatives have been developed in the past few
years, which frame self-localization as a retrieval task. To-
wards this goal, the “world” is represented in terms of visual
features [6], [7], [8], [9], [10], [11] or 3D point clouds [12],
[13], [14], [15], and localization is performed by retrieving
images or point clouds which are similar to the current
scene. In combination with GPS, impressive results have
been demonstrated, e.g., at the DARPA Urban Challenge
[16] or the Google self-driving car which has autonomously
driven over 500,000 km without incident as of August 20121.

• This work was supported by a postdoctoral fellowship from the Natural
Science and Engineering Research Council of Canada (NSERC).

1. http://googleblog.blogspot.ca/2012/08/the-self-driving-car-logs-more-
miles-on.html

However it remains unclear if maintaining an up-to-date world
representation will be feasible given the computation, memory
and communication requirements. Furthermore, privacy issues
need to be considered as recording and storing such data might
be illegal in some countries.

All aforementioned approaches have in common that they
require significant knowledge of the appearance of the world
for localization to be possible. In contrast, in this paper
we propose an approach which is able to localize a vehicle
in places that have never before been seen. We take our
inspiration from humans, which are able to perform this task
while having only access to a rough cartographic description
of the environment.

In particular, we propose to exploit OpenStreetMap (OSM),
a free online community-driven map, which is free and con-
stantly updated, making our approach inexpensive. Towards
this goal, we derive a probabilistic map localization approach
that uses visual odometry estimates and OSM data as only
inputs. We demonstrate the effectiveness of our approach on
the KITTI visual odometry benchmark sequences [17]. As our
experiments show, we are able to self-localize our vehicle after
52 seconds of driving with an accuracy of 4 meters on a 18km2

map containing 2, 150km of drivable roads. A preliminary
version of this work was presented in [18].

2 RELATED WORK

The problem of map localization (sometimes known as the
kidnapped robot problem) has been traditionally approached
using Monte Carlo methods [12], [13], [14], [15]. Here,
the Markov assumption is used to maintain a particle-based
posterior representation of an agent’s pose, integrating laser or
visual observations. Typically, these methods operate only in a
small environment without providing any global (geographic)
positioning information. Furthermore, and most significantly,
they rely on more specific measurement sources (e.g., depth
measurements, sonar) and are restricted to small-scale environ-
ments (e.g., office scenes) where accurate 2D floor plans are
available. While the approach presented here is similar to these

http://googleblog.blogspot.ca/2012/08/the-self-driving-car-logs-more-miles-on.html
http://googleblog.blogspot.ca/2012/08/the-self-driving-car-logs-more-miles-on.html
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Fig. 1. The OpenStreetMap project: Free geographic data for the world. Left: Development and coverage of
OpenStreetMap from 2006-2012. Right: Screenshot of JOSM, a popular OSM editor, showing the level of annotation
detail for the intersection ’Mendelssohnplatz’ in Karlsruhe, Germany.

methods in that a recursive Bayesian filtering algorithm is
proposed, these methods use particle-based filtering techniques
which do not handle persistent uncertainty due to the well-
known issue of particle depletion. In contrast, the proposed
approach leverages analytic approximations, making it more
stable when ambiguities persist over long periods (e.g., see
Figure 5). Maps have been widely used to improve upon GPS
measurements as well as to fill in when signals are unavailable
or degraded [19], [20], [21], [22]. However, these methods
assume that a relatively accurate initial position has been
provided, e.g., from a recently lost GPS signal. In contrast,
this work assumes no knowledge of the position of the vehicle
beyond the gross region.

In computer vision place recognition methods attempt to
localize [6], [8], [10], [11], [23], [24], [25] or categorize
[26], [27], [28] an image, given a large database of geo-
referenced images. Often, hashing methods in combination
with a geometric verification step are employed to register
the camera view to a 3D model of the scene which has been
obtained a-priori. 3D input information is used in [29], where
regression forests are applied to localize an RGB-D camera
within an indoor scene. When video streams or time stamped
image sequences are available, temporal dependencies can be
modelled as well [7], [9], [30]. While some of the proposed
methods have been applied successfully to single landmarks
or even at city-scale, they either can’t provide the required
accuracy [8], [31] or they require a large amount of reference
images for building the models. However, creating an up-to-
date “world database” seems at best costly if not impractical.
While services such as Google Street View have been success-
ful at capturing images for many locations, much of the world
has still not been captured and maintaining updated images
will likely remain a challenge. Furthermore, vision-based place
recognition methods must be robust against changes in lighting
across day times and seasons [32] to achieve reliable and fail-
safe localization, a requirement hard to fulfill in practice. In
contrast, the maps used by our localization approach take up
only a couple of gigabytes for storing maps for the entirety
of planet earth2 and can be updated relatively quickly and
inexpensively.

When one assumes that the initial position is known, visual
odometry [33] yields relative motion estimates that can be
integrated to obtain an estimate for the agent’s current location.

2. http://wiki.openstreetmap.org/wiki/planet.osm

While impressive performance on the KITTI visual odometry
benchmark [17] has been demonstrated for example in [34],
[35], [36], the incremental nature of these methods inevitably
leads to drift, limiting the error of the leading methods at
around 1% in terms of translation and 0.003 deg/m in terms
of rotation.

Simultaneous Localization And Mapping (SLAM) methods
[37], [38], [39], [40], [41], [42], [43] are able to reduce this
drift by using landmarks and jointly optimizing over all or
a selection of poses and landmarks. Efficient optimization
strategies using incremental sparse matrix factorization [44] or
relative representations [45] have been proposed to make these
algorithms tractable and scalable. Due to the lack of texture
in indoor scenes, RGB-D approaches leveraging Microsoft’s
Kinect sensor have been proposed recently [46], [47], [48],
[49], [50], [51]. Drift can be further reduced by revisiting
places for several times and detecting loop closures in the
traveled trajectory [52], [53], [54], [55]. Incorporating these
constraints into the optimization leads to improved maps and
reduces the localization error. Unfortunately, SLAM methods
can only localize in maps that have been recorded a-priori
with a sensor setup similar to the one used at localization time
and their performance strongly depends on the frequency with
which places are revisited. In contrast, the proposed approach
enables geographic localization without knowledge of the
initial location, relies only on freely available OpenStreetMap
information and doesn’t assume loopy trajectories.

The task of localization in road network maps has also
been approached using so-called map matching techniques
[56], [57], [58], [59], [60], [61], [62]. With a goal similar to
ours, these methods are able to efficiently localize a query
map within a larger map region. While in principle such
query maps can be obtained by integrating visual odometry
measurements over time [63], neglecting drift can heavily
impact performance. A notable exception is [64] which aims
at localizing non-rigid subgraphs in a larger graph. However,
their algorithm applies only to small graphs with up to 100
nodes. By proposing a probabilistic map localization model
that explicitly models visual odometry measurements and their
noise characteristics we mitigate these problems and obtain
fast localization times even on very large road maps with more
than 2, 000km of drivable roads.

http://wiki.openstreetmap.org/wiki/planet.osm
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Fig. 2. Map Representation: This figure shows a simple
street map (left) and its corresponding graph representa-
tion (right). Directed street segments are represented as
nodes and edges define their connectivity.

3 VISUAL LOCALIZATION

The goal of this paper is to use one or two roof-mounted
cameras as well as a cartographic map of the environment
to self-localize a driving vehicle. The map contains streets
as line segments as well as intersection points, but no visual
appearance information. As such, the only information that can
be used for self-localization is the trajectory of the vehicle
and as such we propose the use of visual odometry. Note
that other sources of information such as the speedometer
can also be used, as they provide similar information. As the
trajectory resulting from the integration of visual odometry
is too noisy for direct shape matching in large maps due
to drift, here we propose a probabilistic approach to self-
localization that employs visual odometry measurements in
order to determine the instantaneous position and orientation
of the vehicle in a given map. We define a graph-based
representation of the map as well as a probabilistic model of
how a vehicle can traverse the graph. Furthermore, we derive
a filtering algorithm to perform inference in the probabilistic
model, which exploits the structure of the graph and properties
of the model to efficiently perform approximate inference. In
order to keep running times reasonable, we propose to manage
the complexity of the mixture models using a novel algorithm
for simplifying Gaussian Mixture models which are used to
represent the posterior distribution. In the remainder of the sec-
tion, we first discuss the employed map information, followed
by our probabilistic model and the inference algorithm.

3.1 The OpenStreetMap Project

In 2004, Steve Coast started the OpenStreetMap project with
the goal of creating a free editable map of the world much
like Wikipedia provides a free community-based encyclopedia.
While initial efforts focused mainly on mapping the United
Kingdom, volunteers around the globe quickly helped in
making OSM a worldwide success. Users can contribute to
OSM in various ways, for example by supplying GPS tracks
using portable GPS devices (e.g., while driving, cycling or
hiking), labeling objects such as buildings in aerial imagery or
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Fig. 3. Street Segment: Each street segment has a start
and end position p0 and p1, a length `, an initial heading
of the street segment β and a curvature parameter α =
ψ1−ψ0

` . For arc segments c is the circle center, r is the
radius and ψ0 and ψ1 are the start and end angles of the
arc. For linear segments, α = 0.

by providing local information. So far, more than 1.5 million3

users have registered and provided geographic information to
OSM. As of December 2013, more than 3.7 billion GPS track
points have been submitted corresponding to over 2.1 billion
waypoints and 210 million roads in total.

The growth of OSM for the region of Europe is illustrated in
Figure 1 (left). Compared to commercial products like Google
Maps, the provided data is more up-to-date, includes many de-
tails and – most importantly – can be freely accessed and used
under the Open Database License. The startup GeoFabrik4,
for example, provides daily snapshots for certain regions or
the whole globe (29 GB) which can be downloaded in XML
format. Figure 1 (right) shows a screenshot of JOSM5, one
of the most popular OSM editors. Note that the annotations
do not only include streets, but also cycling and hiking trails,
traffic lights, signs, parking lots, building outlines, shops, trees,
postboxes, bars, restaurants, cinemas, recreational areas and
more. While the main focus of this work is on leveraging road
maps for localization, we believe that the wealth of OSM data
will become useful in other areas of computer vision, such as
urban scene understanding [3] or semantic image segmentation
of road scenes [65].

For our purposes, we extract all crossings and all drivable
roads (represented as piece-wise linear segments) connecting
them. We additionally extract the type of each street (i.e.,
highway or rural) and the direction of traffic. By splitting each
bi-directional street into two one-way streets and “smoothing”
intersections using circular arcs, we obtain a lane-based map
representation, on which the state of the vehicle is defined.

3.2 Map Representation

The map itself is represented by a directed graph where nodes
represent street segments and edges define the connectivity of
those segments. Without loss of generality, all street segments
are assumed to be one-way and two-way streets are converted
to two one-way streets to fit this framework. Roads which

3. http://wiki.openstreetmap.org/wiki/stats
4. http://www.geofabrik.de/
5. http://josm.openstreetmap.de/

http://wiki.openstreetmap.org/wiki/stats
http://www.geofabrik.de/
http://josm.openstreetmap.de/
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dead-end or run off the edge of the map are connected to a
“sink” node. Figure 2 represents an example of a map and the
corresponding graph representation.

We find it convenient to represent every street segment as
either a linear or a circular arc segment, which can both
be described using the same parametric representation as
detailed below. Note that more complex road shapes can be
approximated with these primitives by joining multiple, short
segments. As illustrated in Figure 3, we define the shape of
a street segment by its starting and ending points p0 and p1

respectively, initial heading angle β and a curvature parameter
α. The curvature is zero for linear segments (i.e., α = 0) and
α = ψ1−ψ0

` for circular arc segments where ψ0 and ψ1 are
the starting and ending angle of the arc and ` is the arc length
of the segment.

The position and orientation of a vehicle restricted to a
location on the map is then defined by the street segment u
that the vehicle is driving on, the distance from the origin of
that street segment d and the angular offset θ of the vehicle
heading from the local street heading. Thus, the global heading
of the vehicle is given by

θ̄ = θ + β + αd (1)

and its position is

p̄ =
`− d
`

p0 +
d

`
p1 (2)

for a linear segment and

p̄ = c + r d

(
`− d
`

ψ0 +
d

`
ψ1

)
(3)

for a circular arc segment where r is the radius of the circle,
c denotes the circle center and d(ψ) = (cosψ, sinψ)T . We
refer the reader to Figure 3 for an illustration of all parameters
of the street segment geometry. Important to note is that this
parameterization of heading allows the rate of global heading
change ∂θ̄ to be dependent on the linear velocity ∂d/∂t while
still allowing the dynamics to be modelled with a simple linear
diffusion model described below.

Given this map representation, we next present a state-space
model which describes the the motion of the vehicle in the
map. A probabilistic inference algorithm is then derived to
recursively compute the posterior over position. This filtering
algorithm is summarized in Algorithm 1.

3.3 State-Space Model
As visual odometry measurements are obtained at discrete time
intervals, we choose a discrete time model where the subscript
t represents the index of a data timestamp or – equivalently –
the frame number. However, for brevity, we will call t simply
’time’ in the following. Based on the map representation
introduced above, the state of the vehicle at time t is described
by xt = (ut, st) where st = (dt, d̂t−1, θt, θ̂t−1)T and d̂t−1,
θ̂t−1 are the distance and angle at the previous time and
the hat indicates that both are defined relative to the current
street ut which changes when the vehicle transitions to a new
street segment. The visual odometry measurement computed
at time t is denoted by yt and directly measures the linear

Algorithm 1 Filter
1: Input: Posterior at t− 1, {P t−1

u ,Mt−1
u }

2: Input: Observation at t, yt
3: Initialize mixtures, Mt

u ← ∅, for all u
4: for all streets ut−1 do
5: for all streets ut reachable from ut−1 do
6: M′ ← ∅
7: for all (ω, µ,Σ) ∈Mt−1

ut−1
do

8: Compute cpredN (µpred,Σpred) using Alg 2
9: Compute cupdN (µupd,Σupd) using Alg 3

10: M′ ←M′⋃{(cupd, µupd,Σupd)}
11: if ut 6= ut−1 then
12: Compute (c, µ,Σ) to approximate M′
13: Mt

ut
←Mt

ut

⋃{(c, µ,Σ)}
14: else
15: Mt

ut
←Mt

ut

⋃M′
16: for all streets u do
17: P tu ←

∑
(c,µ,Σ)∈Mt

u
c

18: Mt
u ← {( c

P t
u
, µ,Σ) | (c, µ,Σ) ∈Mt

u}
19: if `u

|Mt
u| < 10 meters then

20: Simplify Mt
u with Algorithm 4

21: Normalize P tu so that
∑
u P

t
u = 1.

22: For all u, if P tu < 10−50 set P tu ← 0 and Mt
u ← ∅

23: Return: Posterior at t, {P tu,Mt
u}

and angular displacement from time t − 1 to time t. We
assume that the map data available is planar so visual odometry
measurements are projected onto the road plane which can be
easily recovered using SfM or stereo information. While height
information is sometimes available in OSM, it is typically
noisy and unreliable so it was not used. Note, however, that the
model presented here could be extended to the 3D case should
reliable height data be available. The odometry observations
are modelled as

p(yt|xt) = N (yt|Mutst,Σ
y
ut

) (4)

where Mu = [md,mθ]
T , md = (1,−1, 0, 0)T and mθ =

(αu,−αu, 1,−1)T . Note that the curvature of the street, αu,
is necessary because the global heading of the vehicle, θ̄,
depends on both d and θ, see (1). The state transition model
is factorized as

p(xt|xt−1) = p(ut|xt−1)p(st|ut,xt−1) (5)

with street transition probability p(ut|xt−1), and state transi-
tion distribution p(st|ut,xt−1). The latter is assumed to be the
result of a linear transformation corrupted by Gaussian noise

p(st|ut,xt−1) = N (st|Aut,ut−1
st−1 + but,ut−1

,Σs
ut

) (6)

with Σs
ut

the covariance matrix for a given ut which is learned
from data as discussed in Section 4. A second-order, constant
velocity model is used to represent the change in d

dt = dt−1 + (dt−1 − d̂t−2) (7)

and a first order autoregressive model, i.e., AR(1), for the
angular offset θ

θt = γut−1
θt−1 (8)
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where γut−1
∈ [0, 1] is the parameter of the AR(1) model

which controls the correlation between θt and θt−1. Even
though these models are relatively simple, they were found
to be very effective in practice. Combining (6), (7) and (8),
one obtains

Aut,ut−1
=




2 −1 0 0
1 0 0 0
0 0 γut 0
0 αut−1

− αut
1 0


 (9)

but,ut−1
=

{
−(`ut−1 , `ut−1 , 0, θut,ut−1)T ut 6= ut−1

(0, 0, 0, 0)T ut = ut−1

(10)

where θut,ut−1 = βut − (βut−1 + αut`ut−1) is the angle
between the end of ut and the beginning of ut−1.

As noted above and illustrated in Figure 3, the components
of st are relative to the current street, ut. When ut 6= ut−1 the
state transition model must be adjusted so that st is relative
to ut. The length of the ut−1 must be subtracted from both,
and θ̂t−1 must be updated so that θ̂t−1 relative to ut has the
same global heading as θt−1 relative to ut−1.

The street transition probability p(ut|xt−1) defines the prob-
ability of transitioning onto street ut given the previous state
xt−1. To define the probability of changing street segments
we make use of the Gaussian state transition model in (6) to
get

p(ut|xt−1) ∝ ξut,ut−1

∫ `ut−1
+`u

`ut−1

N (x|aTd st−1,a
T
d Σs

ut−1
ad)dx

(11)
where ad = (2,−1, 0, 0) is the first row of Aut,ut−1

which
represents the predicted position according to (7),

ξut,ut−1
=





1 ut = ut−1

1
|N(ut−1)| ut ∈ N(ut−1)

0 otherwise

(12)

is the prior probability of transitioning onto ut from ut−1, and
N(u) is the set of streets to which u connects.

Extremely short street segment can be problematic, as they
must be skipped entirely when a vehicle is traveling quickly
enough. To handle this, we add “leapfrog” edges to the graph
which allow the vehicle to move from ut−1 to any ut to
which there exists a path in the base graph. As the speed
of the vehicle is assumed to be limited, not all possible edges
need to be added. Instead, only edges representing paths of
30m or less are added which handles vehicles traveling up
to approximately 110km/h with observations every second. If
faster travel is necessary or observations are less frequent, then
longer edges can easily be added. To incorporate “leapfrog”
edges into the model, the entries of but,ut−1 are updated to
consider also transitioning over multiple street segments and
ξut,ut−1

becomes the product of all ξ along the path.

3.4 Inference

Given the model described above, inference consists of com-
puting the filtering distribution, p(xt|y1:t). Like most recursive
filtering algorithms (e.g., the particle or Kalman filters) we will

Algorithm 2 Prediction Step
1: Input: Parameters of current mode µ,Σ
2: Input: Street nodes ut, ut−1

3: if ‖ ddµg(µ,Σ)‖ < η then
4: Analytically approximate cpredN (µpred,Σpred)
5: cpred ← p(ut|ut−1, st−1 = µ)
6: µpred ← Aut,ut−1µ+ but,ut−1

7: Σpred ← Σs
ut

+ Aut,ut−1
ΣAT

ut,ut−1

8: else
9: Sample to compute cpredN (µpred,Σpred)

10: for j = 1, . . . ,M do
11: s

(j)
t−1 ∼ N (µ,Σ)

12: s
(j)
t ← Aut,ut−1

s
(j)
t−1 + but,ut−1

13: w(j) ← p(ut|ut−1, st−1 = s
(j)
t−1)

14: cpred ←M−1
∑M
j=1 w

(j)

15: µpred ← (Mcpred)
−1
∑M
j=1 w

(j)s
(j)
t

16: Σpred ← Σs
ut

+
∑M
j=1 w

(j) (s
(j)
t −µpred)(s

(j)
t −µpred)T

Mcpred

17: Return: Predicted mode (cpred, µpred,Σpred)

divide the algorithm into a prediction step where uncertainty is
propagated using the state transition model (5) and an update
step where the uncertainty is updated using the observation
model (4). The overall inference algorithm is described in
Algorithm 1 and the prediction and update steps are derived
next.

Remembering that xt = (ut, st), the posterior can be
factored using the product rule as

p(xt|y1:t) = p(st|ut,y1:t)p(ut|y1:t) (13)

where p(ut|y1:t) is a discrete distribution over streets and
p(st|ut,y1:t) is a continuous distribution over the position
and orientation on a given street. The discrete distribution
p(ut|y1:t) is easily represented as a multinomial distribution
over street labels. For representing the continuous distribution
p(st|ut,y1:t) a Gaussian mixture model is used, i.e.,

p(st|ut,y1:t) =

Nut∑

i=1

π(i)
ut
N (st|µ(i)

ut
,Σ(i)

ut
) (14)

where Nut
is the number of components for the mixture

associated with ut and Mt
ut

= {π(i)
ut , µ

(i)
ut ,Σ

(i)
ut }

Nut
i=1 are the

parameters of the mixture for ut. This is a general and
powerful representation and allows for efficient and accurate
inference.

Assuming independent observations given the states and
first order Markov state transitions, the filtering distribution
can then be written recursively as

p(xt|y1:t) =

∫
p(yt|xt)p(xt|xt−1)

p(yt|y1:t−1)
p(xt−1|y1:t−1)dxt−1

(15)
which, after factoring p(xt−1|y1:t−1) yields

p(xt|y1:t) =
∑

ut−1

Put−1

Zt
p(yt|xt)

∫
p(st|ut, ut−1, st−1)

× p(ut|ut−1, st−1)p(st−1|ut−1,y1:t−1)dst−1

(16)
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Algorithm 3 Update Step
1: Input: Current mode (cpred, µpred,Σpred) on street ut
2: Input: Observation yt

3: Σupd ←
(
MT

ut
Σy
ut

−1Mut + Σ−1
pred

)−1

4: µupd ← Σupd

(
MT

ut
Σy
ut

−1
yt + Σ−1

predµpred

)

5: Σ′upd ← Σy
ut

+ Mut
ΣpredM

T
ut

6: cupd ← ωcpred|Σupd|0.5
|Σpred|0.5|Σy

ut |0.5
exp

(
− 1

2‖yt −Mut
µpred‖2Σ′upd

)

7: Return: Updated mode (cupd, µupd,Σupd).

where Put−1 = p(ut−1|y1:t−1) and Zt = p(yt|y1:t−1).
Substituting the mixture model (14) and the state transition

dynamics (6) into (16), the integrand becomes

Nut−1∑

i=1

π(i)

∫
p(ut|ut−1,st−1)N (st|Ast−1 + b,Σs)

× N (st−1|µ(i),Σ(i))dst−1

(17)

where the subscripts have been dropped for clarity. In general,
the integral in (17) is not analytically tractable due to the non-
linear form of p(ut|ut−1, st−1). However, if p(ut|ut−1, st−1)
was constant the integral could be solved easily. In the model
presented above p(ut|ut−1, st−1) from (11) is the Gaussian
CDF and has sigmoidal shape (see Figure 4). Consequently, it
is approximately constant everywhere except near the transi-
tion point of the sigmoid. In the following this is exploited in
order to create an efficient but accurate approximate inference
algorithm.

3.4.1 Prediction Step

For each mode i representing a distribution over st−1 we
aim to determine whether p(ut|ut−1, st−1) can be considered
constant and whether an analytic approximation can be used.
Looking at Figure 4, the goal is to determine whether the
mode, N (st−1|µ(i),Σ(i)) lies in either tail (i.e., the blue
portion) or if it is close to the changepoint of the sigmoid.

To that end, consider the function

g(µ,Σ) =

∫
p(ut|ut−1, st−1)N (st−1|µ,Σ)dst−1 (18)

and the norm of its gradient with respect to µ, i.e.,
‖ ddµg(µ,Σ)‖ where we dropped the mode index i for nota-
tional clarity. Substituting (11) in for p(ut|ut−1, st−1), and
simplifying gives

g(µ,Σ) = ξut,ut−1

(
Φ(`ut−1 + `u|m, s2)− Φ(`ut−1 |m, s2)

)

(19)
where m = aTd µ, s2 = aTd (Σs

ut−1
+ Σ)ad and Φ(·|m, s2) is

the CDF of a univariate normal distribution with mean m and
variance s2.

Using this simplification, there are now two cases based on
‖ ddµg(µ,Σ)‖. If ‖ ddµg(µ,Σ)‖ < η for some threshold6, then
p(ut|ut−1, st−1) is considered to be approximately constant

6. In practice, we used η = 10−8.
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Fig. 4. Approximate Inference: The sigmoidal shape of
the street node transition probability allows for efficient
inference as analytic approximations are effective in the
tails and a Monte Carlo approximation can be applied for
the central section which is very small in practice.

with respect to the given mode and the integral in (17) is
approximated analytically as

cpredN (st|Aµ+ b,Σs + AΣAT ) (20)

where cpred = p(ut|ut−1, µ). This update is equivalent
to the prediction step of a Kalman filter. Note that most
streets we consider are relatively long, thus the section where
p(ut|ut−1, st−1) can be considered constant occurs frequently
and we benefit from the analytical approximation. Further-
more, in those cases when cpred ≈ 0 (see left side of Figure
4) the mode can simply be dropped.

If ‖ ddµg(µ,Σ)‖ ≥ η then the mode overlaps the inflection
point of p(ut|ut−1, st−1) and the analytic approximation will
not suffice. Instead, we use a Monte Carlo approximation,
drawing a set of M = 400 samples s

(j)
t−1 ∼ N (µ,Σ) for

j = 1, . . . ,M and the integral is then approximated with
a single component cpredN (st|µpred,Σpred) where cpred =
1
M

∑M
j=1 w

(j), and

µpred =
1

Mcpred

M∑

j=1

w(j)s
(j)
t (21)

Σpred = Σs +
1

Mcpred

M∑

j=1

w(j)(s
(j)
t − µpred)(s(j)

t − µpred)T

are found by matching moments to the Monte Carlo approxi-
mation

M∑

j=1

p(ut|ut−1, s
(j)
t−1)N (st|As

(j)
t−1 + b,Σs) (22)

with s
(j)
t = As

(j)
t−1 + b and w(j) = p(ut|ut−1, st−1 = s

(j)
t−1).

The prediction step is summarized in Algorithm 2.

3.4.2 Update Step
The result of the prediction step is a single mode
cpredN (st|µpred,Σpred) which approximates the integral in
(17). This mode must then be updated according to (16)
in order to take account for observation yt. Because the
observation distribution p(yt|xt) is Gaussian and linear in st,
this corresponds to multiplying two Gaussian densities and can
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Algorithm 4 GMM Simplification
1: Input: Mixture model parameters M
2: Initialize M′ =M
3: loop
4: Select a component to remove b̂ = arg minb′ωb′

5: M̂ ←M′ \ {(ωb̂, µb̂,Σb̂)}
6: Initialize the variational parameters φ and ψ
7: while D̂(φ, ψ,M,M̂) ≥ ε and not converged do
8: Minimize D̂(φ, ψ,M,M̂) using (29-33)
9: if D̂(φ′, ψ′,M,M̂) ≥ ε then

10: Return: M′
11: else
12: M′ ← M̂

be solved in closed form. The resulting update can be written
as cupdN (st|µupd,Σupd) where

cupd =
ωcpred|Σupd|0.5
|Σpred|0.5|Σy

ut |0.5
e
− 1

2‖yt−Mutµpred‖2Σ′
upd (23)

Σupd =
(
MT

ut
Σy
ut

−1Mut
+ Σ−1

pred

)−1

(24)

µupd = Σupd

(
MT

ut
Σy
ut

−1
yt + Σ−1

predµpred

)
(25)

with Σ′upd = Σy
ut

+Mut
ΣpredM

T
ut

. We summarize this update
step in Algorithm 3.

Performing the prediction and update steps for each com-
ponent and each pair of connected nodes produces a set of
mixture model components for each u, the weights of which
are proportional to P tu. After normalizing the mixtures for each
street, normalizing across streets yields P tu, the probability
of being located on a given street. The filtering process is
summarized in Algorithm 1. Note that this algorithm can
be performed in parallel by assigning subsets of streets to
different workers, a fact which we exploit to achieve real-time
performance.

3.5 Managing Posterior Complexity

The previous section provides a basic algorithm to perform
inference by computing the filtering distribution recursively.
Unfortunately, straightforward application of this algorithm is
intractable as the complexity of the posterior (i.e., the number
of mixture components) grows exponentially with time as
modes are duplicated at transitions with multiple options (e.g.,
intersections). This can be seen by noting the two loops in
Algorithm 1 over ut and ut−1. This means that every mode
in the current posterior can, in the next posterior, result in
multiple modes, yielding a worst case exponential growth. To
alleviate this, three approximations are used which limit the
resulting complexity of the posterior. These approximations
have been found to work well in practice and to significantly
reduce computational costs

First, for each pair of connected streets, the modes that
transition from ut−1 to ut when ut−1 6= ut are all likely
similar. As such, all of the transitioned modes are replaced
with a single component using moment matching. Second,
after running the algorithm for a while most streets will have

negligible probability but may still be associated with mixtures
with a large number of components. To avoid this, mixtures on
streets whose probability p(ut|y1:t) is below a threshold are
pruned such that these streets will have zero probability. To
avoid mistakes, we make use of a very conservative threshold,
p(ut|y1:t) ≤ 10−50, in our experiments. Finally, even with the
above steps, the number of components in the posterior grows
with t. Many of the components will have small weight and
be redundant. To mitigate this, a mixture model simplification
procedure is run when the number of modes on a street
segment gets too large. This procedure, which we describe
next, removes components and updates others while keeping
the KL divergence below a specified threshold ε. The value
for ε was determined experimentally, as described in Section
4.4.

3.5.1 Mixture Model Simplification

Given a Gaussian mixture model with N = |M| components
and parameters denoted by M = {(πa, µa,Σa)}Na=1 and
probability density function

f(x) =
∑

a

πaN (x|µa,Σa) (26)

we seek a mixture model M′ = {(ωb, µb,Σb)}N
′

b=1 with
probability density function g(x) =

∑
b ωbN (x|µb,Σb) which

has the least number of components (i.e., minimal N ′ = |M′|)
such that D(f‖g) < ε where D(f‖g) is the KL divergence. We
begin withM′ =M and successively remove the component
with the lowest weight fromM′. At the same time, we update
the remaining components to minimize the KL divergence
D(f‖g). This process, of removing components and updating
the remaining ones, continues so long as M′ remains a good
approximation in the sense that D(f‖g) < ε.

To minimize the KL divergence D(f‖g), we use a varia-
tional upper bound [66]. Introducing the variational parameters
φa,b ≥ 0 and ψa,b ≥ 0 such that

∑
b φa,b = πa and∑

a ψa,b = ωb, we can bound the KL divergence by

D(f‖g) ≤ D̂(φ, ψ,M,M′) (27)

where

D̂(φ, ψ,M,M′) =
∑

a,b

φa,b

(
log

φa,b
ψa,b

+D(fa‖gb)
)

(28)

and D(fa‖gb) is the KL divergence between the Gaussian
distributions N (x|µa,Σa) and N (x|µb,Σb). In order to sim-
ply compute the upper bound of D(f‖g), D̂(φ, ψ,M,M′) is
minimized with respect to the variational parameters φ and ψ.

Similarly, to update the components of M′ to better ap-
proximate M, D̂(φ, ψ,M,M′) is minimized with respect to
both the variational parameters φ and ψ and the component
parameters ωb, µb and Σb. While this objective function is
non-convex, the exact minima for each set of parameters can
be found conditioned on the others. This provides the basis
for an efficient coordinate-descent algorithm which, while not
globally optimal, was found to be effective in practice. Using
the method of Lagrange multipliers to enforce the constraints
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TABLE 1
Quantitative Evaluation: Average position and heading error and driving time until localization. “M” and “S” indicate
monocular and stereo odometry, “G” GPS-based odometry and “O” is the oracle error, i.e., the error from projecting

the GPS positions onto the map. Stereo and GPS-based odometry results run on small maps as well as the full
region map. Position and heading errors are computed over frames which have been localized. Sequences 04 and 06

are ambiguous and cannot be localized, see text and Figure 5.

00 01 02 03 05 07 08 09 10 Average

Po
si

tio
n

M 16± 67m 893± 22m 8.1± 7.6m 19± 7m 5.6± 4.6m 15± 15m 45± 106m 5.4± 4.7m 534± 25m 39± 135m
S 2.1± 1.5m 5.1± 6.7m 4.1± 2.9m 4.8± 2.0m 2.6± 1.4m 1.8± 1.1m 6.0± 21.4m 4.2± 3.1m 3.9± 1.9m 3.7± 9.5m
G 1.8± 1.1m 3.6± 5.0m 2.2± 1.3m 6.9± 2.9m 2.7± 1.6m 1.5± 0.8m 2.4± 7.4m 3.8± 3.0m 2.5± 1.6m 2.4± 3.6m

S (full) 2.2± 1.8m 2.6± 2.2m 4.3± 3.0m 6.8± 1.6m 3.7± 2.4m 1.7± 1.0m 6.0± 21.4m 4.4± 3.3m 4.9± 2.0m 4.0± 9.8m
G (full) 1.9± 1.1m 3.8± 4.8m 2.1± 1.3m 8.4± 2.3m 4.6± 3.3m 1.5± 0.8m 1.9± 1.1m 4.0± 3.1m 2.8± 1.3m 2.6± 2.2m

O 0.8± 0.6m 1.3± 1.2m 1.0± 0.8m 2.5± 1.8m 1.3± 1.1m 0.6± 0.4m 1.1± 0.9m 1.2± 1.2m 1.1± 0.8m 1.2± 1.0m

H
ea

di
ng

M 2.0± 3.9◦ 5.2± 3.5◦ 1.5± 1.2◦ 2.4± 1.6◦ 2.0± 1.8◦ 1.3± 1.0◦ 10± 30◦ 1.6± 1.4◦ 116± 8◦ 5.4± 20.3◦

S 1.2± 1.3◦ 2.7± 1.8◦ 1.3± 1.0◦ 1.6± 1.2◦ 1.4± 1.2◦ 1.9± 1.3◦ 1.2± 1.5◦ 1.3± 1.1◦ 1.3± 1.2◦ 1.3± 1.3◦

G 1.0± 1.0◦ 0.9± 0.8◦ 0.8± 0.9◦ 1.4± 0.9◦ 1.2± 1.1◦ 1.5± 1.1◦ 1.0± 1.3◦ 0.9± 0.8◦ 1.0± 1.0◦ 1.0± 1.1◦

S (full) 1.3± 1.2◦ 1.4± 0.9◦ 1.2± 1.1◦ 1.2± 0.6◦ 1.3± 1.1◦ 2.3± 1.5◦ 1.2± 1.6◦ 1.3± 1.4◦ 1.4± 1.2◦ 1.3± 1.3◦

G (full) 1.0± 1.0◦ 1.3± 0.8◦ 0.9± 0.9◦ 1.4± 0.6◦ 1.2± 1.1◦ 1.3± 1.0◦ 1.0± 1.3◦ 1.0± 0.9◦ 1.0± 0.9◦ 1.0± 1.1◦

D
riv

in
g

Ti
m

e M 22s 88s 26s 41s 199s 34s 79s 25s 94s 68± 54s
S 22s 88s 26s 34s 45s 26s 70s 24s 18s 39± 23s
G 21s 88s 26s 34s 44s 26s 78s 25s 18s 40± 24s

S (full) 41s 90s 27s 66s 63s 34s 70s 44s 32s 52± 20s
G (full) 41s 88s 27s 64s 55s 32s 79s 44s 32s 51± 21s

∑
b ωb = 1,

∑
b φa,b = πa and

∑
a ψa,b = ωb, the minima of

(28) with respect to the individual parameters are achieved by

ωb =
∑

a

φa,b (29)

ψa,b = ωb
φa,b∑
a′ φa′,b

(30)

φa,b = πa
ψa,b exp (−D(fa‖gb))∑
b′ ψa,b′ exp (−D(fa‖gb′))

(31)

µb =

∑
a φa,bµa∑
a φa,b

(32)

Σb =

∑
a φa,b

(
Σa + (µa − µb)(µa − µb)T

)
∑
a φa,b

(33)

These equations are used iteratively to simplify the mixture
model and this procedure is summarized in Algorithm 4. The
variational parameters φ and ψ are initialized based on the
weights of the mixture before components are removed and,
after an individual component is removed, it’s φ and ψ values
are uniformly distributed to the remaining components.

4 EXPERIMENTAL EVALUATION

To evaluate the localization method in realistic situations,
experiments were performed using the KITTI visual odom-
etry dataset [17]. The 11 training sequences were used for
quantitative evaluation as ground truth data7 is available. The
dataset consists of two video streams from a left and right
camera. Visual odometry was computed from these videos
using LIBVISO2 [35], a freely available library for monocular
and stereo visual odometry. To reduce computational time, the
visual odometry is subsampled to a rate of one frame per
second. Slower data rates are possible and may be faster but
were found to suffer from accumulated odometry error. To

7. An OxTS RT 3003 GPS unit was used which integrates GPS, RTK
corrections, IMU, and wheel odometry and has a rated accuracy of 0.02m.

better illustrate the results, mid-size regions of OpenStreetMap
data were extracted for each sequence which included the
true trajectory and the surrounding region. On average, these
subregions covered an area of 2km2 and contain 47km of driv-
able roads. Unless otherwise specified, all experiments were
initialized with regularly placed mixture components which
approximated a uniform probability of being at any point on
the map. The method is also able to localize successfully on
much larger maps, see results in Figures 11 and 12, where
the map covers an 18km2 region and contains 2, 150km of
drivable roads.

4.1 Quantitative Evaluation

Quantitative results can be found in Table 1, with corre-
sponding qualitative results shown in Figures 9 and 10. Here,
“M” and “S” indicate results using monocular and stereo
visual odometry respectively with localization performed on
the subregion maps. In addition, “gold-standard” odometry
measurements were computed based on the GPS trajectories
(entry “G” in the table) and the algorithm was run using the
parameters learned from the stereo data. Note that this does not
use the absolute positions from the GPS signal, only relative
position and orientation with respect to the previous frame.
Results on the full 18km2 map are indicated with “(full)”.
Finally, the method was also run using KITTI test visual
odometry sequences. These do not have publicly available
ground-truth so cannot be quantitatively assessed but results
can be viewed online: http://www.cs.toronto.edu/∼mbrubake.

To determine the accuracy of the maps and GPS data,
the ground truth GPS tracks were projected onto the nearest
street segment on the map and the position reprojection error
was computed. These errors, reported as “O” for oracle, are
indicative of the best possible error which can be achieved
using the given map data. In some cases this error can
be significant, as the map data does not account for lane

http://www.cs.toronto.edu/~mbrubake


PREPRINT, FINAL VERSION IN IEEE PAMI 2015 9

Fig. 5. Ambiguous Sequences: Both 04 and 06 cannot
be localized due to fundamental ambiguities. Sequence
04 consists of a short, straight driving sequence and 06
traverses a symmetric part of the map, resulting in two
equally likely modes.
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Fig. 6. Simplification Threshold: Impact of the sim-
plification threshold ε on localization accuracy (left) and
computation time (right). See Section 4.4.

widths, number of lanes or intersection sizes. Finally, chance
performance was computed to be 397m by measuring the
average distance of the GPS data to the mean road position of
each subregion map.

The projected GPS data was also used to learn the small
number of model parameters. In particular, the street state
evolution noise covariance Σs

u, the angular AR(1) parame-
ter γu and the observation noise Σy

u were estimated using
maximum likelihood. Different parameters were learned for
highways and city/rural roads as the visual odometry performs
significantly worse at higher speeds. The data from the last half
of each sequence was used to learn the parameters.

The accuracy of position and heading estimates is not
well defined until the posterior has converged to a single
mode. Thus, accuracy is only computed once a sequence has
been localized. All results are divided into two temporally
contiguous parts: unlocalized and localized. A sequence is
defined to be localized when, for at least ten seconds, there is a
single mode in the posterior. Once the criteria for localization
is met, all subsequent frames are considered localized. Errors
in global position and heading of the MAP state for localized
frames were computed using the GPS data as ground truth.

Overall, the position and heading were estimated to an
accuracy of 3.7m and 1.3◦ using stereo visual odometry on
the subregion maps. Note that this is within the standard
deviation of the oracle error of 2.6± 2.2m, which is a lower
bound on the achievable error induced by inaccuracies in the
map and GPS data. These results outperform typical consumer
grade navigation systems which offer accuracy of around 10m
at best and is better than the 5.19m reported by [63] on
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Fig. 7. Map Size: Driving time (left) and distance travelled
(right) before localization as a function of the map size.

the same sequences. Furthermore, errors are comparable to
those achieved using the GPS-based odometry, suggesting the
applicability and utility of low-cost vision-based sensors for
localization. Using monocular odometry as input performs
worse and suffers catastrophic failures on sequences 01, 08
and 10. However, excluding these sequences, it was accurate
to 11.5m. Sequence 01 is particularly challenging for the
monocular odometry as it is exclusively highway driving
where high speeds and sparse visual features results in an
accumulated odometry errors of more than 500m, making
accurate localization impossible. Sequence 08 localizes well
initially, but a large outlier in the monocular odometry after
localization results in significant errors at the end of the
sequence. In contrast the stereo visual odometry performs well
on all sequences shown in Figures 9 and 10 and is able to
localize successfully in all but sequences 04 and 06 which are
discussed next.

4.2 Identifiable Sequences
A natural question to ask is what makes localization of a
vehicle difficult. Part of this answer comes from two sequences
which the system was unable to localize, sequences 04 and
06. As shown in Figure 5, these sequences are fundamentally
ambiguous and cannot be localized with monocular, stereo or
even GPS-based odometry. Sequence 04 is a short sequence on
a straight road segment and, in the absence of any turns, cannot
be localized beyond somewhere on the long road segment.
Sequence 06 is longer and has turns, but traverses a symmetric
path which results in a fundamental bimodality. In both cases
our approach correctly indicates the set of probable locations.

More generally though, one can look at how long unambigu-
ous sequences took to localize. Consider the two sequences
which localized most quickly on the full maps, sequences 02
and 10. Looking at these sequences in Figures 11 and 12,
shows that both sequences traversed curved roads, making
them quickly uniquely identifiable. In contrast, consider the
two sequences which took the longest to localize on the full
maps, sequences 01 and 08. These sequences demonstrate that
long straight stretches are difficult to localize and even with
turns, as in sequence 08, can be problematic. However, also
interesting to note is that both of these sequences showed
no practical difference between the subregion and full map
localization time.

4.3 Simplification Threshold
To determine the value used for the simplification threshold
ε multiple values were tried. Figure 6 depicts the average
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Fig. 8. Localization Accuracy with Noise: Position and
heading error with different noise levels, averaged over
five independent samples of noise.

computation time per frame and localized position error as a
function of the threshold, with values ranging from 10−5 to 0.1
nats. Sequences 04 and 06 were excluded from this experiment
because, as discussed above, they are inherently ambiguous.
As expected, computation time decreases and error increases
with more simplification (i.e., larger threshold). However, there
is a point of diminishing returns for computation time around
10−2 nats, and little difference in error for smaller values.
Thus a simplification threshold of ε = 10−2 was selected and
used for all other experiments.

4.4 Map Size
To understand how the map region size impacts performance,
experiments were run where uniform initial probability was
restricted to a square subregion of the map centred at the
ground truth initial position and all other parts of the map
were given zero initial probability. The size of the square was
varied from 100m up to the typical subregion map size of
2km, resulting in an average of 300m to 47km of drivable
road. For this range of sizes, the average time to localization
was computed for all non-ambiguous sequences (i.e., all but
04, 06) and was plotted as a function of region size in Figure
7. As expected, small initial regions localized faster. However,
somewhat surprisingly, after the region becomes sufficiently
large, the impact of region size on localization diminishes.
Indeed, average localization time (right column of Table 1)
on the full maps was only 13 seconds longer on average than
on the subregion maps. This suggests that most paths quickly
become unique as they get longer, even in very large regions.

4.5 Noise
To study the impact of noise on the localization accuracy,
odometry measurements were synthesized by adding Gaussian
noise to the GPS-based odometry. Five different samples of
noisy odometry were created for each sequence with signal-
to-noise ratios (SNR) ranging from 0.1 to 1000. Error in
position and heading after localization is plotted in Figure 8
as a function of SNR. As expected, error increases as the SNR
decreases, however the performance scales well, showing little
change in error until the SNR drops below 1.

4.6 Scalability
Running on 16 cores with a basic Python implementation, we
are able to achieve real time results on the subregion maps as
shown in Figure 6 (right). To test the methods ability to scale to

large maps we ran the sequences using stereo odometry with a
map covering the entire urban district of Karlsruhe, Germany.
The map is around 18km2 and contains over 2, 150km of
drivable road. Errors and localization times are shown in Table
1 for both stereo and GPS-based odometry, indicated by “S
(full)” and “G (full)” respectively. The errors are effectively
equivalent to those with the smaller maps and the localization
time is only slightly longer. Computation was slower, taking
around 20 seconds per frame on average. However, it is
expected that this could be greatly improved with suitable
optimization and further parallelization.

5 CONCLUSIONS
In this paper we have described an approach to self-
localization which employs (one or two) cameras mounted on
the vehicle as well as crowd sourcing in the form of free online
maps. The effectiveness of our approach was demonstrated in a
variety of scenarios including highway, suburbs and crowded
urban scenes. Furthermore, the approach has been validated
on the KITTI visual odometry benchmark and shown to be
able to localize the vehicle with an average precision of 4m
after less than a minute of driving. This is a new and exciting
problem for computer vision and we believe there is much
more to do. Experiments with monocular odometry suggest
that noise in the observations is likely heavy tailed, as there
are periodic, large outliers, and extending the model to handle
this would improve its robustness. The probabilistic framework
here could be easily extended to incorporate other visual cues
of location, for instance, learning to classify street types from
video frames. In particular, OpenStreetMaps contains other
salient pieces of information to aid in localization such as
speed limits, street names, and more; we plan to exploit this
information in the future. Code and videos are available at
http://www.cs.toronto.edu/∼mbrubake.
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[6] G. Baatz, K. Köser, D. Chen, R. Grzeszczuk, and M. Pollefeys,
“Leveraging 3D City Models for Rotation Invariant Place-of-Interest
Recognition,” IJCV, 2012.

[7] H. Badino, D. Huber, and T. Kanade, “Real-time topometric localiza-
tion,” in ICRA, May 2012.

[8] J. Hays and A. A. Efros, “im2gps: estimating geographic information
from a single image,” in CVPR, 2008.

[9] J. Levinson, M. Montemerlo, and S. Thrun, “Map-based precision
vehicle localization in urban environments,” in RSS, 2007.

[10] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua, “Worldwide pose
estimation using 3d point clouds,” in ECCV, 2012.

[11] T. Sattler, B. Leibe, and L. Kobbelt, “Fast image-based localization using
direct 2d-to-3d matching,” in ICCV, 2011.

[12] F. Dellaert, W. Burgard, D. Fox, and S. Thrun, “Using the condensation
algorithm for robust, vision-based mobile robot localization,” CVPR,
1999.

http://www.cs.toronto.edu/~mbrubake


PREPRINT, FINAL VERSION IN IEEE PAMI 2015 11

Fig. 9. Selected Frames on the Subregion Maps: Inference results for unambiguous sequences. The left most column
shows the full map for each sequence, followed by zoomed in sections of the map showing the posterior distribution
over time. The black line is the GPS trajectory and the concentric circles indicate the current GPS position. Grid lines
are every 500m. High probability is indicated with red while low probability regions are shown in blue.

[13] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localization:
Efficient position estimation for mobile robots,” in AAAI, 1999.

[14] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige, “An experimental
comparison of localization methods,” in ICIRS, 1998.

[15] S. M. Oh, S. Tariq, B. N. Walker, and F. Dellaert, “Map-based priors
for localization,” in ICIRS, 2004.

[16] M. Buehler, K. Iagnemma, and S. Singh, Eds., The DARPA Urban
Challenge, ser. Advanced Robotics, vol. 56, 2009.

[17] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for Autonomous
Driving? The KITTI Vision Benchmark Suite,” in CVPR, 2012.

[18] M. A. Brubaker, A. Geiger, and R. Urtasun, “Lost! Leveraging the
Crowd for Probabilistic Visual Self-Localization,” in CVPR, 2013.

[19] M. E. El Najjar and P. Bonnifait, “A road-matching method for
precise vehicle localization using belief theory and kalman filtering,”
Autonomous Robots, vol. 19, no. 2, pp. 173–191, 2005.

[20] J. Guivant and R. Katz, “Global urban localization based on road maps,”
in IROS, 2007, pp. 1079–1084.

[21] S. Bonnabel and E. Salaün, “Design and prototyping of a low-cost

vehicle localization system with guaranteed convergence properties,”
Control Engineering Practice, vol. 19, no. 6, pp. 591–601, 2011.

[22] C. Fouque and P. Bonnifait, “Matching raw gps measurements on a
navigable map without computing a global position,” IEEE Transactions
on Intelligent Transportation Systems, vol. 13, no. 2, pp. 887–898, 2012.

[23] F. Li and J. Kosecka, “Probabilistic location recognition using reduced
feature set,” in ICRA, 2006.

[24] W. Zhang and J. Kosecka, “Image based localization in urban environ-
ments,” in 3DPVT, 2006.

[25] G. Schindler, M. Brown, and R. Szeliski, “City-scale location recogni-
tion,” in CVPR, 2007.

[26] A. Pronobis, B. Caputo, P. Jensfelt, and H. Christensen, “A discrimina-
tive approach to robust visual place recognition,” in IROS, 2006.

[27] A. Rottmann, O. Martı́nez Mozos, C. Stachniss, and W. Burgard, “Place
classification of indoor environments with mobile robots using boosting,”
in AAAI, 2005.

[28] J. Wu and J. M. Rehg, “Where am I: Place instance and category
recognition using spatial PACT,” in CVPR, 2008.



PREPRINT, FINAL VERSION IN IEEE PAMI 2015 12

Fig. 10. Selected Frames on the Subregion Maps: Inference results for unambiguous sequences. The left most column
shows the full map for each sequence, followed by zoomed in sections of the map showing the posterior distribution
over time. The black line is the GPS trajectory and the concentric circles indicate the current GPS position. Grid lines
are every 500m. High probability is indicated with red while low probability regions are shown in blue.

[29] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgib-
bon, “Scene coordinate regression forests for camera relocalization in
rgb-d images,” in CVPR, 2013.

[30] E. Kalogerakis, O. Vesselova, J. Hays, A. A. Efros, and A. Hertzmann,
“Image sequence geolocation with human travel priors,” in ICCV, 2009.

[31] R. Dewri, P. Annadata, W. Eltarjaman, and R. Thurimella, “Inferring
trip destinations from driving habits data,” in WPES, 2013.

[32] W. S. Churchill and P. Newman, “Experience-based navigation for long-
term localisation,” IJRR, 2013.

[33] D. Nister, O. Naroditsky, and J. R. Bergen, “Visual odometry,” in CVPR,
2004.

[34] P. Alcantarilla, L. Bergasa, and F. Dellaert, “Visual odometry priors for
robust EKF-SLAM,” in ICRA, 2010.

[35] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruc-
tion in real-time,” in IV, 2011.

[36] M. Kaess, K. Ni, and F. Dellaert, “Flow separation for fast and robust
stereo odometry,” in ICRA, 2009.

[37] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” in IJCAI, 2003.

[38] S. Se, D. Lowe, and J. Little, “Mobile robot localization and mapping
with uncertainty using scale-invariant visual landmarks,” IJRR, vol. 21,
pp. 735–758, 2002.

[39] H. Durrant-Whyte and T. Bailey, “Simultaneous Localisation and Map-
ping (SLAM): Part I The Essential Algorithms,” RAM, 2006.

[40] A. Davison, I. Reid, N. Molton, and O. Stasse, “MonoSLAM: Real-time
single camera slam,” PAMI, vol. 29, 2007.

[41] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense
tracking and mapping in real-time.” in CVPR, 2011.

[42] A. Ranganathan and F. Dellaert, “Online probabilistic topological map-
ping,” IJRR, vol. 30, no. 6, pp. 755–771, 2011.

[43] A. Ranganathan, E. Menegatti, and F. Dellaert, “Bayesian inference in
the space of topological maps,” Transactions on Robotics, 2006.

[44] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using the
Bayes tree,” IJRR, vol. 31, pp. 217–236, 2012.

[45] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid, “Real: A
system for large-scale mapping in constant-time using stereo,” IJCV,
pp. 1–17, 2010.

[46] J. Engel, J. Sturm, and D. Cremers, “Semi-dense visual odometry for a
monocular camera,” in ICCV, 2013.

[47] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers, “Real-time camera
tracking and 3d reconstruction using signed distance functions,” in RSS,
2013.

[48] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d
cameras,” in IROS, 2013.

[49] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon, “Kinectfu-
sion: Real-time dense surface mapping and tracking,” in ISMAR, 2011.

[50] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard,
“An evaluation of the rgb-d slam system,” in ICRA, 2012.

[51] T. Whelan, M. Kaess, J. Leonard, and J. McDonald, “Deformation-based
loop closure for large scale dense RGB-D SLAM,” in IROS, Tokyo,
Japan, November 2013.

[52] M. Cummins and P. Newman, “FAB-MAP: Probabilistic Localization



PREPRINT, FINAL VERSION IN IEEE PAMI 2015 13

Fig. 11. Selected Frames on the Full Map: Inference results for unambiguous sequences. The left most column
shows the full map for each sequence, followed by zoomed in sections of the map showing the posterior distribution
over time. The black line is the GPS trajectory and the concentric circles indicate the current GPS position. Grid lines
are every 2km. High probability is indicated with red while low probability regions are shown in blue.

and Mapping in the Space of Appearance,” IJRR, vol. 27, no. 6, pp.
647–665, 2008.

[53] R. Paul and P. Newman, “FAB-MAP 3D: Topological mapping with
spatial and visual appearance,” in ICRA, 2010.

[54] B. Williams, M. Cummins, J. Neira, P. Newman, I. Reid, and J. Tardós,
“A comparison of loop closing techniques in monocular SLAM,” RAS,
2009.

[55] B.Williams, G. Klein, and I. Reid, “Automatic relocalization and loop
closing for real-time monocular slam,” PAMI, vol. 33(9), 2011.

[56] A. Javanmard, M. Haridasan, and L. Zhang, “Multi-track map matching,”
ArXiv e-prints, Sep 2012.

[57] D. Chen, A. Driemel, L. J. Guibas, A. Nguyen, and C. Wenk, “Approx-
imate map matching with respect to the fréchet distance,” in ALENEX,
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Fig. 12. Selected Frames on the Full Map: Inference results for unambiguous sequences. The left most column
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over time. The black line is the GPS trajectory and the concentric circles indicate the current GPS position. Grid lines
are every 2km. High probability is indicated with red while low probability regions are shown in blue.
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