
Tell Me What You See and I will Show You Where It Is

Jia Xu1 Alexander G. Schwing2 Raquel Urtasun2,3

1University of Wisconsin-Madison 2University of Toronto 3TTI Chicago
jiaxu@cs.wisc.edu {aschwing, urtasun}@cs.toronto.edu

Abstract

We tackle the problem of weakly labeled semantic seg-
mentation, where the only source of annotation are image
tags encoding which classes are present in the scene. This
is an extremely difficult problem as no pixel-wise labelings
are available, not even at training time. In this paper, we
show that this problem can be formalized as an instance of
learning in a latent structured prediction framework, where
the graphical model encodes the presence and absence of a
class as well as the assignments of semantic labels to super-
pixels. As a consequence, we are able to leverage standard
algorithms with good theoretical properties. We demon-
strate the effectiveness of our approach using the challeng-
ing SIFT-flow dataset and show average per-class accuracy
improvements of 7% over the state-of-the-art.

1. Introduction
Traditional approaches to semantic segmentation require

a large collection of training images labeled at the pixel
level. Despite the existence of crowd-sourcing systems such
as Amazon Mechanical Turk (MTurk), densely labeling im-
ages is still a very expensive process, particularly since mul-
tiple annotators are typically employed to label each im-
age. Furthermore, a quality control process is frequently
required in order to sanitize the annotations.

Here, we are interested in leveraging weak annotations in
order to reduce the labeling cost. In particular, we exploit
image tags capturing which classes are present in the scene
as our sole source of annotation (see Fig. 1 for an illustra-
tion). This is an interesting setting as tags are either readily
available within most online photo collections or they can
be easily obtained at a lesser cost than annotating semantic
segmentation. This task is, however, very challenging, as an
appearance model cannot be trained due to the fact that the
assignment of superpixels to semantic labels is unknown,
even at training time.

Several approaches have investigated this setting. In
early work, Verbeek and Triggs [29] proposed the latent
aspect model, which employs probabilistic latent semantic
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Figure 1. Our approach takes labels in the form of which classes
are present in the scene during training, and learns a segmentation
model, even though no annotations at the pixel-wise are available.

analysis (PLSA) to model each image as a finite mixture
of latent classes also referred to as aspects. The authors
extended this approach to capture spatial relationship via
a Markov random field (MRF). This model was further ex-
tended in a series of papers by Vezhnevets et al. [30, 31, 32],
for example, to leverage information between multiple im-
ages. However, the resulting optimization problem is very
complex and non-smooth, making learning a very difficult
task. As a consequence, several heuristics were employed
to make the problem computationally tractable.

In this paper, we show that this problem can be formal-
ized as the one of learning in a latent structured prediction
framework, where the graphical model encodes the pres-
ence/absence of a class as well as the assignments of se-
mantic labels to superpixels. As a consequence, we are
able to leverage algorithms with good theoretical proper-
ties which have been developed for this more general set-
ting. Under our model, different levels of supervision can
be simply expressed by specifying which variables are la-
tent and which are observed, without changing the learn-
ing and inference algorithms. We demonstrate the effec-
tiveness of our approach using the challenging SIFT-flow
dataset [14], showing improvements of 7% in terms of mean
class accuracy over the state-of-the-art. In the remainder,
we first review related work. We then present our weakly
label segmentation framework, followed by an experimen-
tal evaluation and conclusions. Our code is available at
http://pages.cs.wisc.edu/ jiaxu/projects/weak-label-seg/.
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2. Related Work
Many different techniques have been proposed to han-

dle the fully supervised setting where pixel-wise labels are
available at training time. Amongst the most successful
techniques are approaches based on bottom-up extraction
of regions, which are then re-ranked to obtain the final seg-
mentation [8, 4]. Another popular approach is to formulate
segmentation as inference in a (conditional) Markov ran-
dom field [3], particularly when seeking a full holistic scene
interpretation [34, 12].

It is relatively easy for an annotator to provide informa-
tion about which objects/classes are present in the scene.
It is, however, significantly more tedious to carefully out-
line all visible objects. As a consequence, annotation time
and cost can be significantly reduced by leveraging image
tags, particularly as these annotations are readily available
in many image collections.

There has been, however, little work in the weakly la-
beled setting due to the fact that it is significantly more
challenging than the fully supervised task. One of the first
approaches to learn a segmentation model given only im-
age tags is the latent aspect model of [29], which leverages
several appearance descriptors and the image location to
learn a probabilistic latent semantic analysis (PLSA) model.
The name ‘aspect model’ originates from the famous topic
models for document classification and the ‘aspects’ refer
to pixel class labels. Since these models do not capture
the spatial 2D relationships commonly observed in images,
PLSA was used as unary features in a Markov random field.
Generalizations were subsequently introduced in a series of
papers [30, 31, 32]. Contrasting the latent aspect model,
these new approaches leverage label correlations between
different images. However, they result in complex opti-
mization problems which are non-convex, non-smooth and
thus very difficult to optimize.

Another form of weak supervision are 2D bounding
boxes. Grab-cut and its extensions have been widely used
for interactive figure/ground segmentation [2, 20]. These
methods learn Gaussian mixture models for the foreground
and background, and a binary MRF encoding both appear-
ance and smoothness is employed to perform the segmenta-
tion. As the energies employed are sub-modular, exact in-
ference via graph-cuts is possible. Strokes are another pop-
ular way to provide weak annotations and are typically used
with a human in the loop to correct mistakes. In [18], the
deformable part-based model [7] is used with latent struc-
tured support vector machines to exploit weak labels in the
form of bounding boxes. Recently, [5] showed that human
labeling performance can be achieved when exploiting 3D
information and weak annotations in the form of 3D bound-
ing boxes.

A related problem is cosegmentation, where one is in-
terested in segmenting objects which concurrently appear

in a set of images [21]. Most previous methods focus on
the setting where a single foreground object is present in
all images [33, 16]. This setting has been extended to seg-
ment multiple objects by analyzing the subspace structure
of multiple foreground objects [17], using a greedy proce-
dure with submodular optimization [11], or by grouping im-
age regions via spectral discriminative clustering [10].

The work most related to ours is [32], where the prob-
lem of weakly labeled segmentation from tags is formulated
using a conditional random field (CRF), where nodes rep-
resent semantic classes at the superpixel level, unary po-
tentials encode appearance and pairwise potentials encode
smoothness. Their key contribution is a three step algorithm
to learn the appearance model and the CRF weights. In
particular, after every update of the CRF weights, an al-
ternating optimization iterates between finding the pixel-
wise labeling given the current model and updating the ap-
pearance model given an estimated labeling. The authors
view optimization of the feature weights as a model selec-
tion procedure where every possible weight vector defines
a different model. The optimization criteria employed is
expected agreement, which is computed by partitioning the
data into two parts which are encourage to agree in their
predictions. As the cost function is non-differentiable, they
resort to Bayesian optimization to select the next set of pa-
rameters. This makes learning extremely difficult and com-
putationally expensive.

In contrast, in this paper we show that the problem of se-
mantic segmentation from weakly labeled data in the form
of class presence can be formulated as learning in a struc-
tured prediction framework with latent variables. As a con-
sequence, well studied algorithms such as hidden condi-
tional random fields (HCRFs) [19] or latent structured sup-
port vector machines (LSSVMs) [35] as well as efficient
extensions [23] can be leveraged. This results in simpler
optimization problems that can be optimized by algorithms
possessing good theoretical guarantees.

3. Weakly Labeled Semantic Segmentation
In this paper we investigate how weak supervision can be

used in order to perform semantic segmentation. In particu-
lar, we focus on the case where the supervision is given by
means of a set of tags, describing which classes are present
in the image. Towards this goal, we frame the problem as
the one of learning in a graphical model encoding the pres-
ence and absence of each class as well as the semantic class
of each superpixel.

3.1. Semantic segmentation from tags

More formally, let yi ∈ {0, 1} be a random variable de-
scribing whether the i-th class is present in the image, with
i ∈ {1, . . . , C} indexing the semantic classes. Further, let
hj ∈ {1, . . . , C} be a random variable denoting the seman-
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Figure 2. Graphical Model: (Left) Graphical model for learning as well as inference when the tags are provided at test time. (Right)
Graphical model for inference when the tags are not provided at test time.

tic label associated with the j-th superpixel, and let x be
the image evidence. We define h = (h1, . . . , hN ) to be the
set of segmentation variables for all superpixels within one
image, and y = (y1, . . . , yC) the set of binary variables in-
dicating for all classes their presence/absence. Note that we
assume no training examples to be available for h, and only
y to be labeled. Employing the aforementioned notation,
we define the probability for a given configuration (y,h)
given an image x to be

pε(y,h | x) =
1

Zε(w)
exp

w>φ(y,h, x)

ε
,

where Zε(w) is the normalizing constant also known as the
partition function. Note that the weights w are the parame-
ters of the model and ε is a temperature parameter.

We define the potentials φ(y,h, x) to be the sum of
unary terms encoding the likelihood of the tags, unary
potentials encoding the appearance model for segmenta-
tion and pairwise potentials ensuring compatibility between
both types of variables. Thus,

w>φ(y,h, x)=
∑
i

wpresi
T
φpres(x, yi)

+
∑
j

wapj
T
φap(x, hj) +

∑
i,j

wcoi,j
Tφco(yi, hj). (1)

Fig. 2 shows the graphical model encoding the depen-
dencies introduced by this probabilistic model, with gray-
colored nodes depicting observed variables. We note that
this architecture is similar to the first two layers in the holis-
tic model of [34], but we use different potentials and per-
form semantic segmentation in the weakly labeled setting.
We now discuss the potentials employed in more details.

Appearance model: We utilize the superpixel features
of [27], which include texture/SIFT, color, shape, location
and GIST. This results in a 1690 dimensional feature vector,
which we reduce to a 100 dimensional vector using PCA.
To form the final feature, we append the superpixel location

(i.e., y-coordinate of its center) to form our final feature.
Note that we learn a different set of weights for each class,
yielding a 101 · C dimensional feature vector.

Presence/Absence: We construct a 2D vector to encode
the presence of each class. In the training, this potential
is built from the ground truth, i.e., φpres(yi, x) = [1;−1]
if class i is absent, while φpres(yi, x) = [−1; 1] if class
i is present. At test time, when this information is latent,
this potential comes from an image level tag classifier. We
refer the reader to the experimental section for more details
about the specific form of this predictor. Note that typically
one will use a predictor both at training and testing time,
however, we have found the use of the oracle predictor at
training to yield better results in practice. We hypothesize
that this is due to the fact that in this setting the supervision
is very weak.

Compatibility: The compatibility term encourages the
consistency between the class presence variables and the
superpixels, such that the information is propagated all the
way to the segmentation. In particular, it penalizes config-
urations where a superpixel is labeled with a class that is
inferred to be absent. Thus

φcomp(yi, hj) =

{
−η if yi = 0 and hj = i

0 otherwise

where η is a big number (105 in our experiments).

3.2. Learning in the Weakly Labeled Setting

During learning, we are interested in estimating a lin-
ear combination of features such that the distribution in
Eq. (1) is able to discriminate between ‘good’ and ‘bad’
assignments for variables y and h. To define ‘good’ we
are given a training set of data samples. Contrasting the
fully supervised setting where the training samples contain
fully labeled configurations (y,h), the available data is only
partly labeled. In particular, the training set D consists of
|D| image-tag pairs (y, x), i.e., D = {(y, x)i}|D|i=1.



During learning, a loss function `(ŷ,y) is commonly in-
cluded to bias the algorithm, i.e.,

p`ε(ŷ, ĥ, x) =
1

Z`ε (w)
exp

w>φ(ŷ, ĥ, x) + `(ŷ,y)

ε
.

The intuition behind is to make the problem harder to gen-
eralize better. Thus, we want to find a weight vector w,
which minimizes the sum of the negative (loss-augmented)
marginal log-posterior of the training data D and a regular-
ization term which originates from a prior distribution on
w. The resulting program reads as follows

min
w

1

2
‖w‖22 −

∑
(y,x)∈D

ε ln
∑
ĥ

p`ε(y, ĥ | x). (2)

Note that we marginalize over the unobserved superpixel
variables h to obtain the likelihood of the observed data
(i.e., class labels).

The aforementioned program generalizes a few well-
known settings. Letting ε = 0, we obtain structured support
vector machines with latent variables as introduced by [35],
while setting ε = 1 yields the hidden conditional random
field of [19]. In case of fully observed data we obtain the
conditional random field framework of [13] or the struc-
tured support vector machine of [25, 28] when employing
ε = 1 and ε = 0 respectively.

The weakly labeled setting is significantly more difficult
to solve for general graphical models. The additional chal-
lenge besides summations over exponentially sized sets h
and y, is the non-convexity of the objective given in Eq. (2)
resulting from the partition function. We note, however, that
the cost function of the program given in Eq. (2) is a differ-
ence of terms, each being convex in the parameters w. We
exploit this fact and employ the concave-convex procedure
(CCCP) [36], which is a generalization of expectation max-
imization (EM) to minimize Eq. (2).

CCCP is an iterative approach. At each iteration we lin-
earize the concave part at the current iterate w and solve the
remaining convex objective augmented by a linear term to
update the weight vector w. Importantly, this approach is
guaranteed to converge to a stationary point [24]. To lin-
earize the concave part, we are required to compute an ex-
pectation of the feature vector φ(y,h, x) w.r.t. a distribution
over the unobserved variables h. More formally this expec-
tation is defined as

Ep(ĥ|x)

[
φ(y, ĥ, x)

]
=
∑
ĥ

p(ĥ | x)φ(y, ĥ, x).

Given this expectation, we solve a fully supervised objec-
tive with modified empirical means. Note that the derivation
naturally results in a two-step approach where we first com-
pute a distribution over the unobserved variables h to obtain
the expectation, before using this information to solve the

Structured prediction with latent variables
Iterate between

1. The latent variable prediction problem:

∀x compute Ep(ĥ|x)

[
φ(y, ĥ, x)

]
2. Solving the parameter update task

min
w

1

2
‖w‖22+

∑
(y,x)∈D

(
ε lnZ`ε (w)− w>Ep(ĥ|x)

[
φ(y, ĥ, x)

])
Figure 3. Latent Structured Prediction via CCCP

fully supervised learning problem. The procedure is sum-
marized in Fig. 3.

For the first step it is crucial to notice that in our graphi-
cal model we can trivially solve the ‘latent variable predic-
tion problem’ given the bi-partite model of the weakly la-
beled segmentation task. Assuming the ground truth tags y
to be known (see Fig. 2), the model decomposes into unar-
ies over superpixels, and inference can be efficiently and
exactly solved to yield a distribution p(ĥ | x). For the sec-
ond step we need to solve a fully supervised learning task.
We refer the reader to [23] for an efficient way to optimize
this cost function.

3.3. Loss function

The distribution of class presence as well as the distri-
bution of pixel-wise labelings follows a power law distribu-
tion (i.e., many classes occur very rarely). In order to take
this into account we derive a loss function which employs
the statistics of class presence at the image level. As the
segmentation metric is average per-class accuracy, our loss
gives more importance for mistakes in classes that appear
very rarely. In particular, for each class i, we count how
many training images contain this class, and then normal-
ize this frequency vector t to sum to 1. The loss function
`(ŷ,y) is then defined to decompose into a sum of unary
terms, i.e., `(ŷ,y) =

∑
i∈{1,...,C} `i(ŷi, yi) with

`i(ŷi, yi) =


1
ti

if yi 6= ŷi and yi = 0

ti if yi 6= ŷi and yi = 1

0 otherwise
(3)

where yi is the ground truth label, and ŷi is the prediction
for the i-th class. Note that our loss function is only defined
on the class presence variables y that are observed during
training.

3.4. Inference

The configuration with the minimum energy or the high-
est probability p(y,h | x), also known as the maximum a



posteriori (MAP) estimate, can be computed by solving the
following problem

(y∗,h∗) = argmax
y,h

w>φ(y,h, x) (4)

given an image x. This is an NP-hard task since the op-
timization is equivalent to an integer linear program. For-
tunately, linear programming (LP) relaxations have proven
very effective. We employ a message passing approach
to leveraging the graphical model structure. In particular,
we use distributed convex belief propagation (dcBP) [22],
which has convergence guarantees. Note that this is not the
case for other message passing algorithms such as loopy be-
lief propagation.

4. Experimental Evaluation

We perform our experiments using the SIFT-flow seg-
mentation dataset [14], which contains 2688 images and
C = 33 classes. This dataset is very challenging due to the
large number of classes (4.43 classes per image) as well as
the fact that their frequency is distributed with a power-law.
As shown in the first line of Table 2, a few ‘stuff’ classes
like sky, sea and tree are very common, while the ‘object’
classes like person, bus and sun are very rare. We use the
standard dataset split (2488 training images and 200 testing
images) provided by [14].

Following [32] we report mean per-class accuracy as our
metric. This metric gives the same importance to each class,
independently of their frequency. We construct our super-
pixels using the ultrametric contour map of [1], which re-
spects boundaries well even when a small number of su-
perpixels is used. In our experiments, we set the boundary
probability threshold to be 0.14, which results in 19 seg-
ments per image on average.

In our experiments we exploit two settings. In the first
case we follow the standard weakly labeled setting, in
which only image level tags are given for training and no
annotations are given at the pixel-level. During testing, no
source of annotation is provided. Learning in this setting
corresponds to the graphical model in Fig. 2 (left), while
inference is shown on Fig. 2 (right). In the second setting
we assume that tags are given both at training and test time,
and thus the graphical model in Fig. 2 (left) depicts both
learning and inference. This is a natural setting when em-
ploying image collections where tags are readily available.

Our first experiment utilizes tags only at training. We
utilize an image-tag classifier which leverages deep learn-
ing in order to construct φpress(x, yi) at test time. In partic-
ular, we first extract a 4096 dimensional feature vector for
each image from the second to last layer of a convolutional
neural network (CNN) pre-trained on ImageNet [6]. We use
the publicly available implementation of [9] to compute the

Method Supervision Per-Class (%)
Tighe et al. [26] full 39.2
Tighe et al. [27] full 30.1
Liu et al. [14] full 24
Vezhnevets et al. [31] weak 14
Vezhnevets et al. [32] weak 21
Ours (CNN-Tag) weak 27.9
Ours (Truth-Tag) weak 44.7

Table 1. Comparison to state-of-the-art on the SIFT-flow dataset.
We outperformed the state-of-the-art in the weakly supervised set-
ting by 7%.

features, and a linear SVM per class to form the final poten-
tial. We refer to this setting as “Ours (CNN-Tag).”

Comparison to the state-of-the-art: Tab. 1 compares
our approach to state-of-the-art weakly labeled approaches.
For reference, we also include the state-of-the-art when
pixel-wise labels are available at training (fully labeled set-
ting). We would like to emphasize that our approach out-
performs significantly (7% higher) all weakly labeled ap-
proaches. Furthermore, we even outperform the fully su-
pervised method developed by Liu et al. [14]. The per-class
rates for each class are provided in Tab. 2. We observe
that our approach performs well for classes which have very
distinctive and consistent appearance, e.g., sand, sun, stair-
cases. We missed a few classes, e.g., bus, crosswalk, bird,
due to their largely varying appearance and small training
set size.

Quality of image-tag prediction: Our CNN-Tag predic-
tor predicts tags with an accuracy of 93.7%, which is mea-
sured as the mean of the diagonal of the confusion matrix.
The last row of Table 2 shows the performance of the tag
predictor for each class. Interestingly, tag prediction errors
do not correlate well with segmentation errors, e.g., cross-
walk and bird tags are predicted with very high accuracy,
but segmentation accuracy is very low for both classes.

Qualitative results: Fig. 4 and Fig. 5 show success and
failure cases respectively. Typical failure modes are due to
under-segmentation when creating the superpixels as well
as dealing with classes where different instances have very
different appearance, e.g., due to viewpoint changes.

Tags given at both training and testing: In our second
setting, tags are given both at training and testing. Note
that the training procedure here is identical to the previous
setting. However, at test time our image level class poten-
tials are built from observed ground truth tags. We denote
this setting as “Ours (Truth-Tag).” As shown in Tab. 1, we
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Table 2. Accuracy for each class: First row shows tag frequency (percentage of images) for each class. Rows 2 and 3 show segmentation
accuracy for each class when a CNN tag predictor or the ground truth tags are used respectively. The last row shows the accuracy of our
image tag predictor for each class.
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Figure 7. Per-Class accuracy as a function of the percentage of
ground-truth tags available at test time.

almost double the per-class accuracy of the previous set-
ting. Surprisingly, we outperformed all fully labeled ap-
proaches while not requiring any example to be labeled at
the pixel-level. Fig. 6 depicts qualitative results for this set-
ting. When image level tags are given, our approach is able
to identify more challenging classes, e.g., buildings.

Partial tags given at test time: We further evaluate our
model when only a subset of the tags are provided. For
each run, we randomly sample a small portion of ground
truth (GT) tags, and predict the remaining ones via our
CNN tag classifier. The combined potentials are then fed
into our model for inference. We conduct our experiments
using four different sample ratios {0.1, 0.2, 0.3, 0.5}. For
each setting, we repeat our procedure 10 times and report
the mean and standard deviation. As shown in Fig. 7, our
approach gradually improves when more GT tags are given.

5. Conclusion

We have presented an approach to semantic segmenta-
tion which is able to exploit weak labels in the form of
image tags when no pixel-wise labeling are available. We
have shown that this problem can be formulated as struc-
tured prediction in a graphical model with latent variables.

Unlike existing approaches, this allowed us to leverage stan-
dard algorithms with good theoretical guarantees. We have
demonstrated the effectiveness of our approach and showed
improvements of 7% over the state-of-the-art in this task.
Our novel view of the problem can be used to incorporate
other types of supervision without changing the learning or
inference algorithms. In the future we plan to exploit other
annotations such as the type of scene or bounding boxes as
well as other forms of learning such as active learning [15]
to further reduce the need of supervision.

Acknowledgments: We thank Sanja Fidler and Vikas
Singh for helpful discussions. This work was partially
funded by NSF RI 1116584 and ONR-N00014-13-1-0721.

References
[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour Detection and Hierarchical Image Segmentation. PAMI,
2011. 5

[2] Y. Boykov and M.-P. Jolly. Interactive Graph Cuts for Opti-
mal Boundary and Region Segmentation of Objects in N-D
Images. In Proc. ICCV, 2001. 2

[3] G. Cardinal, X. Boix, J. van de Weijer, A. D. Bagdanov,
J. Serrat, and J. Gonzalez. Harmony Potentials for Joint Clas-
sification and Segmentation. In Proc. CVPR, 2010. 2

[4] J. Carreira, F. Li, and C. Sminchisescu. Object Recognition
by Sequential Figure-Ground Ranking. IJCV, 2011. 2

[5] L. C. Chen, S. Fidler, A. Yuille, and R. Urtasun. Beat the
MTurkers: Automatic Image Labeling from Weak 3D Su-
pervision. In Proc. CVPR, 2014. 2

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.
ImageNet: A Large-Scale Hierarchical Image Database. In
Proc. CVPR, 2009. 5

[7] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. PAMI, 2010. 2

[8] C. Gu, J. J. Lim, P. Arbelaez, and J. Malik. Recognition
using region. In Proc. CVPR, 2009. 2

[9] Y. Jia. Caffe: An open source convolutional archi-
tecture for fast feature embedding. http://caffe.
berkeleyvision.org/, 2013. 5

[10] A. Joulin, F. Bach, and J. Ponce. Multi-class cosegmentation.
In Proc. CVPR, 2012. 2

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/


Original Image Ground Truth Ours Original Image Ground Truth Ours

unlabeled sky sea mountain tree building fence

1

Figure 4. Sample results when tags are predicted at test time using a convolutional net. Best viewed in color.

Original Image Ground Truth Ours Original Image Ground Truth Ours

person car fence field tree building road door window

1

Figure 5. Failure cases when tags are predicted using a convolutional net at test time. Best viewed in color.
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