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Abstract

In this paper, we propose Sequential Grouping Net-
works (SGN) to tackle the problem of object instance seg-
mentation. SGNs employ a sequence of neural networks,
each solving a sub-grouping problem of increasing seman-
tic complexity in order to gradually compose objects out
of pixels. In particular, the first network aims to group
pixels along each image row and column by predicting
horizontal and vertical object breakpoints. These break-
points are then used to create line segments. By exploit-
ing two-directional information, the second network groups
horizontal and vertical lines into connected components.
Finally, the third network groups the connected compo-
nents into object instances. Our experiments show that our
SGN significantly outperforms state-of-the-art approaches
in both, the Cityscapes dataset as well as PASCAL VOC.

1. Introduction
The community has achieved remarkable progress for

tasks such as object detection [32, 10] and semantic seg-
mentation [27, 6] in recent years. Research along these lines
opens the door to challenging life-changing tasks, including
autonomous driving and personalized robotics.

Instance segmentation is a task that jointly considers ob-
ject detection and semantic segmentation, by aiming to pre-
dict a pixel-wise mask for each object in an image. The
problem is inherently combinatorial, requiring us to group
sets of pixels into coherent components. Occlusion and
vastly varying number of objects across scenes further in-
crease the complexity of the task. In street scenes, such as
those in the Cityscapes dataset [7], current methods merely
reach 20% accuracy in terms of average precision, which is
still far from satisfactory.

Most of the instance segmentation approaches employ a
two-step process by treating the problem as a foreground-
background pixel labeling task within the object detection
boxes [15, 16, 1, 29, 30]. Instead of labeling pixels, [4] pre-
dicts a polygon outlining the object instance using a Recur-

rent Neural Network (RNN). In [41, 40], large patches are
exhaustively extracted from an image and a Convolutional
Neural Network (CNN) is trained to predict instance la-
bels inside each patch. A dense Conditional Random Field
(CRF) is then used to get consistent labeling of the full im-
age. In [33, 31], an RNN is used to produce one object mask
per time step. The latter approaches face difficulties on im-
ages of street scenes which contain many objects. More re-
cently, [3] learned a convolutional net to predict the energy
of the watershed transform. Its complexity does not depend
on the number of objects in the scene.

In this paper, we break the task of object instance seg-
mentation into several sub-tasks that are easier to tackle.
We propose a grouping approach that employs a sequence
of neural networks to gradually compose objects from sim-
pler constituents. In particular, the first network aims to
group pixels along each image row and column by predict-
ing horizontal and vertical object breakpoints. These are
then used to create horizontal and vertical line segments.
The second neural network groups these line segments into
connected components. The last network merges compo-
nents into coherent object instances, thus solving the prob-
lem of object splitting due to occlusion. Due to its sequen-
tial nature, we call our approach Sequential Grouping Net-
works (SGN). We evaluate our method on the challenging
Cityscapes dataset. SGN significantly outperforms state-of-
the-art, achieving a 5% absolute and 25% relative boost in
accuracy. We also improve over state-of-the-art on PAS-
CAL VOC for general object instance segmentation which
further showcases the strengths of our proposed approach.

2. Related Work
The pioneering work of instance segmentation [15, 8]

aimed at both classifying object proposals as well as la-
beling an object within each box. In [29, 30], high-
quality mask proposals were generated using CNNs. Simi-
larly, MNC [9] designed an end-to-end trainable multi-task
network cascade to unify bounding box proposal genera-
tion, pixel-wise mask proposal generation and classifica-
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Figure 1. Sequential Grouping Networks (SGN): We first predict breakpoints. LineNet groups them into connected components, which
are finally composed by the MergerNet to form our final instances.

tion. SAIS [16] improved MNC by learning to predict dis-
tances to instance boundaries, which are then decoded into
high-quality masks by a set of convolution operations. A
recursive process was proposed in [22] to iteratively refine
the predicted pixel-wise masks. Recently, [4] proposed to
predict polygons outlining each object instance which has
the advantage of efficiently capturing object shape.

MPA [26] modeled objects as composed of generic parts,
which are predicted in a sliding window fashion and then
aggregated to produce instances. IIS [20] is an iterative ap-
proach to refine the instance masks. In [21], the authors
utilized a fully convolutional network by learning to com-
bine different relative parts into an instance. Methods of
[41, 40] extracted patches from the image and used a CNN
to directly infer instance IDs inside each patch. A CRF is
then used to derive globally consistent labels of the image.

In [1, 2], a CRF is used to assign each pixel to an object
detection box by exploiting semantic segmentation maps.
Similarly, PFN [23] utilized semantic segmentation to pre-
dict the bounding box each pixel belongs to. Pixels are then
grouped into clusters based on the distances to the predicted
bounding boxes. In [36], the authors predict the direction to
the instance’s center for each pixel, and exploits templates
to infer the location of instances on the predicted angle map.

Recently, Bai and Urtasun [3] utilized a CNN to learn an
energy of the watershed transform. Instances naturally cor-
respond to basins in the energy map. It avoids the combina-
torial complexity of instance segmentation. In [18], seman-
tic segmentation and object boundary prediction were ex-
ploited to separate instances. Different types of label trans-
formation were investigated in [17]. Pixel association was
learned in [28] to differentiate between instances.

Finally, RNN [33, 31] was used to predict an object label
at each time step. However, since RNNs typically do not
perform well when the number of time steps is large, these
methods have difficulties in scaling up to the challenging
multi-object street scenes.

Here, we propose a new type of approach to instance
segmentation by exploiting several neural networks in a se-
quential manner, each solving a sub-grouping problem.

3. Sequential Grouping Networks
In this section, we present our approach to object in-

stance segmentation. Following [3, 18], we utilize seman-
tic segmentation to identify foreground pixels, and restrict
our reasoning to them. We regard instances as composed of
breakpoints that form line segments, which are then com-
bined to generate full instances. Fig. 1 illustrates our model.
We first introduce the network to identify breakpoints, and
show how to use them to group pixels into lines in Sub-
sec. 3.2. In Subsec. 3.3, we propose a network that groups
lines into components, and finally the network to group
components into instances is introduced in Subsec. 3.4.

3.1. Predicting Breakpoints
Our most basic primitives are defined as the pixel loca-

tions of breakpoints, which, for a given direction, represent
the beginning or end of each object instance. Note that we
reason about the breakpoints in both the horizontal and ver-
tical direction. For the horizontal direction, computing the
starting points amounts to scanning the image from left to
right, one row at a time, recording the change points where
a new instance appears. For the vertical direction, the same
process is conducted from top to bottom. As a consequence,
the boundary between instances is considered as a starting
point. The termination points are then the pixels where an
instance has a boundary with the background. Note that
this is different from predicting standard boundaries as it
additionally encodes the direction where the interior of the
instance is.

We empirically found that introducing two additional
labels encoding the instance interior as well as the back-
ground is helpful to make the end-point prediction sharper.
Each pixel in an image is thus labeled with 4 labels encod-
ing either background, interior, starting point or a termina-
tion point. We refer the reader to Fig. 1 for an example.

Network Structure We exploit a CNN to perform this
pixel-wise labeling task. The network takes the original im-
age as input and predicts two label maps, one per direction
as shown in Fig. 2(a). Our network is based on Deeplab-



(a) (b)
Figure 2. Illustration of (a) network structure for predicting breakpoints, and (b) the fusion operation.

(a) (b)
decoding direction

Figure 3. Line decoding process. Green and red points are start-
ing and termination ones. Scanning from left to right, there is no
more line segment in the area pointed by the black arrow in (a)
due to erroneous point detection. The reversal scanning in (b) gets
new line hypothesis in this area, shown by orange line segments.

LargeFOV [5]. We use a modified VGG16 [35], and make
it fully convolutional as in FCN [27]. To preserve precise
localization information, we remove pool4 and pool5 lay-
ers. To enlarge the receptive field, we make use of dilated
convolutions [39, 6] in the conv5 and conv6 layers.

Similar to the methods in [30, 24, 12], we augment the
network by connecting lower layers to higher ones in order
to capture fine details. In particular, we fuse information
from conv5 3, conv4 3 and conv3 3 layers, as shown in Fig.
2 (b). To be more specific, we first independently filter the
input feature maps through 128 filters of size 3 ⇥ 3, which
are then concatenated. We then utilize another set of 128
filters of size 3⇥ 3 to decrease the feature dimension. After
fusion with conv3 3, the feature map is downscaled by a
factor of 4. Predictions for breakpoint maps are then made
by two independent branches on top of it.

Learning Predicting breakpoints is hard since they are
very sparse, making the distribution of labels unbalanced
and dominated by the background and interior pixels. To
mitigate this effect, similar to HED [38], we re-weight the
cross-entropy loss based on inverse of the frequency of each
class in the mini-batch.

3.2. Grouping Breakpoints into Line Segments
Since the convolutional net outputs breakpoints that span

over multiple consecutive pixels, we use a morphological
operator to create boundaries with one pixel width. We fur-
ther augment the set of breakpoints with the boundaries in

the semantic segmentation prediction map to ensure we do
not miss any boundary. We then design an algorithm that re-
verses the process of generating breakpoints from instance
segmentation in order to create line segments. To create
horizontal lines, we slide from left to right along each row,
and start a new line when we hit a starting point. Lines are
terminated when we hit an end point or a new starting point.
The latter arises at the boundary of two different instances.
Fig. 3 (a) illustrates this process. To create vertical lines, we
perform similar operations but slide from top to bottom.

This simple process inevitably introduces errors if there
are false termination points inside instances. As shown in
Fig. 3 (a), the area pointed by the black arrow is caused by
false termination points. To handle this issue, we augment
the generated line segments by decoding in the reverse di-
rection (right to left for horizontal lines and bottom to top
for vertical ones) as illustrated in Fig. 3 (b). Towards this
goal, we identify the starting points lying between instances
by counting the consecutive number of starting points. We
then switch starting and termination points for all points that
are not double starting points and decode in the reverse or-
der. As shown in Fig. 3 (b), this simple process gives us the
additional lines (orange) necessary to complete the instance.

3.3. Grouping Lines into Connected Components

The next step is to aggregate lines to create instances that
form a single connected component. We utilize the horizon-
tal lines as our elements and recursively decide whether to
merge a line into an existing component. Note that this is an
efficient process since there are much fewer lines compared
to raw pixels. On average, the number of operations that
need to be made is 4802 per image on Cityscapes and 1014
on PASCAL VOC. Our merging process is performed by
a memory-less recurrent network, which we call LineNet.
LineNet scans the image from top to bottom and sequen-
tially decides whether to merge the new line into one of the
existing neighboring instances (i.e., instances that touch the
line in at least one pixel). An example is shown in Fig. 4 (a)
where Ok is an instance and si is a line segment.



(a) (b) (c) (d) (e) (f)
Figure 4. (a) Context area is highlighted in the dashed red bounding box. (b) Orange vertical rectangles represent vertical line segments.
(c) First channel. (d) Second channel where Ok and si have the same semantic class. (e) The situation when Ok and si are not in the same
class. (f) Third channel.

Network Structure Let si be the line segment we con-
sider and Ok is an instance in Fig. 4 (a). LineNet uses as
context a small number of rows h on top of si encoding the
history of already merged instances, as well as a small set of
rows f below si encoding the future possible merges. We
restrict the horizontal context to be the minimum interval
containing the instance candidate Ok and the line si. This
is shown as the dashed red area in Fig. 4 (a). We also pad
zeros to make the window horizontally centered at si and
resize the window horizontally to have a fixed size.

The input to LineNet contains 9 channels. The first is
a boolean map with ones in the pixels belonging to si or
Ok. The second channel contains ones for pixels in Ok that
are labeled in the same semantic class as the majority of the
pixels in line si. The third channel is a boolean map show-
ing pixels in Ok that share the same vertical line segment
with si. The first three channels are illustrated in Fig. 4
(c)-(f). Additionally, we append 6 channels containing the
interior and breakpoint probability maps in the vertical and
horizontal directions. LineNet is a very small net, consist-
ing of two shared fully-connected layers and class-specific
classifiers with the sigmoid function. The output for each
semantic class is the probability of merging the line with
the candidate instance.

Learning We use standard cross-entropy loss to train
LineNet, where a line should be merged with an existing
instance if the majority of pixels in the line and instance
belong to the same ground-truth instance.

3.4. Merging Fragmented Instances
Note that many instances are composed of more than one

connected component. This is the case for example of a car
that is occluded by a pole, as shown in Fig. 5 (a). This
issue is common in urban scenes. On average 3.5 instances
per image are fragmented in Cityscapes. In PASCAL, this
number is much smaller with only 0.3 instance per image.

In order to deal with fragmented instances, we design a
MergerNet that groups these components to form the final
set of object instances. Note that most instance segmen-
tation algorithms cannot tackle the fragmentation problem
[3, 26, 18, 41, 40]. Our MergerNet can thus also be used
to enhance these approaches. In particular, as merging can-
didates for each segment we choose all segments that are
closer than a fixed threshold. We use 100 pixels in practice.

(a) (b) (c) (d)
Figure 5. (a) A car that is occluded by a pole resulting in frag-
mented parts. (b) Bounding boxes containing the current pair, i.e.,
two green segments. (c) First two input channels. (d) Sixth and
seventh input channels to the MergerNet.

We then order these segments by size, and utilize a memory-
less recurrent net to further decide whether to merge or not.
If a merge occurs, we recompute the set of neighbors and
repeat this process.

Network Architecture Our MergerNet takes as input 10
channels. To generate the first 5 channels, we fit a tight
square bounding box containing candidate regions (blue
box in Fig. 5 (b)) and generate the representation within
this box. The first channel is a boolean map with ones for
pixels belonging to either instance. The second channel is
a boolean map with ones indicating other segments lying
in the box. This provides information about other possi-
ble merges. Fig. 5 (c) shows the first two channels. The
next three channels are simply the image RGB values in
this bounding box. We resize all channels to a fixed size
of 128⇥ 128. The remaining 5 channels are generated in a
similar way except that they are from a bounding box dou-
bled the size (purple box in Fig. 5 (b)). The sixth and sev-
enth channels are illustrated in Fig. 5 (d). The network is
small, consisting of 3 convolution layers, one shared fully-
connected layer and class-specific classifiers with sigmoid
function to produce the final merge probability.

Learning We generate training samples for MergerNet
by running inference on the training images and use the
ground-truth instances to infer whether the different com-
ponents should be merged or not. In particular, we merge
them if the majority of pixels are part of the same GT in-
stance. We use standard cross-entropy as the loss function
for each class. The result of this merging process is our final
instance segmentation. We define the semantic label of each
instance as the class that the majority of pixels are labeled.



Method person rider car truck bus train mcycle bicycle
Uhrig et al. [36] 12.5 11.7 22.5 3.3 5.9 3.2 6.9 5.1
RecAttend [31] 9.2 3.1 27.5 8.0 12.1 7.9 4.8 3.3

Levinkov et al. [19] 6.5 9.3 23.0 6.7 10.9 10.3 6.8 4.6
InstanceCut [18] 10.0 8.0 23.7 14.0 19.5 15.2 9.3 4.7

SAIS [16] 14.6 12.9 35.7 16.0 23.2 19.0 10.3 7.8
DWT [3] 15.5 14.1 31.5 22.5 27.0 22.9 13.9 8.0
DIN [1] 16.5 16.7 25.7 20.6 30.0 23.4 17.1 10.1

Our SGN 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4

Method AP AP 50% AP 100m AP 50m
Uhrig et al. [36] 8.9 21.1 15.3 16.7
RecAttend [31] 9.5 18.9 16.8 20.9

Levinkov et al. [19] 9.8 23.2 16.8 20.3
InstanceCut [18] 13.0 27.9 22.1 26.1

SAIS [16] 17.4 36.7 29.3 34.0
DWT [3] 19.4 35.3 31.4 36.8
DIN [1] 20.0 38.8 32.6 37.6

Our SGN 25.0 44.9 38.9 44.5
Table 1. AP results on Cityscapes test. The entries with the best performance are bold-faced.

Method person rider car truck bus train motorcycle bicycle AP AP 50%
DWT-non-ranking [3] 15.5 13.8 33.1 23.6 39.9 17.4 11.9 8.8 20.5 -

DWT-ranking [3] 15.5 13.8 33.1 27.1 45.2 14.5 11.9 8.8 21.2 -
SAIS [16] - - - - - - - - - 32.4
Our SGN 21.3 19.5 41.2 33.4 49.9 40.7 14.7 13.0 29.2 49.4

Table 2. AP results on Cityscapes val. The entries with the best performance are bold-faced.

4. Experimental Evaluation
We evaluate our method on the challenging dataset

Cityscapes [7] as well as PASCAL VOC 2012 [11]. We
focus our experiments on Cityscapes as it is much more
challenging. On average, it contains 17 object instances per
image vs 2.4 in PASCAL.
Dataset The Cityscapes dataset [7] contains imagery of
complex urban scenes with high pixel resolution of 1, 024⇥
2, 048. There are 5, 000 images with high-quality anno-
tations that are split into subsets of 2, 975 train, 500 val
and 1, 525 test images, respectively. We use images in the
train subset with fine labels to train our networks. For the
instance segmentation task, there are 8 classes, including
different categories of people and vehicles. Motion blur,
occlusion, extreme scale variance and imbalanced class dis-
tribution make this dataset extremely challenging.
Metrics The metric used by Cityscapes is Average Preci-
sion (AP). It is computed at different thresholds from 0.5
to 0.95 with step-size of 0.05 followed by averaging. We
report AP at 0.5 IoU threshold and AP within a certain
distance. As pointed in [3, 1], AP favors detection-based
methods. Thus we also report the Mean Weighted Coverage
(MWCov) [31, 37], which is the average IoU of prediction
matched with ground-truth instances weighted by the size
of the ground-truth instances.
Implementation Details For our breakpoint predic-
tion network, we initialize conv1 to conv5 layers from
VGG16 [35] pre-trained on Imagenet [34]. We use random
initialization for other layers. The learning rates to train the
breakpoint prediction network, LineNet and the MergerNet
are set to 10�5, 10�2 and 10�3, respectively. We use SGD
with momentum for training. Following the method of [5],
we use the “poly” policy to adjust the learning rate. We train
the breakpoint prediction network for 40k iterations, while

LineNet and MergerNet are trained using 20k iterations. To
alleviate the imbalance of class distribution for LineNet and
MergerNet, we sample training examples in mini-batches
by keeping equal numbers of positives and negatives. Fol-
lowing [3], we remove small instances and use semantic
scores from semantic segmentation to rank predictions for
{train, bus, car, truck}. For other classes, scores are set
to 1. By default, we use semantic segmentation prediction
from PSP [42] on Cityscapes and LRR [13] on PASCAL
VOC. We also conduct an ablation study of how the quality
of semantic segmentation influences our results.

Comparison to State-of-the-art As shown in Table 1,
our approach significantly outperforms other methods on all
classes. We achieve an improvement of 5% absolute and
25% in relative performance compared to state-of-the-art
reported on the Cityscapes website, captured at the moment
of our submission. We also report results on the validation
set in Table 2, where the improvement is even larger.

Influence of Semantic Segmentation We investigate the
influence of semantic segmentation in our instance predic-
tion approach. We compare the performance of our ap-
proach when using LRR [13], which is based on VGG-16,
with PSP [42], which is based on Resnet-101. As shown
in Table 3, we achieve reasonable results using LRR, how-
ever, much better results are obtained when exploiting PSP.
Results improve significantly in both cases when using the
MergerNet. Note that LineNet and MergerNet are not fine-
tuned for LRR prediction.

Influence of Size As shown in Fig. 7, as expected, small
instances are more difficult to detect than the larger ones.

Influence of LineNet Parameters The contextual infor-
mation passed to LineNet is controlled by the number of
history rows h, as well as the number of rows f encoding
the future information. As shown in Table 4, LineNet is not



LRR [13] PSP [42] MergerNet AP AP 50% MWCov
X 20.0 37.8 64.3
X X 21.7 40.9 66.4

X 25.2 43.8 70.6
X X 29.2 49.4 74.1

Table 3. Cityscapes val with different semantic segm. methods.

Metric h1f1 h1f3 h1f5 h3f1 h3f3 h3f5 h5f1 h5f3 h5f5
AP 25.3 25.2 25.2 24.8 24.9 24.9 24.9 25.2 25.0

AP 50% 44.0 44.1 43.8 43.2 43.6 43.3 43.3 43.7 43.5
MWCov 71.4 71.3 71.6 70.9 71.5 71.3 71.1 71.6 71.4

Table 4. Cityscapes val results in terms of AP, AP 50%, MWCov.

sensitive to the context parameters while local information
is sufficient. In the following experiments, we select the
entry “h1f5” by considering both AP and MWCov.

Heuristic Methods vs LineNet We compare LineNet to
two heuristic baseline methods. The first takes the union
of vertical and horizontal breakpoints and class boundaries
from PSP. We thin them into one pixel width to get the in-
stance boundary map. In the foreground area defined via
the PSP semantic segmentation map, we set the instance
boundary as 0 and then take connected components as in-
ferred instances. Post-processing steps, such as removing
small objects and assigning scores, are exactly the same as
in our approach. We name this method “con-com”.

Our second baseline is called “heuristic”. Instead of us-
ing LineNet, we simply calculate a relationship between
two neighboring line segments (current line segment and
neighboring line segment in previous row) to make a deci-
sion. The value we compute includes the IoU value, ratio of
the overlaps with the other line segment and ratio of vertical
line segments connecting them in the overlapping area. If
each value and their summation are higher than the chosen
thresholds, we merge the two line segments. This strategy
simply makes decisions based on the current line segment
pair – no training is needed.

As shown in Table 6, on average, the heuristic strat-
egy outperforms the simple connected component method
in terms of all metrics. This clearly shows the benefit of
using line segments. LineNet outperforms both heuristic
methods, demonstrating the advantage of incorporating a
network to perform grouping. The connected component
method performs quite well on classes such as car and bus,
but performs worse on person and motorcycle. This sug-
gests that boundaries are more beneficial to instances with
compact shape than to those with complex silhouettes. Our
approach, however, works generally well on both, complex
and compact shapes, and further enables networks to correct
errors that exist in breakpoint maps.

Influence of MergerNet Parameters A parameter of the
MergerNet is the max distance between foreground regions

Method APr

APravg0.5 0.6 0.7 0.8 0.9
PFN [23] 58.7 51.3 42.5 31.2 15.7 39.9

Arnab et al. [2] 58.3 52.4 45.4 34.9 20.1 42.2
MPA 3-scale [26] 62.1 56.6 47.4 36.1 18.5 44.1

DIN [1] 61.7 55.5 48.6 39.5 25.1 46.1
Our SGN 61.4 55.9 49.9 42.1 26.9 47.2

Table 5. APr on PASCAL val.

in a candidate pair. To set the value, we first predict in-
stances with LineNet on the train subset and compute statis-
tics. We show recall of pairs that need to be merged vs
distance in Fig. 8(a) and the number of pairs with distance
smaller than a threshold vs distance in Fig. 8(b). We plot the
performance with respect to different maximum distances
used to merge in Fig. 8(c) and (d). Distance 0 means that
the MergerNet is not utilized. The MergerNet with different
parameters consistently improves performance. The results
show that the MergerNet with 150 pixels as the maximum
distance performs slightly worse than MergerNet with 50
and 100 pixels. We hypothesize that with larger distances,
more false positives confuse MergerNet during inference.

Visual Results We show qualitative results of all inter-
mediate steps in our approach on Cityscapes val in Fig. 6.
Our method produces high-quality breakpoints, instance in-
terior, line segments and final results, for objects of different
scales, classes and occlusion levels. The MergerNet works
quite well as shown in Fig. 6 as well as on the train object in
Fig. 9(b). Note that predictions with IoU higher than 0.5 are
assigned colors of their corresponding ground-truth labels.

Failure Modes Our method may fail if errors exist in the
semantic segmentation maps. As shown in Fig. 9(b), a small
part of the train is miss-classified by PSP. So the train is
broken into two parts. Our method may also miss extremely
small instances, such as some people in Fig. 9(e) and (f).
Further, when several complex instances are close to each
other, we may end up grouping them as shown in Fig. 9(g)
and (h). The MergerNet sometimes also aggregates differ-
ent instances such as the two light green cars in Fig. 9(a).

Results on PASCAL VOC We also conduct experiments
on PASCAL VOC 2012 [11], which contains 20 classes.
As is common practice, for training images, we addition-
ally use annotations from the SBD dataset [14], resulting in
10, 582 images with instance annotation. For the val subset,
we used 1, 449 images from VOC 2012 val set. There is no
overlap between training and validation images. Following
common practice, we compare with state-of-the-art on the
val subset since there is no held-out test set. Note that the
LRR model we use is pre-trained on MS COCO [25], which
is also used by DIN [1] for pre-training.

We use APr [15] as the evaluation metric, representing
the region AP at a specific IoU threshold. Following [25, 7],
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Figure 6. Qualitative results of all intermediate results and final prediction.

Method person rider car truck bus train motorcycle bicycle Average
con-com 16.6 / 70.8 9.1 / 57.2 40.0 / 89.6 29.8 / 84.5 46.6 / 88.8 21.1 / 68.5 7.4 / 48.9 6.1 / 49.1 22.1 / 69.7
heuristic 20.4 / 71.7 16.1 / 62.0 36.6 / 87.3 29.0 / 80.8 38.5 / 89.3 19.4 / 68.7 10.1 / 54.2 8.4 / 50.9 23.6 / 70.6
Linenet 20.2 / 71.7 17.8 / 62.9 38.5 / 88.2 32.0 / 83.9 46.4 / 88.6 23.3 / 69.5 14.1 / 59.4 9.4 / 48.4 25.2 / 71.6

Table 6. Results on Cityscapes val in terms of AP / MWCov.
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Figure 7. IoU as a function of ground-truth sizes.

we average APr at IoU threshold ranging from 0.5 to 0.9
with step-size 0.1 (instead of 0.1 to 0.9). We believe that
APr at higher IoU thresholds are more informative.

As shown in Table 5 our method outperforms DIN [1]
by 1.1 points in terms of APravg. We also achieve better
performance for IoU higher than 0.6. This result demon-
strates the quality of masks generated by our method. Our
method takes about 2.2s with LineNet “h1f5” and 1.6s with
LineNet “h1f1” per image using one Titan X graphics card
and an Intel Core i7 3.50GHZ CPU using a single thread on
PASCAL VOC. This includes the CPU time.

5. Conclusion

We proposed Sequential Grouping Networks (SGN) for
object instance segmentation. Our approach employs a
sequence of simple networks, each solving a more com-
plex grouping problem. Object breakpoints are composed
to create line segments, which are then grouped into con-
nected components. Finally, the connected components are
grouped into full objects. Our experiments showed that our
approach significantly outperforms existing approaches on
the challenging Cityscapes dataset and works well on PAS-
CAL VOC. In our future work, we plan to make our frame-
work end-to-end trainable.
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