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Abstract

RGBD semantic segmentation requires joint reasoning
about 2D appearance and 3D geometric information. In
this paper we propose a 3D graph neural network (3DGNN)
that builds a k-nearest neighbor graph on top of 3D point
cloud. Each node in the graph corresponds to a set of points
and is associated with a hidden representation vector ini-
tialized with an appearance feature extracted by a unary
CNN from 2D images. Relying on recurrent functions, every
node dynamically updates its hidden representation based
on the current status and incoming messages from its neigh-
bors. This propagation model is unrolled for a certain num-
ber of time steps and the final per-node representation is
used for predicting the semantic class of each pixel. We
use back-propagation through time to train the model. Ex-
tensive experiments on NYUD2 and SUN-RGBD datasets
demonstrate the effectiveness of our approach.

1. Introduction
Advent of depth sensors makes it possible to perform

RGBD semantic segmentation along with many applica-
tions in virtual reality, robotics and human-computer inter-
action. Compared with the more common 2D image setting,
RGBD semantic segmentation can utilize the real-world ge-
ometric information by exploiting depth infromation. For
example, in Fig. 1(a), given the 2D image alone, the lo-
cal neighborhood of the red point located on the table in-
evitably includes microwave and counter pixels. However,
in 3D, there is no such confusion because these points are
distant in the 3D point cloud, as shown in Fig. 1(b).

Several methods [11, 29, 21, 7] treat RGBD segmenta-
tion as a 2D segmentation problem where depth is taken as
another input image. Deep convolutional neural networks
(CNNs) are applied separately to the color and depth im-
ages to extract features. These methods need two CNNs,
which double computation and memory consumption. Pos-
sible errors stem from missing part of the geometric context
information since 2D pixels are associated with 3D ones in

Figure 1. 2D and 3D context. The solid lines indicate neighbors
in 3D while the dotted lines are for neighbors in 2D but not in 3D.
(a) Input image (b) 2D image projected into 3D point cloud. (c)
Prediction by the two-stream CNN with HHA encoding [29]. (d)
Our 3DGNN prediction.

the real world. For example, in Fig. 1(c), the two-network
model [29] classifies the table as part of the counter.

An alternative is to use 3D CNNs [37] in voxelized
3D space. This type of methods has the potential to ex-
tract more geometric information. However, since 3D point
clouds are quite sparse, effective representation learning
from such data is challenging. In addition, 3D CNNs are
computationally more expensive than their 2D version, thus
it is difficult to scale up these systems to deal with a large
number of classes. Anisotropic convolutional neural net-
work [1, 30] provides a promising way to learn filters in
non-euclidean space for shape analysis. Yet it faces the
same difficulty of scaling-up to perform large-scale RGBD
dense semantic segmentation due to complex association of
points.

To tackle the challenges above, we propose an end-to-
end 3D graph neural network, which directly learns its rep-
resentation from 3D points. We first cast the 2D pixels into
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Figure 2. Overview of our 3D graph neural network. The top part of the figure shows the 3D point cloud and a close-up of the constructed
graph based on the point cloud. Blue points and the associated black dotted lines represent nodes and edges which exist in the graph
constructed from 2D image. It is clear that a graph built from the 3D point cloud encodes geometric information which is hard to be
inferred from the 2D image. In the bottom part, we show the sub-graph connected to the red point as an example to illustrate the propagation
process. We highlight the source of messages the red point receives in different time steps using yellow edges.

3D based on depth information and associate with each 3D
point a unary feature vector, i.e., an output of a 2D segmen-
tation CNN. We then build a graph whose nodes are these
3D points, and edges are constructed by finding the nearest
neighbors in 3D. For each node, we take the image feature
vector as the initial representation and iteratively update it
using a recurrent function. The key idea of this dynamic
computation scheme is that the node state is determined
by its history state and the messages sent by its neighbors,
while taking both appearance and 3D information into con-
sideration.

We use the final state of each node to perform per-node
classification. The back-propagation through time (BPTT)
algorithm is adopted to compute gradients of the graph neu-
ral network. Further, we pass the gradients to the unary
CNN to facilitate end-to-end training. Our experimental re-
sults show state-of-the-art performance on the challenging
NYUD2 and SUN-RGBD datasets.

2. Related Work
2D Semantic Segmentation. Fully convolutional net-
works (FCN) [29] have demonstrated effectiveness in per-
forming semantic segmentation. In fact, most of the fol-
lowing work [3, 45, 44, 26, 25, 46, 28, 43, 4] is built on
top of FCN. Chen et al. [3] used dilated convolutions to
enlarge the receptive field of the network while retaining
dense prediction. Conditional random fields (CRFs) have
been applied as post-processing [3] or have been integrated
into the network [45] to refine boundary of prediction. Re-
cently, global and local context is modeled in scene pars-
ing [42, 27]. In [44, 27], the context is incorporated with
pyramid pooling [12]. Liang et al. [22, 23] tackled seman-

tic segmentation as sequence prediction and used LSTM to
capture local and global dependencies. Graph LSTM [22]
was used to model structured data. However, the update
procedure and sequential processing make it hard to scale
up the system to large graphs.

RGBD Semantic Segmentation. Compared to the 2D
setting, RGBD semantic segmentation has the benefit of
exploiting more geometric information. Several methods
have encoded the depth map as an image. In [11, 29, 21],
depth information forms three channels via HHA encoding:
horizontal disparity, height above ground and norm angle.
In [7], the depth image is simply treated as a one-channel
image. FCNs were then applied to extract semantic features
directly on the encoded images.

In [11, 24], a set of 2.5D region proposals are first gen-
erated. Each proposal is then represented by its RGB image
and the encoded HHA image. Two CNNs were used to ex-
tract features separately, which are finally concatenated and
passed as input to SVM classification. Besides high compu-
tation, separate region proposal generation and label assign-
ment make these systems fragile. The final classification
stage could be influenced by errors produced in the proposal
stage. Long et al. [29] applied FCN to RGB and HHA im-
ages separately and fused scores for final prediction. Eigen
et al. [7] proposed a global-to-local strategy to combine dif-
ferent levels of prediction, which simply extracts features
via CNNs from the depth image. The extracted feature is
again concatenated with the image one for prediction. Li et
al. [21] used LSTM to fuse the HHA image and color infor-
mation. These methods all belong to the category that uses
2D CNNs to extract depth features.



Alternatively, several approaches deal with 2.5D data us-
ing 3D voxel networks [37, 41, 36]. Song et al. [37] used
a 3D dilated voxel convolutional neural network to learn
the semantics and occupancy of each voxel. These methods
take better advantage of 3D context. However, scaling up to
deal with high-resolution and complex scenes is challeng-
ing since 3D voxel networks are computationally expensive.
Further, quantization of 3D space can lead to additional er-
rors. Other methods [1, 30] learned non-euclidean filters for
shape analysis. They typically rely on well-defined point as-
sociation, e.g., meshes, which are not readily available for
complex RGBD segmentation data.

Graph neural networks. In terms of the structure of neu-
ral networks, there has been effort to generalize neural net-
works to graph data. One direction is to apply Convolu-
tional Neural Networks (CNNs) to graphs. In [2, 5, 18],
CNNs are employed in the spectral domain relying on the
graph Laplacian. While [6] used hash functions so that
CNN can be applied to graphs. Another direction is to
recurrently apply neural networks to every node of the
graph [9, 33, 20, 39], producing “Graph Neural Networks”.
This model includes a propagation process, which resem-
bles message passing of graphical models [8]. The final
learning process of such a model can be achieved by the
back-propagation through time (BPTT) algorithm.

3. Graph Neural Networks

In this section, we briefly review Graph Neural Networks
(GNN) [9, 33] and their variants, e.g., gated GNN [20], and
discuss their relationship with existing models.

For GNNs, the input data is represented as a graph G =
{V,E}, where V and E are the sets of nodes and edges of
the graph, respectively. For each node v ∈ V , we denote
the input feature vector by xv and its hidden representation
describing the node’s state at time step t by ht

v . We use Ωv

to denote the set of neighboring nodes of v.
A Graph Neural Network is a dynamic model where the

hidden representation of all nodes evolve over time. At time
step t, the hidden representation is updated as

mt
v =M

(
{ht

u|u ∈ Ωv}
)

ht+1
v = F

(
ht,mt

v

)
, (1)

where mt
v is a vector, which indicates the aggregation of

messages that node v receives from its neighbors Ωv . M is
a function to compute the message and F is the function to
update the hidden state. Similar to a recurrent neural net-
work, M and F are feedforward neural networks that are
shared among different time steps. SimpleM and F can be
an element-wise summation function and a fully connected
layer, respectively. Note that these update functions spec-
ify a propagation model of information inside the graph. It

is also possible to incorporate more information from the
graph with different types of edges using multipleM.

Inference is performed by executing the above propaga-
tion model for a certain number of steps. The final predic-
tion can be at the node or at the graph level depending on the
task. For example, one can feed the hidden representation
(or aggregation of it) to another neural network to perform
node (or graph) classification.

Graph Neural Networks are closely related to many ex-
isting models, such as conditional random fields (CRFs) and
recurrent neural networks (RNNs). We discuss them next.
We focussed on pairwise CRFs but note that the connection
extends to higher-order models.

Loopy Belief Propagation Inference. We are given
a pairwise (often cyclic in practice) CRF whose
conditional distribution factorizes as logP (Y |I) ∝
−
∑

i∈V φu(yi|I) −
∑

(i,j)∈E φp(yi, yj |I) with
Y = {yi|i ∈ V } the set of all labels, I the set of all
observed image pixels, and φu and φp the unary and pair-
wise potentials, respectively. One fundamental algorithm
to approximate inference in general MRFs/CRFs is loopy
belief propagation (BP) [31, 8]. The propagation process is
denoted as

βi→j =
∑
yi

exp {−φu(yi)− φp(yi, yj)}
∏

k∈Ωi/j

βk→i (2)

where β is the recursively defined message and the sub-
scription i → j means the message is sent from node i to
j. The message is a vector defined in the same space of
output label yi. The message update is performed either un-
til convergence or when reaching the maximum number of
iterations. One can then construct the final marginal prob-
ability as P (yi) ∝ exp {−φu(yi)}

∏
j∈Ωi

βj→i. It can be
deemed as a special case of the graph neural network built
on top of the factor graph. In this case, we only associate
hidden representation with the factor node and treat other
nodes as dummy in GNN. Then the message β in BP corre-
sponds to the hidden state of the factor node. The message
functionM is the product and the update function F takes
the form of Eq. (2).

Mean Field Inference. Mean field inference defines an
approximate distribution Q(Y ) =

∏
iQ(yi) and minimizes

the KL-divergence KL(Q||P ). The fixed-point propaga-
tion equations characterize the stationary points of the KL-
divergence as

Q(yi) =
1

Zi
exp

−φu(yi)−
∑
j∈Ωi

EQ(yj) [φp(yj , yi)]

 , (3)

where Zi is a normalizing constant and Ωi is the neigh-
bor of node i. This fixed-point iteration converges to a lo-
cal minimum [8]. From Eqs. (1) and (3), it is clear that



the mean field propagation is a special case of graph neu-
ral networks. The hidden representation of node i is just
the approximate distribution Q(yi). M and F is the nega-
tion of element-wise summation and softmax respectively.
EQ(yj) [φp(yj , yi)] is the message sent from node j to i.
While the messages of CRFs lie in the space of output la-
bels y, GNNs have messages mt

v in the space of hidden
representations. GNNs are therefore more flexible in terms
of information propagation as the dimension of the hidden
space can be much larger than that of the label space.

Connection to RNNs. GNNs can also be viewed as a gen-
eralization of RNNs from sequential to graph data. When
the input data is chain-structured, the neighborhood Ωv de-
generates to the single parent of the current node v. Then a
vanilla RNN, e.g., the one used in text modeling [38], is just
a graph neural network with a particular instantiation of the
message functionM and the update function F .

GNNs are also closely related to Tree-LSTM [39] when
the input graph is a tree. In this case, message computation
is the summation of hidden representations of all children
nodes. The main difference from common graph neural net-
works is that each child node computes its own copy of the
forget gate output – they are aggregated together in their
parents’ cell memory update.

4. 3DGNN for RGBD Semantic Segmentation
In this section, we propose a special GNN to tackle the

problem of RGBD semantic segmentation.

4.1. Graph Construction

Given an image, we construct a directed graph based on
the 2D position and the depth information of pixels. Let
[x, y, z] be the 3D coordinates of a point in the camera co-
ordinate system and let [u, v] be its projection onto the im-
age according to the pinhole camera model. Geometry of
perspective projection yields

x = (u− cx) ∗ z/fx
y = (v − cy) ∗ z/fy, (4)

where fx and fy are the focal length along the x and y direc-
tions, and cx and cy are coordinates of the principal point.
To form our graph, we regard each pixel as a node and con-
nect it via directed edges to K nearest neighbors (KNN) in
the 3D space, whereK is set to 64 in our experiments. Note
that this process creates asymmetric structure, i.e., an edge
from A to B does not necessarily imply existence of the
edge from B to A. We visualize the graph in Fig. 2.

4.2. Propagation Model

After constructing the graph, we use a CNN as the unary
model to compute the features for each pixel. We provide
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Figure 3. Performance of GNNs in different propagation steps.
Blue and orange lines correspond to vanilla RNN and LSTM up-
date respectively. Timestamp 0 represents the CNN baseline.

details in Section 5. Taking these features as the initial hid-
den representation of the corresponding node, we encode
the appearance information. Given that the 3D graph al-
ready encodes the geometric context, this graph neural net-
work exploits both appearance and geometry information.
The propagation process is expressed as

mt
v =

1

|Ωv|
∑
u∈Ωv

g
(
ht
u

)
ht+1
v = F

(
ht,mt

v

)
, (5)

where g is a multi-layer perceptron (MLP). Unless other-
wise specified, all instances of MLP that we employ have
one layer with ReLU [19] as the nonlinearity. At each time
step, every node collects messages from its neighbors. The
message is computed by first feeding hidden states to the
MLP g and then taking the average over the neighborhood.
Then every node updates its hidden state based on previous
state and the aggregated message. This process is shown in
Fig. 2. We consider two choices of the update function F .

Vanilla RNN Update. We can use a MLP as the update
function as

ht+1
v = q(

[
ht
v,m

t
v

]
), (6)

where we concatenate the hidden state and message before
feeding it to the MLP q. This type of update function is
common in vanilla RNN.

LSTM Update. Another choice is to use a long short-
term memory (LSTM) [15] cell. This is more powerful
since it maintains its own memory to help extract useful
information from incoming messages.

4.3. Prediction Model

Assuming the propagation model in Eq. (5) is unrolled
for T steps, we now predict the semantic label for each pixel



model mean IoU% mean acc%
Gupta et al. [11] (2014) 28.6 35.1
Long et al. [29] (2015) 34.0 46.1
Eigen et al. [7] (2015) 34.1 45.1
Lin et al. [26] + ms (2016) 40.6 53.6
HHA + ss 40.8 54.6
3DGNN + ss 39.9 54.0
3DGNN + ms 41.7 55.4
HHA-3DGNN + ss 42.0 55.2
HHA-3DGNN + ms 43.1 55.7

Table 1. Comparison with state-of-the-arts on NYUD2 test set in
40-class setting. HHA means combining HHA feature [29]. “ss”
and “ms” indicate single- and multi-scale test.

model mean IoU% mean acc%
Silberman et al. [34] (2012) - 17.5
Ren et al. [32] (2012) - 20.2
Gupta et al. [10] (2015) - 30.2
Wang et al. [40] (2015) - 29.2
Khan et al. [17] (2016) - 43.9
Li et al. [21] (2016) - 49.4
3DGNN + ss 43.6 57.1
3DGNN + ms 45.4 59.5

Table 2. Comparison with state-of-the-art methods on NYUD2 test
set in the 37-class setting. “ss” and “ms” indicate single- and
multi-scale test.

in the score map. For node v corresponding to a pixel in the
score map, we predict the probability over semantic classes
yv as follows:

pyv = s(
[
hT
v ,h

0
v

]
), (7)

where s is a MLP with a softmax layer shared by all nodes.
Note that we concatenate the initial hidden state, which is
the output of the unary CNN to capture the 2D appearance
information. We finally associate a softmax cross-entropy
loss function for each node and train the model with the
back-propagation through time (BPTT) algorithm.

5. Experiments
Datasets. We evaluate our method on two popular RGBD
datasets: NYUD2 [34] and SUN-RGBD [35]. NYUD2 con-
tains a total of 1,449 RGBD image pairs from 464 different
scenes. The dataset is divided into 795 images from 249
scenes for training and 654 images from 215 scenes for test-
ing. We randomly split 49 scenes from the training set as the
validation set, which contains 167 images. The remaining
654 images from 200 scenes are used as the training set.
SUN-RGBD consists of 10,335 images, which are divided
into 5,285 RGBD image pairs for training and 5,050 for
testing. All our hyperparameter search and ablation stud-
ies are performed on the NYUD2 validation set.

Unary CNN. For most of the ablation experiments, we
use a modified VGG-16 network, i.e., deeplab-LargeFov [3]
with dilated convolutions as our unary CNN to extract the
appearance features from the 2D images. We use the fc7
feature map. The output feature map is of size H ×W ×C
where H , W and C are the height, width and the channel
size respectively. Note that due to the stride and pooling
of this network, H and W are 1/8 of the original input in
terms of size. Therefore, our 3D graph is built on top of the
downsampled feature maps.

To further incorporate contextual information, we use
global pooling [27] to compute another C-dim vector from
the feature map. We then append the vector to all spatial
positions, which result in a H ×W × 2C feature map. In
our experiment, C = 1024 and a 1× 1 convolution layer is
used to further reduce the dimension to 512. We also exper-
imented by replacing the VGG-net with ResNet-101 [14] or
by combining it with the HHA encoding.

Implementation Details. We initialize the unary CNN
from the pre-trained VGG network in [3]. We use SGD with
momentum to optimize the network and clip the norm of the
gradients such that it is not larger than 10. The initial learn-
ing rates of the pre-trained unary CNN and GNN are 0.001
and 0.01 respectively. Momentum is set to 0.9. We initialize
RNN and LSTM update functions of the Graph Neural Net-
work using the MSRA method [13]. We randomly scale the
image in scaling range [0.5, 2] and randomly crop 425×425
patches. For the multi-scale testing, we use three scales 0.8,
1.0 and 1.2. In the ResNet-101 experiment, we modified the
network by reducing the overall stride to 8 and by adding
dilated convolutions to enlarge the receptive field.

We adopt two common metrics to evaluate our method:
mean accuracy and mean intersection-over-union (IoU).

5.1. Comparison with State-of-the-art

In our comparison with other methods, we use the vanilla
RNN update function in all our experiments due to its effi-
ciency and good performance. We defer the thorough abla-
tion study to Section 5.2.

NYUD2 dataset. We first compare with other methods in
the NYUD2 40-class and 37-class settings. As shown in
Tables 1 and 2 our model achieves very good performance
in both settings. Note that Long et al. [29] and Eigen et al.
[7] both used two-VGG networks with HHA image/depth
encoding whereas we only use one VGG network to extract
appearance features. The configuration of Lin et al. [26] is
a bit different since it only takes the color image as input
and builds a complicated model that involves several VGG
networks to extract image features.

Results in these tables also reveal that by combining
VGG with the HHA encoding features [29] as the unary
model, our method further improves in performance.



model mean IoU% mean acc%
Song et al. [35] (2015) - 36.3
Kendall et al. [16] (2015) - 45.9
Li et al. [21] (2016) - 48.1
HHA + ss 41.7 52.3
ResNet-101 + ss 42.7 53.5
3DGNN + ss 40.2 52.5
3DGNN + ms 42.3 54.6
HHA-3DGNN + ss 42.0 55.2
HHA-3DGNN + ms 43.1 55.7
ResNet-101-3DGNN + ss 44.1 55.7
ResNet-101-3DGNN + ms 45.9 57.0

Table 3. Comparison with other methods on SUN-RGBD test set.
“ResNet-101” exploits ResNet-101 as the unary model. “HHA”
denotes a combination of the RGB image feature with HHA image
feature [29]. “ss” and “ms” indicate single-scale and multi-scale.

Propagation Step Unary CNN 2DGNN 3DGNN
0 37.9 - -
1 - 37.8 38.1
3 - 38.4 39.3
4 - 38.0 39.4
6 - 38.1 39.0

Table 4. 2D VS. 3D graph. Performance with different propagation
steps on NYUD2 validation set is listed.

Dataset network mean IoU% mean acc%
NYUD2-40 Unary CNN 37.1 51.0

2DGNN 38.7 52.9
3DGNN 39.9 54.0

NYUD2-37 Unary CNN 41.7 55.0
3DGNN 43.6 57.0

SUNRGBD Unary CNN 38.5 49.4
2DGNN 38.9 50.3
3DGNN 40.2 52.5

Table 5. Comparison with the unary CNN on NYUD2 and SUN-
RGBD test set.

SUN-RGBD dataset. We also compare these methods on
SUN-RGBD in Table 3. The performance difference is sig-
nificant. Note that Li et al. [21] also adopted the Deeplab-
LargeFov network for extracting image feature and a sep-
arate network for HHA encoded depth feature extraction.
Our single 3DGNN model already outperforms previous
ones by a large margin. Combining HHA features or re-
placing VGG-net with ResNet-101 further boost the perfor-
mance. These gains showcase that our method is effective
in encoding 3D geometric context.

5.2. Ablation Study

In this section, we conduct an ablation study on our
NYUD2 validation set to verify the functionality of differ-

ent parts of our model.

Propagation Steps. We first calculate statistics of the
constructed 3D graphs. The average diameter of all graphs
is 21. It corresponds to the average number of propagation
steps to traverse the graph. The average distance between
any pair of nodes is 7.9. We investigate how the number
of propagation steps affects the performance of our model
in Fig. 3. The performance, i.e., mean IoU, gradually im-
proves when the number of propagation step increases.

The oscillation when the propagation step is large might
relate to the optimization process. We found that 3 to 6
propagation steps produce reasonably good results. We also
show the segmentation maps using different propagation
steps in Fig. 4. Limited by the receptive field size, the unary
CNN often yields wrong predictions when the objects are
too large. For example, in the first row of Fig. 4, the table
is confused as the counter. With 4 propagation steps, our
prediction of the table becomes much more accurate.

Update Equation. Here we compare the two update
equations described in Section 4.2. As shown in Fig. 3,
the vanilla RNN performs similarly to LSTM. The com-
putation complexity of LSTM update is much larger than
the vanilla RNN. According to this finding, we stick to the
Vanilla RNN update in all our experiments.

2D VS. 3D Graph. To investigate how much improve-
ment the 3D graph additionally brings, we compare with 2D
graphs that are built on 2D pixel positions with the same
KNN method. We conduct experiments using the same
Graph Neural Network and show the performance of differ-
ent propagation steps in Table 4. Results on the whole test
set is shown in Table 5. They indicate that with 3DGNN,
more 3D geometric context is captured, which in turn makes
prediction more accurate. Another interesting observation
is that even the simple 2DGNN still outperforms the method
incorporating the unary CNN.

Performance Analysis. We now compare our 3DGNN to
the unary CNN in order to investigate how GNN can be
enhanced by leveraging 3D geometric information. The
results based on the single-scale data input are listed in
Table 5. Our 3DGNN model outperforms the unary and
2DGNN models, which again supports the fact that 3D con-
text is important in semantic segmentation.

We further break down the improvement in performance
for each semantic class in Fig. 5. The statistics show that
our 3DGNN outperforms the unary CNN by a large margin
for classes like cabinet, bed, dresser, and refrigerator. This
is likely because these objects are easily misclassified as
their surroundings in the 2D image. However, in 3D space,
they typically have rigid shapes and the depth distribution



(a) Original Image (b) Ground Truth (c) Unary CNN (d) Propagation Step 1 (e) Propagation Step 4

Figure 4. Influence of different propagation steps on NYUD2 validation set.

Figure 5. Per-class IoU improvement of 3DGNN over unary CNN.

is more consistent, which makes the classification task rela-
tively easier to tackle.

To better understand what contributes to the improve-
ment, we analyze how the performance gain varies for dif-
ferent sizes of objects. In particular, for each semantic class,

we first divide the ground truth segmentation maps into a
set of connected components where each component is re-
garded as one instance of the object within that class. We
then count the sizes of object instances for all classes. The
range of object sizes is up to 10, 200 different values in
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Figure 6. Performance gain as a function of sizes on the NYUD2
test set. Each bin is of size 3,000.

(a) Image (b) Ground Truth (c) Unary CNN (d) Ours

Figure 7. Unary CNN vs 3DGNN on SUNRGBD test set.

terms of the number of pixels. We divide them into 34 bins
with bin-width of 3, 000. We record the average improve-
ment of prediction accuracy for object instances in each bin.

As shown in Fig. 6, our 3DGNN handles best large-
and middle-size objects rather than small ones. This re-
sult proves that our 3DGNN can overcome the limited size
of the receptive field of unary CNN and captures the long-
range dependency in images.

Qualitative Analysis. We show example results from our
model on the SUN-RGBD dataset in Fig. 7 and compare it
with the unary CNN. One can see that our 3DGNN exploits
3D geometric context information and learns a better rep-
resentation for classification compared to the unary CNN.
Results in Fig. 7 show that, for example, the segmentation
of table, bed frame, night stand, sofa and book shelf have
much better shapes and more accurate boundaries when us-
ing our method.

(a) Original Image (b) Ground Truth (c) Ours

Figure 8. Failure cases on NYUD2 test set

Failure Case Analysis. Finally, we show and analyze rep-
resentative failure cases of our model. First, our model
sometimes fails to make good prediction when objects have
similar depth, especially for small objects. In the first row
of Fig. 8, the lamp is misclassified as the blinds because
of this fact. The second type of failure case is due to ob-
jects with complex shapes. Discontinuous depth can make
3D neighborhood quite noisy. As shown in the second row
of Fig. 8, the table is recognized as pieces of other objects.
Moreover, when both the 2D appearance and the 3D context
of two objects are similar, our method does not work well.
An example is the white board confused as the white wall,
shown in the third row of Fig. 8.

6. Conclusion

We presented a novel 3D Graph Neural Network for
RGBD semantic segmentation. The Graph Neural Network
is built on top of points with color and depth extracted from
RGBD images. Our 3DGNN leverages both the 2D appear-
ance information and 3D geometric relations. It is capable
of capturing the long range dependencies within images,
which has been difficult to model in traditional methods.
A variety of empirical results show that our model achieves
good performance on standard RGBD semantic segmenta-
tion benchmarks. In the future, we plan to investigate feed-
back to adjust the structure of the constructed graphs.
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