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Abstract
In this paper, we propose a physically-based dynami-

cal model for tracking. Our model relies on Newton’s sec-
ond law of motion, which governs any real-world dynami-
cal system. As a consequence, it can be generally applied
to very different tracking problems. Furthermore, since the
equations describing Newton’s second law are simple linear
equalities, they can be incorporated in any tracking frame-
work at very little cost. Leveraging this lets us introduce a
convex formulation of 3D tracking from monocular images.
We demonstrate the strengths of our approach on various
types of motion, such as billiards and acrobatics.

1. Introduction
Recovering the 3D motion of dynamical systems from

monocular images has been an active area of research for
many years. To provide robustness to image noise and occlu-
sions, as well as to overcome the underlying ambiguities of
the problem, most practical tracking algorithms exploit mo-
tion models. Unfortunately, the existing dynamical models
typically suffer from one of the two following shortcomings.
Either they are very general, but fail to accurately represent
the true physical behavior of the system, or they precisely
describe the observed dynamics, but are very specific and/or
hard to optimize. In short, there is a lack of general and
practical motion models.

The motion of any system is governed by laws of physics.
Throughout the years, many attempts at encoding these laws
into dynamical models have been proposed [12, 27, 6]. Re-
cent approaches have focused on accurately modeling the
behavior of a single type of motion, e.g., jogging or walk-
ing [24, 5]. As a consequence, the resulting methods do
not generalize to other motions than those they have been
designed for. Furthermore, the underlying physical laws
encoded by these models are highly nonlinear, thus yield-
ing complex inference problems. Therefore, tracking is per-
formed either by simulation, or by minimizing a non-convex
objective function. Both approaches are computationally ex-
pensive and may yield suboptimal solutions.

As an alternative to those physically-inspired but im-
practical motion models, many tracking algorithms rely on

Figure 1. Billiards shots and acrobatics are examples of the gen-
eral tracking scenarios that we address in this paper.

more general Markov dynamical models [19, 7, 11, 8]. In
practice, these models are typically used to penalize either
overly large displacements (i.e., first-order Markov model),
or strong variations of velocity (i.e., second-order Markov
model) between consecutive frames. Higher-order models
could in principle be employed, but tend to be more sensi-
tive to noise, since they provide weaker motion constraints.
Unfortunately, while traditional Markov models are not lim-
ited to a specific tracking problem, they often do not reflect
the dynamical behavior of real systems.

In this paper, we propose a physics-based dynamical
model applicable to general tracking problems. In addi-
tion to defining realistic motion constraints, our model has
the advantage of providing us with an estimate of the exter-
nal forces applied to the objects that compose the system.
More specifically, we exploit Newton’s second law of mo-
tion, which is satisfied by any real-world system. This law
can be expressed in terms of linear equalities, and therefore
can be incorporated in any tracking system with very little
increase in inference complexity. By exploiting this prop-
erty, we introduce a unified convex formulation of motion
tracking for problems as different as bouncing balls, billiards
shots, and human activities (e.g., acrobatics).

We demonstrate the effectiveness of our approach on syn-
thetic and real monocular sequences, such as those depicted
in Fig. 1, and show that it yields more accurate results than
those obtained without motion model, as well as with a tra-
ditional first-order Markov model. Furthermore, while the
second-order Markov model can be seen as a special case of
our model, we show that other settings of our approach often
outperform this standard regularizer.
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2. Related Work

Tracking moving, and potentially articulated objects in
monocular video sequences is a poorly-constrained problem
due to, for instance, the presence of noise and occlusions.
Existing methods have proposed various solutions to incor-
porating additional knowledge about the problem of inter-
est to improve 3D reconstruction. While for articulated and
non-rigid pose estimation, much effort has been put into de-
signing static constraints [4, 19, 23, 18], here we focus on
dynamical models, which are typically used in conjunction
with the static ones.

A natural way to represent the motion of a dynamical
system is to model the underlying physical laws that gov-
ern it. Physics-based motion models take their root in com-
puter graphics [26, 9, 16, 2, 1]. Following a similar moti-
vation, physically-inspired dynamical models were applied
to tracking non-rigid motion [12], as well as human activi-
ties [27, 6]. Recently, accurate models have been proposed
to represent specific activities, such as jogging or walk-
ing [24, 6]. While very well-suited for the particular mo-
tion they are designed for, these models do not generalize
to other activities. More importantly, the above-mentioned
physics-based dynamical models typically yield nonlinear
constraints. The resulting methods therefore rely either on
non-convex optimization, or on analysis-by-synthesis, both
of which are computationally expensive and tend to yield
suboptimal solutions.

As an alternative to physically-inspired models, statisti-
cal learning techniques have been proposed to discover the
laws governing the dynamics of a specific system from train-
ing data. For human motion tracking, auto-regressive (AR)
models have been employed to learn linear relations between
consecutive poses [14]. To allow for greater variability in
motion, switching models were introduced [10, 15]. Since
the AR models are more stable for low-dimensional param-
eterizations, they were used in conjunction with linear sub-
space models [3, 21]. Following a similar idea of modeling
dynamics in a low-dimensional latent space, the Gaussian
Process Dynamical Model [25] was applied to human mo-
tion tracking [22], thus allowing for nonlinear temporal re-
lations. While effective, these models do not generalize be-
yond the problem they have been trained on, and thus cannot
be applied to more general tracking scenarios.

Since existing physics-based models yield complex infer-
ence problems, and learned models require training data for
every possible motion type, many tracking methods utilize
the simpler, yet more general Markov dynamical models.
First-order [7, 11, 8, 17] and second-order [19, 23] Markov
models are the most popular ones. They are used to either
bound the range of motion, or limit the variations of velocity
between consecutive frames in a video sequence. The main
advantage of these models is their applicability to general
tracking scenarios. Unfortunately, the constraints they pro-

vide are approximate, and as a consequence their predictions
often tend to be suboptimal.

Here, we take advantage of both physics and Markov
models. In particular, our approach exploits Newton’s sec-
ond law of motion to derive a model that generalizes over
the second-order Markov model by additionally accounting
for the forces applied to the system, thus yielding more flex-
ibility. As a consequence, our physically-based dynamical
model is simple enough to yield a convex formulation of
tracking, while being valid for any real-world tracking sce-
nario.

3. A Physically-based Motion Model

In this section, we first review some basic concepts of
kinematics, from which we then derive our model.

3.1. A Review of Kinematics

Newton’s second law of motion is at the core of our dy-
namical model. Hence, we first briefly go over its general
formulation, as well as the basic concepts it relies on. Let
yi ∈ R3 be the 3D position of the i-th particle belonging to
a system of particles. The linear momentum of this single
particle can be expressed as

pi = mivi , (1)

where vi is the instantaneous velocity of the particle, andmi

is its mass.
Newton’s second law of motion states that the accelera-

tion ai produced by a force fi applied to a body of mass mi

has the same direction as fi, and a magnitude directly pro-
portional to that of fi and inversely proportional to mi, i.e.,
fi = miai. This can be related to the linear momentum by
saying that the instantaneous change in the linear momentum
of a particle is equal to the resultant external force acting on
that particle. This can be written as

fi =
dpi

dt
= miai , (2)

where fi is the sum of all external forces applied to the par-
ticle. This formulation relies on the fact that the mass is
constant, i.e., dmi

dt = 0.
In practice, the resultant external force fi can arise from

many different types of forces. In our tracking scenarios,
we will encounter gravity, friction, collisions, contact and
internal forces arising from the action of human muscles.

3.2. Formulation of our Model

Based on the equations describing Newton’s second law
of motion, we now derive the formulation of our dynamical
model. Following physics-based animation techniques, we
approximate the instantaneous velocity at time t using finite



differences. This lets us re-write Eq. 2 as

f ti ≈ mi

(
yt
i − 2yt−1

i + yt−2
i

∆t

)
. (3)

Let us now consider the case of a system of Np par-
ticles undergoing motion for Nf time frames. Let yt =
[(yt

1)T , · · · , (yt
Np

)T ]T be the 3Np dimensional vector con-
taining the 3D locations of all particles at time t, and let
y = [(y1)T , · · · , (yNf )T ]T be the 3NpNf dimensional vec-
tor composed of the 3D locations for the whole sequence. By
treating all the particles independently, we can impose New-
ton’s second law on each particle. This can be expressed as a
set of linear constraints in terms of the particles’ coordinates
as

My = fknown + f , (4)

where fknown specifies the known external forces of the sys-
tem, e.g., gravity, and f ∈ R3Np(Nf−2) is the vector of addi-
tional unknown forces that act on each particle at each time
instant. M is the 3Np(Nf−2)×3NpNf matrix that indexes
over y to compute the accelerations of Eq. 3, and takes the
form

M =

 1 −2 1
. . . . . . . . .

1 −2 1

 ,

with all but three elements in each row equal to 0. Note
that this matrix has the same form as the matrix encoding
a second-order Markov model. However, in such a Markov
model, the right-hand side of Eq. 4 is assumed to be 0, which
shows both that the second-order Markov model is only valid
for very specific types of motion, and that our model is a gen-
eralization of it. Note that the mass of the particles has been
omitted in Eq. 4. This is to avoid assuming that the mass
of each particle is known a priori. As a consequence, forces
are expressed per unit of mass. This does not limit the ap-
plicability of our model, but only implies that the recovered
forces will be up to a scale.

Solving the under-constrained linear system of Eq. 4 for
y and f yields a physically-valid estimate of the 3D motion
and of the forces. In the next section, we show how to incor-
porate this model into a convex formulation of tracking.

4. A Convex Formulation of 3D Tracking
In this section, we introduce our convex formulation of

3D tracking, which solves for the 3D locations of the par-
ticles, as well as for the forces acting on them. Given our
physically-based motion model described in Section 3.2, we
formulate tracking as the optimization problem

minimize
y,f

L(y) + λR(f)

subject to My = fknown + f

C(y) = 0

(5)

which minimizes a problem-dependent loss L(y) under the
motion constraints defined by our dynamical model and
problem-specific constraints C(y) = 0. In addition to min-
imizing L(y), we introduce a regularization term R(f) on
the forces, whose influence is regulated by λ. In our experi-
ments, we tested the following convex regularizers:

• Sparsity: R(f) = ‖f‖1 . The `1-norm encourages the
forces to be sparse, thus favoring simple explanations
of motion. This regularizer is particularly well-adapted
to collisions and instantaneous forces.

• Small magnitude: R(f) = ‖f‖2 . The `2-norm en-
courages forces to remain small. As opposed to the
sparsity-inducing regularizer, this is better suited to
model phenomena such as friction. In the absence of
known forces, this setting is equivalent to a second-
order Markov model.

• Elastic net: R(f) = ‖f‖1 + γ‖f‖2 . This regularizer
attempts to combine the benefits of the previous two
regularizers. γ sets the relative influence of both terms.

• Structured sparsity: R(f) = ‖f‖1,2 . The mixed `1,2-
norm encourages sparsity over groups of variables. For
our purpose, we consider the (x, y, z)-coordinates of
each point as a group. This has the advantage over the
`1-norm of not favoring the non-zero forces to appear
along the canonical axes.

Since these different regularizers are all convex, if L(y) and
the constraints C(y) = 0 are convex functions of y, the
problem of Eq. 5 is a convex optimization problem whose
global minimum can be obtained using standard solvers [20].

For tracking purposes, the loss L(y) typically contains,
but may not be limited to, an image-based loss Limage(y).
For all the different examples that we discuss below, we
used the reprojection error of the particles on the image as
Limage(y). This loss is similar in spirit to the image term
in [22]. Furthermore, it can be expressed as a convex func-
tion. Note that any other image loss could be employed.
However, non-convex ones would come at the price of los-
ing the overall convexity of the framework.

Let us assume that we are given as input the image loca-
tions (uti, v

t
i) of each particle at time t, as well as the matrix

A of internal camera parameters. As shown in [17], the fact
that particle i reprojects at the correct location can be written
as the system of linear equations

Pt
iy

t
i = 0 , Pt

i = A2×3 −
[
uti
vti

]
A3 ,

with A2×3 the first two rows of A, and A3 the third one.
We can derive similar equations for each particle, and group
all of them into a single linear system Py = 0. This lets us
define our image-based loss as

Limage(y) = ‖Py‖2 . (6)
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(a) (b) (c) (d)
Figure 2. Tracking bouncing balls. (a) Mean 3D error as a function of the framerate for an image Gaussian noise of standard deviation 3.
(b) 3D error as a function of the Gaussian noise standard deviation for a framerate of 16.6 fps. (c,d) Similar plots as (a,b) for the case where
the 2D tracks were lost for up to 0.5 seconds.
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Figure 3. Influence of model parameters: Mean error as a func-
tion of the motion model weights in log scale. (Left) Framerate =
100 fps. (Right) Framerate = 10 fps. Note that the best weights for
our regularizers are stable across different framerates.

In the case of missing data, the rows of P corresponding to
the missing observations can simply be removed.

The formulation in Eq. 5 is very general. We demon-
strate its effectiveness in three different tracking scenarios:
3D bouncing balls, billiards and articulated motion. In the
remainder of this section, we describe the problem-specific
terms C(y) and L(y). Note that other choices are possible.

4.1. 3D Bouncing Balls

We are interested in recovering the 3D motion of one or
more balls bouncing in a room. In this case, gravity plays
an important role. Since it has a known and fixed value, we
define fknown as the concatenation of Np(Nf − 2) copies
of fgravity = mg, where g = [0, 9.81, 0]

T
m/s2, assuming

that the direction of the gravity is in the y-axis of the world
coordinate system. Furthermore, unknown forces arise from
collisions with the walls of the room, as well as from colli-
sions between the balls. Note that we make no assumptions
about the number of walls, or about their location and orien-
tation.

Without additional image information, recovering the 3D
position of a single point from its noisy image location is
a very ambiguous problem, and a motion model does not
suffice to fully constrain it. Therefore, to be more robust,
we create additional image correspondences assuming that
we are provided with a bounding box around each ball, for
example from a 2D tracker. Knowing the diameter of the
3D balls, we can use points sampled on the bounding boxes
to create correspondences of the form Pt

i,j(y
t
i + δjy

t
i) =

0, where j is an index over the sampled points, and δjy
t
i

represents the corresponding known 3D displacement with
respect to the center of the ball yt

i . Grouping these equations
yields an image-based loss of the form ‖P′y−q‖2, where q
contains the Pt

i,jδjy
t
i . We can thus re-write the optimization

problem of Eq. 5 as

minimize
y,f

||P′y − q||2 + λR(f)

subject to My = fknown + f .
(7)

4.2. Billiards Balls

In this scenario, we have the additional constraint that
the balls move on a plane. Here, we assume that we know
the normal to the plane, which can be obtained from a few
3D-to-2D correspondences using a PnP method [13]. Given
this normal n, we can enforce the trajectory of each ball to
remain planar by satisfying

nT
(
yt
i − yt−1

i

)
= 0 . (8)

With this constraint only, the balls can still move on parallel
planes. To prevent this, we incorporate the additional con-
straint

R3y
1
i = R3y

1
i+1 (9)

for Np − 1 balls in the first frame, where R3 is the third
row of the rotation matrix transforming camera coordinates
to plane coordinates, typically returned by the PnP method.
All these equations can be grouped in a single linear system
of the form By = 0.

The forces acting on billiards balls in motion are very
different from the ones acting on 3D bouncing balls. In par-
ticular, gravity has no effect, since it is countered by the con-
tact forces of the balls on the plane. Therefore, there is no
known forces for this scenario. On the other hand, we expect
to have unknown friction forces in addition to the unknown
collision forces. We encode all unknown forces in f . This
lets us re-write the problem of Eq. 5 as

minimize
y,f

||P′y − q||2 + λR(f)

subject to My = f

By = 0 .

(10)



(a) (b) (c) (d)
Figure 4. Tracking balls in real sequences. (a) Reprojection of the 3D trajectory reconstructed with our approach on the last image of a
basketball sequence. (b) Side view of the same trajectory with estimated forces in red. As can be better seen in the video, they match the
bounces on the basketball ring. (c,d) Similar plots as (a,b) when tracking several balls in a billiards sequence.

4.3. Articulated Human Motion

Here, we consider the case of human motion tracking and
restrict our image-based loss to the one in Eq. 6. Since re-
covering human pose from such poor image information is
very ambiguous, we exploit pose models learned from train-
ing data. In particular, we consider both a generative and a
discriminative model.

Discriminative case: We rely on Gaussian processes to
learn a mapping from image observations to 3D poses from
training pairs of images and poses [18]. At inference, we
first apply this mapping to get a prediction ŷt of the 3D pose
at each time t. We then add a term to our loss function L(y)
which encourages the reconstruction to remain close to this
prediction. This yields the optimization problem

minimize
y,f

||Py||2 + α||y − ŷ||2 + λR(f)

subject to My = fknown + f ,

where ŷ is the vector of all predictions, and α is a constant.

Generative case: We employ a linear subspace model
trained from 3D poses [19]. At inference, we model each
pose as yt = y0 + Uxt, where y0 is the mean pose, and
U is the matrix of eigen-poses. The vector xt contains the
weights of the linear combination, and is now treated as the
unknown of our problem. The vector of all poses can then be
defined as y = ỹ + Sx, where S is a block-diagonal matrix
containingNf copies of U, and ỹ and x are the vectors con-
catenating the mean pose and the weights xt, respectively.
To prevent these weights from becoming overly large, and
thus yield meaningless poses, we add a regularization term
of the form ‖Λ−1/2xt‖2, where Λ is a diagonal matrix con-
taining the eigenvalues of the training data covariance ma-
trix. The equations for all frames can be grouped in ‖Lx‖2,
where L is the matrix that concatenates Nf replications of
Λ−1/2. We thus re-write our problem as

minimize
x,f

||P(ỹ + Sx)||2 + β||Lx||2 + λR(f)

subject to M(ỹ + Sx) = fknown + f .

where β is a scalar.

For both the discriminative and generative cases, depend-
ing of the motion of interest, fknown may or may not contain
gravity. As shown in our experiments, this has very little in-
fluence on our results. Note that we do not model the ground
plane, which could give us additional constraints.

5. Experimental Evaluation

We now present our results for the different types of
tracking problems described in the previous section. We
compare our reconstructions with those obtained without us-
ing any motion model, as well as by employing a standard
first-order Markov model. To this end, we replaced our dy-
namical model in the optimization problems described in
Section 4 with a soft penalty on frame-to-frame displace-
ments. In addition to different framerates, we ran experi-
ments for different levels of additive Gaussian noise in the
image measurements. The weights for the Markov model
regularizer and for our force regularizers were tuned at the
highest framerate and kept unchanged for the rest of the ex-
periment. We measure the 3D error in terms of mean point-
to-point distance to the ground-truth, averaged over 10 runs.

5.1. 3D Bouncing Balls

To obtain ground-truth data, we implemented a physics-
based simulator and computed 10 different sequences, each
seen with a different camera. The bouncing balls are sub-
ject to gravity and undergo collisions. We model collision
as an instantaneous force that results in a loss of velocity.
This is usually described in terms of the coefficient of resti-
tution CR, which relates the velocities before and after the
shock. This coefficient varies between CR = 1 (i.e. per-
fectly elastic collision) and CR = 0 (i.e. perfectly inelastic
collision, where the bodies stick together after the shock).
We use CR = 0.9 for our simulations.

Fig. 2(a,b) depicts the error when tracking 10 bouncing
balls as a function of the framerate for a noise of standard
deviation 3, and as a function of the noise for a framerate
of 16.67 fps, respectively. The trajectories for these results
were obtained by solving the problem of Eq. 7. Note that
our approach outperforms the Markov models. As expected,
this is particularly true for low framerates, where they are
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(a) (b) (c) (d)
Figure 5. Multiple balls on a plane. (a) Mean 3D error as a function of the framerate for an image Gaussian noise of standard deviation 3.
(b) 3D error as a function of the Gaussian noise standard deviation for a framerate of 16.6 fps. (c,d) Similar plots as (a,b) for the case where
the 2D tracks were lost for up to 0.5 seconds.
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Figure 6. Recovering physical quantities. (Left) Mean error as a
function of the `1 force penalty weight when recovering the friction
coefficient. The true coefficient was 0.1. (Right) Similar error for
the coefficient of restitution. The true coefficient was 0.9.

the least accurate. We simulated missing data by removing
random subsets of consecutive frames for each ball, up to 0.5
seconds at a time. Fig. 2(c,d) shows similar plots as before
for this case. Note that our method remains accurate, while
without a motion model the results degrade. The `1,2 norm
yields the most accurate results among the different regular-
izers, thus showing that Markov models are suboptimal here.

Fig. 3 depicts the error as a function of the regularization
weights for the two extreme framerates used in our experi-
ments (i.e., 10 and 100 fps). Note that the best weights for
our regularizers remain more stable across different framer-
ates than for the first-order Markov model. This suggests
that our model is less sensitive to this parameter, and hence
easier to apply in real scenarios.

We also tracked a basketball shot in a YouTube video.
The 2D tracks and bounding boxes were obtained by a sim-
ple template-matching method that maximizes the normal-
ized cross-correlation between a template defined in the first
image and the following images of the sequence. The re-
projection on an input image of the 3D trajectory recon-
structed using our approach with the `1 regularizer is shown
in Fig. 4(a), and its side view in blue in Fig. 4(b). Note that
the estimated forces, depicted in red, occur when the ball
touches the ring, and thus correspond to those we expect.

5.2. Billiards Balls

We implemented a simulator to generate balls moving
on a plane, thus mimicking billiards. We employed the
same collision model as before and simulated friction as
ffriction = −µ‖fn‖v/‖v‖, where µ is the friction coeffi-

cient, and fn is the normal force. In contrast to the bouncing
balls, we do not model gravity. We computed 10 different
sequences, seen from different viewpoints, and simulated
missing data as before. 3D tracking was performed by solv-
ing the optimization problem of Eq. 10. Fig. 5 depicts the
errors obtained for the case of 5 moving balls colliding with
each other and with the table edges. Note that the `1,2 norm
yields more accurate results than the Markov model and the
other regularizers. With missing data, it also significantly
outperforms the results obtained without motion model.

Fig. 4(c,d) depicts our tracking results on a billiards video
from YouTube. The 2D tracks were obtained in a similar
manner as in the basketball case. The top view in Fig. 4(d)
shows that the trajectory recovered by our approach with an
`1 regularizer matches what we observe in the images, and
that the estimated forces correspond to those we expect.

Our model can also be used to estimate physical con-
stants, such as the friction and restitution coefficients, from
the reconstructed forces and trajectories. For the friction co-
efficient, we post-processed the estimated forces by discard-
ing the large ones. We then recovered µ by least-squares
fitting based on the equation of friction, using gravity as the
normal force. As shown in Fig. 6(left), this results in accu-
rate estimates. Fig. 6(right) depicts the error when estimat-
ing the restitution coefficient. In this case, CR was obtained
from the velocities before and after the collisions, which
were detected by finding the large forces.

5.3. Human Motion

To address the problem of tracking people performing
different activities, we exploited the publicly available CMU
motion capture dataset1 and tested our approach on three
different activities: jumping, jogging and acrobatics (i.e.,
a front handspring). The 2D tracks were obtained by pro-
jecting the 3D data using a known camera. Gaussian noise
was added to these image locations with standard deviation
ranging from 0 to 10. As mentioned in Section 4, since the
problem of human body tracking from 2D correspondences
is too ambiguous, we augmented our motion model, as well
as the baselines, with pose models. We used the poses from
a subset of the data as training examples, and the remaining

1http://mocap.cs.cmu.edu/
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(a) (b) (c) (d)
Figure 7. Tracking a human jumping with a discriminative model. (a) Mean 3D error as a function of the framerate for an image Gaussian
noise of standard deviation 6. (b) 3D error as a function of the Gaussian noise standard deviation for a framerate of 20 fps. (c,d) Similar
plots as (a,b) when the gravity is not explicitly encoded in the known forces. Note that this does not significantly affect our results.
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(a) (b) (c) (d)
Figure 8. Tracking a human jumping with a linear subspace model. (a) Mean 3D error as a function of the framerate for an image
Gaussian noise of standard deviation 6 and with missing 2D tracks. (b) 3D error as a function of the Gaussian noise standard deviation for a
framerate of 20 fps and with missing 2D tracks. (c,d) Similar plots as (a,b) in the case of full occlusions.

sequences as test data. To simulate missing data (i.e., lost
tracks), we removed correspondences in consecutive frames.
We also simulated full occlusions by removing all the tracks
simultaneously for several frames.

Figs. 7 and 8 summarize our results for a jumping motion
when using a Gaussian process mapping and a linear sub-
space model, respectively. Fig. 7(a,b) shows the 3D errors as
a function of the framerate for a Gaussian noise of standard
deviation 6, and as a function of the noise for a framerate
of 20 fps. Fig. 7(c,d) shows similar plots when the gravity
was not explicitly encoded in the known forces. Note that
this has little influence on our results. Fig. 8 depicts the er-
rors in the presence of missing 2D measurements and full
occlusions. As can be observed from the plots, our approach
is robust to these phenomena. In Fig. 9, we show the er-
rors obtained for a jogging motion with a Gaussian process
mapping. As before, the explicit use of gravity has little in-
fluence on our results. Fig. 10 depicts the errors obtained for
the front handspring motion when relying on a linear sub-
space model. Similarly as for the jumping motion, missing
data and full occlusions do not significantly affect our recon-
structions. Note that, in all these scenarios, our model con-
sistently outperforms the first-order Markov model. Further-
more, in most experiments, the `1,2 norm gives the best per-
formance, with the `2 norm being second best. This shows
that other settings of our approach often outperform the tra-
ditional special case of second-order Markov models. Fi-
nally, in Figs. 1 and 11, we show examples of reconstruc-
tions obtained with an image noise of standard deviation 4.

6. Conclusion and Future Work
In this paper, we have presented a physics-based dynam-

ical model that combines the advantages of being generally
applicable and easy to optimize. By exploiting our model,
we have introduced a convex formulation of 3D tracking that
not only recovers 3D trajectories, but also yields an estimate
of the forces applied to the system. Finally, we have shown
that our approach is general enough to handle very different
tracking scenarios, and that it outperforms the standard first-
and second-order Markov models, the latter being a special
case of our model. While we have considered the problem of
3D motion tracking, our dynamical model could also be ap-
plied to other problems, such as camera motion estimation,
or post-processing of motion capture data. In the future, we
plan to study other physical constraints, such as balance, to
improve 3D reconstruction.
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Figure 10. Tracking a human performing a front handspring. (a) Mean 3D error as a function of the framerate for an image Gaussian
noise of standard deviation 6 and with missing 2D tracks. (b) 3D error as a function of the Gaussian noise standard deviation for a framerate
of 20 fps and with missing 2D tracks. (c,d) Similar plots as (a,b) in the case of full occlusions.
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