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Abstract
Estimating the most likely configuration (MAP)
is one of the fundamental tasks in probabilis-
tic models. While MAP inference is typi-
cally intractable for many real-world applica-
tions, linear programming relaxations have been
proven very effective. Dual block-coordinate
descent methods are among the most efficient
solvers, however, they are prone to get stuck
in sub-optimal points. Although subgradient
approaches achieve global convergence, they
are typically slower in practice. To improve
convergence speed, algorithms which compute
the steepest ε-descent direction by solving a
quadratic program have been proposed. In this
paper we suggest to decouple the quadratic pro-
gram based on the Frank-Wolfe approach. This
allows us to obtain an efficient and easy to par-
allelize algorithm while retaining the global con-
vergence properties. Our method proves superior
when compared to existing algorithms on a set of
spin-glass models and protein design tasks.

1. Introduction
Graphical models are typically employed to describe the
dependencies between variables involved in a joint prob-
ability distribution. Finding the most likely configuration,
i.e., the maximum a-posteriori (MAP) assignment, is one of
the most fundamental inference tasks. Unfortunately com-
puting the MAP is NP-hard for many applications.

In recent years linear programming (LP) relaxations have
been shown to retrieve globally optimal configurations in
many cases. The large amount of variables and constraints
involved in practical applications poses significant chal-

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

lenges to standard LP solvers. Development of particu-
larly tailored algorithms has therefore become a vibrant
area of research. Since the graphical model structure is en-
coded in the constraints, algorithms that optimize the dual
are employed to take into account the problem setup. Ex-
isting solvers, however, have difficulties due to the non-
smoothness of the dual. For example, block coordinate de-
scent algorithms monotonically decrease the objective and
converge very fast, but, they are not guaranteed to reach
the global optimum of the dual program. To overcome this
sub-optimality problem, different solutions have been pro-
posed, e.g., smoothing (Johnson, 2008; Jojic et al., 2010;
Hazan & Shashua, 2010; Savchynskyy et al., 2012), prox-
imal updates (Ravikumar et al., 2010) and augmented La-
grangian methods (Martins et al., 2011; Meshi & Glober-
son, 2011). Due to the modifications of the cost function,
convergence speed is however reduced.

Globally convergent methods using the original cost func-
tion employ subgradients (Komodakis et al., 2010). Bun-
dle methods (Lemaréchal, 1974; Kappes et al., 2012) are
alternatively considered. However, applying sub-gradients
directly or indirectly is known to converge slowly since ar-
bitrary gradient directions are employed.

Recently Schwing et al. (2012) proposed a steepest ε-
descent approach that monotonically decreases the dual ob-
jective and reaches the global optimum of the dual pro-
gram. Contrasting arbitrary subgradient directions, their
work advertises usage of the steepest ε-descent direction,
which is found by solving a computationally expensive
quadratic program. In this paper we propose to solve
the quadratic program efficiently using a Frank-Wolfe ap-
proach, also known as conditional gradient. The benefits
are twofold: we no longer require a general purpose solver
to find the steepest ε-descent directions, which results in
better efficiency and allows usage of sub-optimal directions
that do not point exactly into the steepest descent direction.
Furthermore, the task decouples and is easily parallelized.

We demonstrate the effectiveness of our approach on pro-
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Repeat until convergence, for every region r:

∀sr, p ∈ P (r)

µp→r(sr) = max
sp\sr

θr(sr) + ∑
p∈P (r)

λr→p(sr)−
∑

r′∈C(p)\r

λr′→p(sr′)


∀sr, p ∈ P (r)

λr→p(sr) =
1

1 + |P (r)|

θr(sr) + ∑
c∈C(r)

λc→r(sc) +
∑

p∈P (r)

µp→r(sr)

− µp→r(sr)
Figure 1. Standard convex max-product message passing algorithm.

tein design tasks as well as on spin glass models, and show
that it outperforms existing state-of-the-art algorithms. In
the remainder of the paper, we first provide some back-
ground regarding MAP estimation. We then detail our
Frank-Wolfe approach and present experimental results be-
fore discussing related work and conclusions.

2. Background
Graphical models encode joint distributions over product
spaces S = S1 × · · · × Sn, where we assume the domains
Si, i ∈ {1, . . . , n} to be discrete. The joint probability
is commonly defined by summing terms θr(sr) often also
referred to as negative energy functions. Each term de-
pends on a restriction of the variables to subsets or regions
r ⊆ {1, . . . , n}, i.e., sr = (si)i∈r ∈

∏
i∈r Si. We useR to

denote the set of all regions. The joint distribution is then
given by

p(s) ∝ exp

(∑
r∈R

θr(sr)

)
.

We focus on estimating the maximum a-posteriori (MAP)
configuration, i.e., we aim at finding the assignment that
maximizes the probability p(s). Estimating the MAP con-
figuration is equivalently written as a program of the fol-
lowing form (Koller & Friedman, 2009):

arg max
s1,...,sn

∑
r∈R

θr(sr). (1)

Due to its combinatorial nature, this problem is NP-hard
for general graphical models. It is tractable only in some
special cases such as tree structured graphs, where special-
ized dynamic programming algorithms (e.g., max-product
belief propagation) are guaranteed to recover the optimum.
Another notable example are graphs which contain only
sub-modular second order functions, where graph-cut ap-
proaches yield the global optima. In this paper we are,
however, interested in the general case, employing arbitrary
graphs and energy functions.

The MAP program in Eq. (1) has a linear form, thus it is
naturally represented as an integer linear program (ILP).

Many researchers (e.g., Schlesinger (1976)) have proposed
a relaxation of the ILP by replacing the integrality con-
straints with non-negativity constraints, while enforcing
marginalization to hold between region r and some super-
sets referred to as its parents p ∈ P (r). Using this defini-
tion, the LP relaxation reads as follows:

max
br

∑
r,sr

br(sr)θr(sr) (2)

s.t.


∀r, sr br(sr) ≥ 0
∀r

∑
sr
br(sr) = 1

∀r, sr, p ∈ P (r)
∑
sp\sr bp(sp) = br(sr).

This program has the interesting property that whenever its
maximizing argument happens to be integral, i.e., the op-
timal beliefs satisfy br(sr) ∈ {0, 1}, the program value
equals the MAP value. Moreover, the maximum arguments
of the optimal beliefs point toward the MAP assignment
(Weiss et al., 2007).

Similar to the parent set we introduce the set of children
c ∈ C(r) = {c : r ∈ P (c)} of region r. Following Sontag
& Jaakkola (2009); Werner (2010) we consider the mini-
mization of the following re-parameterization dual

q(λ) =
∑
r

max
sr

θ̂r(sr), (3)

with θ̂r(sr) = θr(sr) +
∑

p∈P (r)

λr→p(sr) −
∑

c∈C(r)

λc→r(sc).

The Lagrange multipliers λr→p(sr) are introduced for
the marginalization constraints, i.e., for

∑
sp\sr bp(sp) =

br(sr) which is required to hold ∀r, sr, p ∈ P (r).

The dual program value upper bounds the primal program
described in Eq. (2). Therefore, to compute the primal op-
timal value one can minimize the dual upper bound. Us-
ing block coordinate descent on the dual objective amounts
to optimizing blocks of dual variables while holding the
remaining ones fixed. This results in the convex max-
product message-passing update rules presented by Hazan
& Shashua (2010); Meltzer et al. (2009) and summarized
in Fig. 1.
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The convex max-product algorithm is guaranteed to con-
verge in value since it minimizes the dual function, which
is lower bounded by the primal program. Interestingly, it
shares the same complexity as max-product belief propaga-
tion, which is attained by replacing the coefficient 1/(1 +
|P (r)|) by 1. It has, however, two fundamental problems.
First, it can get stuck in non-optimal stationary points. This
happens since the dual objective is non-smooth, thus the
algorithm can reach a corner, for which the dual objective
stays fixed when changing only a few variables. For exam-
ple, consider the case of a minimization problem where we
try to descend from a pyramid while taking only horizontal
and vertical paths. We eventually stay at the same height.
The second drawback of convex max-product is that it does
not always produce a primal optimal solution br(sr), even
when it reaches a dual optimal solution. This happens if the
primal solution cannot be consistently reconstructed from
the dual variables.

To bypass both of the aforementioned restrictions, Schwing
et al. (2012) recently proposed to employ steepest ε-descent
directions that can be computed by solving the following
quadratic program:

min
br

∑
r,sr,p∈P (r)

∑
sp\sr

bp(sp)− br(sr)

2

(4)

s.t. C =


∀r, sr br(sr) ≥ 0
∀r

∑
sr
br(sr) = 1

∀r
∑
sr
br(sr)θ̂r(sr) ≥ max

sr
θ̂r(sr)− ε.

This program is obtained when considering the set of ε-
subdifferentials for q(λ) and searching for the direction of
steepest descent. Summing the last constraint over all re-
gions |R| we observe that the cost function value of 0 en-
sures |R|ε optimality while being primal feasible for the
original LP relaxation given in Eq. (2), i.e., fulfilling the
marginalization constraint.

We note that the constraint set utilized to compute the ε-
steepest direction nicely decouples. However, solving this
quadratic program is computationally challenging due to
the cost function which couples the individual beliefs br.

3. Steepest Descent Direction with
Frank-Wolfe

In what follows, we propose to employ the Frank-Wolfe
schema, also known as conditional gradients, to decou-
ple the program given in Eq. (4) and solve it more ef-
ficiently. Our intuition is based on the fact that pro-
grams with nonlinear cost functions and independent lin-
ear constraints can typically be solved via an efficient se-
quence of much simpler linear programs (Bertsekas et al.,
2003). To this end we adopt a Frank-Wolfe schema (Frank

& Wolfe, 1956) to compute the steepest ε-descent direc-
tion, i.e., to solve the quadratic program given in Eq. (4)
which is summarized in Fig. 2. Similar to the standard
Frank-Wolfe schema it proceeds by iterating three steps.
Firstly, a descent direction of the cost function f(b) =∑
r,sr,p∈P (r)

(∑
sp\sr bp(sp)− br(sr)

)2
, linearized at the

current iterate br is found by solving the following pro-
gram:

u∗ = argmin
u

∑
r,sr

ur(sr)∇br(sr)f s.t. u ∈ C. (5)

Secondly, we compute the optimal step length γ∗ before
updating the beliefs while making sure not to leave the con-
straint set, i.e., 0 ≤ γ∗ ≤ 1. The latter two operations, i.e.,
finding the minimum of a quadratic function in one variable
γ and the update step, can be efficiently computed analyt-
ically in closed form and involve only simple arithmetic
operations.

The conditional gradient method employs the gradient of
the cost function. Assuming beliefs b to lie within the con-
straint set C, the gradient of the cost function f(b) w.r.t.
br(sr) is given by

∇br(sr)f = 2

 ∑
c∈C(r)

dc→r(sc)−
∑

p∈P (r)

dr→p(sr)

 ,

with dr→p(sr) =
∑
sp\sr bp(sp) − br(sr) denoting the

marginalization disagreements.

The LP given in Eq. (5) decomposes due to the structure
within the constraint set C. Hence the optimum is found
by considering each region r independently. We therefore
solve for all regions r in parallel and refer to the corre-
sponding local constraint set via Cr. The program given in
Eq. (5) is hence replaced by small programs, one for every
region, which have the following form ∀r:

u∗r = argmin
ur

∑
sr

ur(sr)∇br(sr)f (6)

s.t. ur∈Cr=


∀sr ur(sr) ≥ 0∑

sr
ur(sr) = 1∑

sr
ur(sr)θ̂r(sr)≥maxsr θ̂r(sr)−ε.

While solving many small decoupled linear programs is ar-
guably faster than a single large program, we are interested
in faster algorithms that do not use general LP solvers. To
this end, we show existence and availability of a construc-
tion for the primal optimal solution of the program given
in Eq. (6). The method first identifies the non-zero domain
for a feasible solution which is not larger than 2. A primal
optimal solution is then analytically computed on this do-
main by setting a single state to equal one in case the non-
zero domain points to a single state. Otherwise we solve a
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Algorithm: Conditional Gradient to find the steepest ε-descent direction
Iterate until convergence:

1. Solve the LP
u∗ = argmin

u

∑
r,sr

ur(sr)∇br(sr)f s.t. u ∈ C.

2. Compute the optimal step size γ∗ in closed form by solving

γ∗ = arg min
0≤γ≤1

∑
r,sr,p∈P (r)

∑
sp\sr

(
bp(sp) + γ

(
u∗p(sp)− bp(sp)

))
− (br(sr) + γ (u∗r(sr)− br(sr)))

2

.

3. Update the beliefs via
br(sr)← br(sr) + γ∗(u∗r(sr)− br(sr)) ∀r, sr.

Figure 2. Frank-Wolfe algorithm for finding the solution of the program given in Eq. (4).

system of linear equations of size 2 × 2 to obtain the two
non-zero values.

Theorem 1 There exists a non-zero domain S∗r with 1 ≤
|S∗r | ≤ 2, and a distribution ur(sr) which is primal feasible
and primal optimal for the program given in Eq. (6), such
that ur(sr) > 0 only if sr ∈ S∗r .

Proof: To prove the theorem we consider the Karush-
Kuhn-Tucker (KKT) conditions of the program given in
Eq. (6). We introduce Lagrange multipliers µ for the con-
straint encoding that the weighted sum exceeds the constant
maxsr θ̂r(sr)− ε, multipliers σr(sr) for the positivity con-
straint and multiplier γ for the summation over states being
equal to one. The stationarity, primal feasibility, dual feasi-
bility and complementary slackness requirements are then:

∇br(sr)f − µθ̂r(sr)− σr(sr) + γ = 0 ∀sr (7)
ur(sr) ≥ 0 ∀sr (8)∑

sr

ur(sr) = 1 (9)

max
sr

θ̂r(sr)− ε−
∑
sr

ur(sr)θ̂r(sr) ≤ 0 (10)

µ ≥ 0 (11)
σr(sr) ≥ 0 ∀sr (12)

µ

(
max
sr

θ̂r(sr)− ε−
∑
sr

ur(sr)θ̂r(sr)

)
= 0 (13)

σr(sr)ur(sr) = 0 ∀sr (14)

Plugging the stationarity requirement given in Eq. (7)
into the complementary slackness constraint provided in
Eq. (14) yields ur(sr)

(
∇br(sr)f − µθ̂r(sr) + γ

)
= 0 ∀sr

with σr(sr) = ∇br(sr)f − µθ̂r(sr) + γ ≥ 0 ∀sr following
from Eq. (12).

Assuming µ = 0 requires σr(sr) = ∇br(sr)f + γ ≥

0. To ensure non-negativity and a minimum cost func-
tion value for the program given in Eq. (6), we set γ
to be the negative value of the smallest gradient, i.e.,
γ = −minsr ∇br(sr)f , and choose one state S∗r ∈
argmax{sr:∇br(sr)f=−γ} θ̂r(sr) to obtain |S∗r | = 1. Set-
ting ur(sr) = 1 if sr ∈ S∗r and to zero otherwise ful-
fills dual feasibility and complementary slackness con-
straints. All primal feasibility constraints are fulfilled if
maxsr θ̂r(sr)− ε−

∑
sr
ur(sr)θ̂r(sr) ≤ 0 for sr ∈ S∗r .

Thus, we take a single state S∗r that has the largest θ̂r(sr)
among the minimizing elements of the cost function in
Eq. (6). If the distribution ur(sr) placing all its mass on
that state fulfills the primal feasibility constraint given in
Eq. (10) we have found the optimal feasible solution with
|S∗r | = 1.

Let us for now assume existence of a solution for the
distribution ur(sr) that has at most two non-zero en-
tries. Using the condition obtained earlier by combina-
tion of stationarity with complementary slackness, i.e.,
ur(sr)

(
∇br(sr)f − µθ̂r(sr) + γ

)
= 0, for the two non-

zero states enables computation of µ and γ by solving a
linear system analytically. Assuming for now that dual
feasibility holds, we construct a primal feasible solution
by solving the 2 × 2 linear system arising from Eq. (9)
and by enforcing Eq. (10) to hold with equality. We ob-
serve primal feasibility, and in particular also Eq. (8) to
hold, if the set S∗r = {s1, s2} contains one state s1 with
θ̂r(s1) > maxŝr θ̂r(ŝr)− ε and another one with θ̂r(s2) ≤
maxŝr θ̂r(ŝr)− ε.

It remains to be shown that we can find two such states
s1, s2 which also fulfill dual feasibility. For dual feasibil-
ity to hold we require µ ≥ 0 and σr(sr) = ∇br(sr)f −
µθ̂r(sr) + γ ≥ 0 ∀sr. To interpret this program we re-
fer the reader to Fig. 3. Every state sr defines the linear
function ∇br(sr)f − µθ̂r(sr) which depends on the La-
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µ

∇
b
r
(s

r
)
f
−
µ
θ̂ r
(s
r
)

Figure 3. Linear functions for every state sr with the pointwise
minimum given a set of lines being illustrated in black color.

grange multiplier µ. We emphasize that there exists at
least one linear function with slope strictly smaller than
−maxŝr θ̂r(ŝr) + ε due to ε > 0. Otherwise the prob-
lem would be unbounded. Note the change of sign, i.e.,
the slope is −θ̂r(sr). Intersecting every line s1 with slope
strictly smaller than −maxŝr θ̂r(ŝr) + ε with every line
s2 having a slope larger or equal to this constant gives
the point (µ′,−γ′). Importantly dual feasibility only holds
if σr(sr) = ∇br(sr)f − µ′θ̂r(sr) + γ′ ≥ 0 ∀sr, i.e., if
∇br(sr)f − µ′θ̂r(sr) ≥ −γ′ ∀sr while µ′ ≥ 0. Thus ev-
ery line has to pass above the point of intersection being
(µ′,−γ′). Existence of at least one combination S∗r =
{s1, s2} is guaranteed if we found the case µ = 0 not to
yield a valid solution.

This concludes the proof of the theorem where we showed
that we can construct a primal feasible solution ur(sr) with
the non-zero domain being at most two.

Summarizing the constructive proof, we first investigate
whether a feasible primal optimal solution can be found
for µ = 0, which can be done in linear time. If no such so-
lution is found, we proceed by successively walking along
the lower envelope highlighted with black color in Fig. 3.
In the following lemma we provide a statement regarding
the computational complexity of constructing a primal op-
timal and primal feasible solution when following the pro-
cedure designed when proving Theorem 1.

Lemma 1 Finding the feasible primal optimal solution
ur(sr) for the program in Eq. (6) has complexity at most
O(|Sr|2).
Proof: To prove the lemma we note that intersecting the
line defined by∇br(sr)f −µθ̂r(sr) for every sr with every
other state sr as described in Theorem 1 is of quadratic
complexity. This proves the claim.

Although the worst complexity of our approach is quadratic
in the number of states of a region, the practical perfor-
mance is often much better as shown by our experimental
evaluation. This is also illustrated in Fig. 3, since only 3 out
of 10 lines need to be intersected. Note that a better bound
ofO(|Sr| log |Sr|) on the worst complexity can be obtained

Algorithm: Efficient Globally Convergent Parallel
MAP LP Relaxation Solver
Let θ̂r(sr) = θr(sr)+

∑
p∈P (r)

λr→p(sr)−
∑

c∈C(r)

λc→r(sc)

Iterate until convergence:

1. For a fixed or variable number of iterations:

(a) ∀r in parallel: construct a primal feasible so-
lution ur(sr)

(b) compute the optimal step size γ∗ and update
the region beliefs br(sr) as detailed in Fig. 2

2. Compute the disagreement:

dr→p(sr) =
∑
sp\sr

bp(sp)− br(sr)

3. Update messages with stepsize η obtained through
line search to improve q(λ):

λr→p(sr)← λr→p(sr) + ηdr→p(sr)

4. Update potentials

θ̂r(sr)← θr(sr)+
∑

c∈C(r)

λc→r(sc)−
∑

p∈P (r)

λr→p(sr)

Figure 4. Our efficient, parallel and provably convergent MAP LP
relaxation solver.

using search techniques described by Yu et al. (2010).

It is important to note that it is generally beneficial to in-
terleave the optimization for finding the steepest ε-descent
direction with the update of the dual variables, i.e., we
blend the conditional gradient procedure outlined in Fig. 2
with an update of the dual variables λ. However, there is a
trade-off between fewer conditional gradient iterations and
more verifications of the resulting ε-descent directions. Af-
ter some conditional gradient iterations we need to verify
whether a sufficiently large (≥ ε) improvement of the dual
q(λ) is possible. Hence, a single Frank-Wolfe step might
require frequent verifications of the dual improvement.

The obtained globally optimal maximum a-posteriori
(MAP) LP relaxation solver is outlined in Fig. 4. We com-
pute the ε-steepest descent direction by iterating step 1(a)
and step 1(b) for a fixed number of times, verifying a pos-
sible ε improvement with step 2 and step 3 and continue to
iterate after the reparameterization in step 4 if a sufficiently
large descent direction was found.

4. Experimental Evaluation
We compare our approach to a wide variety of state-of-
the-art baselines using spin-glass models of size 10 × 10
with variable state-space size and energy functions aris-
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Figure 5. Dual over time comparison of our method with mono-
tonically (left) and non-monotonically (right) converging ap-
proaches on a 3-state spin-glass model. Baselines and “ours” are
single core, “ours P” is parallelized.

ing from a protein design task. As baselines, we employ
the alternating direction method for dual MAP LP relax-
ations (ADLP) (Meshi & Globerson, 2011), the quadratic
programming (QP) formulation given by Schwing et al.
(2012), convex max-product (CMP) and convex sum-
product (CSP) (Hazan & Shashua, 2010) as well as the
dual-decomposition work of Komodakis et al. (2010) pro-
vided in a generic (DDG), a re-weighted (DDR) and a
smoothed (DDS) version in the STAIR library by Gould
et al. (2011). Note that ADLP is also implemented in this
library. All algorithms are restricted to at most 5, 000 iter-
ations and all baselines utilize a single core.

Convex max-product and ε-steepest descent optimize the
same cost function. Following Schwing et al. (2012),
we start with efficient block-coordinate descent steps be-
fore switching to computing the ε-steepest descent direc-
tions via the conditional gradient procedure. We start from
ε = 0.01 and successively decrease its value if the model
is sufficiently close to |R|ε optimality, i.e., if ε is larger
than f(b)/1000. We denote the single-core approach as
“ours” and refer to the parallel implementation employing
16 cores as “ours P.”

4.1. Spin Glasses

We first consider spin glass models that consist of local
factors, each having 3 states with values randomly cho-
sen according to a zero mean, unit variance normal dis-
tribution N (0, 1). The pairwise factors of the regular grid
are weighted potentials with +1 on the diagonal, and off-
diagonal entries being −1. The weights are independently
drawn from N (0, 1). As shown by Schwing et al. (2012),
convex max-product does not achieve optimality for about
20% of the models in this setting, illustrating the need for
globally convergent algorithms.

Dual over time: Fig. 5 shows the convergence behavior
for a spin glass model and illustrates the dual value ob-
tained after a certain amount of time measured in seconds.
As shown in the figure, CMP is monotonically decreasing
but gets stuck in a corner. Convex sum product (CSD) is
guaranteed to monotonically converge to the optimum of
a problem modified by entropy terms which could be far
from the MAP solution even if the corresponding temper-
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Figure 6. Performance scaling: Impact of state-space size (S)
and interaction strength (A) on the fraction (left) and absolute
number of line intersections (right).
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Figure 7. Frank-Wolfe iterations: 400 conditional gradient iter-
ations result in fast convergence for the spin glass given on the
left, 800 are about as suitable for the case visualized on the right.

ature is as low as 0.001. It is important to note that our
ε-descent approach is monotonically decreasing just like
the QP formulation, which contrasts the other baselines
(ADLP, DDG, DDR, DDS). Our single core approach us-
ing 400 Frank-Wolfe iterations is slightly faster than the QP
method but significantly easier to parallelize efficiently.
Performance scaling: We next investigate how our ap-
proach scales with the state-space size |Sr|. We therefore
measure the fraction of line intersections (Fig. 6 left) and
the actual number of intersections (Fig. 6 right) as a func-
tion of the number of iterations for “hard” spin-glass mod-
els of size 10 × 10 with state space sizes 5, 10 and 25.
We defined “hard” spin glass models as those where the
difference between convex max-product and the ε-descent
method is larger than 0.2. As shown in Fig. 6, where results
are averaged over 30 models, the fraction of actually inter-
sected lines compared to the maximally possible number
(worst case complexity in Lemma 1) is very small. Further,
there is no negative influence when increasing the strengths
of the pairwise interaction. Thus the increase of wall-clock
time for larger sized models is not due to the suggested line-
intersection method but rather due to additional operations
required for computation of the dual, gradient, etc.
Frank-Wolfe iterations: We evaluate how many con-
ditional gradient iterations are required before checking
whether we can find an ε-descent direction. To this end,
we compare our approach using 400, 800 and 1200 Frank-
Wolfe iterations. The results for two spin glass models hav-
ing a state-space size of 3 are given in Fig. 7. In the first
case 400 conditional gradient iterations are sufficient. Note
that choosing the number of iterations too low might re-
sult in slow convergence due to frequent ε-descent checks
that are not successful, as illustrated on the right hand side
of the figure. In the following we set the number of it-
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Figure 8. Time for accuracy: Time it requires to get a fraction of the samples to within the indicated optimality.
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Figure 9. Error after time: Percentage of samples that achieved a smaller error after the indicated time.

erations to 400 and note that an adaptive approach which
successively increases the number of iterations might be
preferred, as the ε-descent directions are more easily found
during the first few rounds.

Time for a given accuracy: The percentage of tasks that
reaches a given accuracy after a given time, averaged over
30 “hard” spin glass models, is shown in Fig. 8. We observe
that significantly more samples achieve a lower deviation
from the optimum in a smaller amount of time when using
the proposed approach.

Error for a given time: We evaluate the fraction of prob-
lems that achieved a deviation from the optimum smaller
than a certain error given a specific amount of time. As
shown in Fig. 9 our approach outperforms the baselines
most of the time.

4.2. Protein Design

Next we consider a protein design task and compare our
proposed conditional gradient method to the performance
of the most competitive algorithms, i.e., ADLP, QP and
CMP. To this end, we make use of the eight problems from
the probabilistic inference challenge1. For all algorithms
we use the same setting as before, except that we increase
the number of the maximally possible iterations to 50, 000
and the Frank-Wolfe iterations to 2, 000 to increase the
chances of finding a descent direction and hence decrease
the number of evaluations of the dual.

Dual over time: Fig. 10 illustrates the dual energy over
time. We observe fast convergence when the convex max-
product (CMP) algorithm is optimal (Fig. 10 left). Similar
to spin glass models, CMP gets stuck in corners as shown
in all but the leftmost plot of Fig. 10. Our approach suc-
cessfully finds the global optimum while monotonically de-

1http://www.cs.huji.ac.il/project/PASCAL/index.php

creasing the dual energy.

Cumulative frequency w.r.t. time/error: We evaluate
the time required to achieve a specific accuracy as well as
the cumulative error distribution after a given amount of
time in Fig. 11 and Fig. 12 respectively. We observe that
our approach achieves very good performance.

5. Related Work
Efficient dual solvers were extensively studied in the con-
text of LP relaxations for the MAP problem (Koster et al.,
1998; Schlesinger, 1976; Wainwright et al., 2005). Dual
block coordinate descent methods, typically referred to
as convex max-product algorithms, are monotonically de-
creasing, and were shown to be very efficient (Globerson
& Jaakkola, 2007; Hazan & Shashua, 2010; Kolmogorov,
2006; Meltzer et al., 2009; Sontag & Jaakkola, 2009; Tar-
low et al., 2011; Werner, 2010). Since the dual program
is non-smooth, these algorithms can however get stuck in
non-optimal stationary points and cannot in general recover
a primal optimal solution (Weiss et al., 2007).

To fix the convergence issue, two main directions have been
pursued, i.e., smoothing or directly optimizing the non-
smooth dual. To smooth the dual objective, some methods
use the soft-max with low or decreasing temperature in or-
der to avoid corners as well as to recover primal optimal
solutions (Hazan & Shashua, 2010; Johnson, 2008; Jojic
et al., 2010; Savchynskyy et al., 2012). However, these
methods are generally slower, as computation of the ex-
ponential and logarithm functions is more expensive than
finding the maximum. Ravikumar et al. (2010) applied
the proximal method, leveraging a primal strictly concave
modification, which results in a smooth dual approxima-
tion. This approach converges to the dual optimum and
recovers the primal optimal solution. However, it uses a
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Figure 10. Dual over time for four different protein design tasks.
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Figure 11. Cumulative frequency w.r.t. time: Time it requires to get a fraction of the samples to within the indicated optimality.
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Figure 12. Cumulative frequency w.r.t. error: Percentage of samples that achieved a specific error after the indicated time.

double loop scheme where every update involves execut-
ing a convex sum-product algorithm. Other methods apply
augmented Lagrangian techniques to the primal (Martins
et al., 2011) and the dual programs (Meshi & Globerson,
2011). This guarantees to reach the global optimum and
recovers the dual and primal solutions. It is however not
monotonically decreasing and thus it cannot be efficiently
integrated with convex max-product updates that perform
block coordinate descent on the dual of the LP relaxation.

When directly optimizing the original non-smooth dual,
subgradient descent algorithms are guaranteed to reach
the dual optimum, as well as recover the primal optimum
(Komodakis et al., 2010). A bundle approach presented
by Lemaréchal (1974); Kappes et al. (2012) also employs
subgradients. Despite their theoretical guarantees, methods
employing subgradients are slow because arbitrary gradi-
ent directions are chosen. This contrasts the approach pre-
sented by Schwing et al. (2012) where the steepest, i.e.,
fastest, descent direction from the set of ε-subdifferentials
is employed.

Following Schwing et al. (2012), our approach is based
on the ε-descent algorithm for convex functions (Bertsekas
et al., 2003). Similarly, we use the ε-margin of the Fenchel-
Young duality theorem to obtain the ε-subdifferential of
the dual objective of the LP relaxation, thus augmenting

the convex max-product algorithm with the ability to get
out of corners and to recover a primal optimal solution.
Finding the steepest descent direction within the set of ε-
subdifferentials requires solving a quadratic program. Con-
trasting the work of Schwing et al. (2012) we replace this
task by a series of linear programs following the Frank-
Wolfe scheme inspired from (Lacoste-Julien et al., 2013;
Bach, 2013). Due to the constraint structure, we show that
the problem decouples and is hence trivially parallelizable.
Further we show how to construct a simple iterative proce-
dure to efficiently solve the small sub-problems.

6. Conclusion
We presented an algorithm to compute the globally opti-
mal solution of the LP relaxation of the MAP problem. To
this end, we proposed to employ the conditional gradient
(Frank-Wolfe) algorithm to replace the standard quadratic
programming solver. This results in an algorithm which is
easily parallelized and where each subproblem is efficiently
solvable via a search procedure. We showed that our ap-
proach outperforms existing solvers on synthetic spin-glass
models and on protein design tasks. In the future, we plan
to investigate theoretical convergence rates of steepest ε-
descent algorithms.
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