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Abstract
Latent variable models provide valuable compact rep-

resentations for learning and inference in many computer
vision tasks. However, most existing models cannot di-
rectly encode prior knowledge about the specific problem
at hand. In this paper, we introduce a constrained latent
variable model whose generated output inherently accounts
for such knowledge. To this end, we propose an approach
that explicitly imposes equality and inequality constraints
on the model’s output during learning, thus avoiding the
computational burden of having to account for these con-
straints at inference. Our learning mechanism can exploit
non-linear kernels, while only involving sequential closed-
form updates of the model parameters. We demonstrate the
effectiveness of our constrained latent variable model on
the problem of non-rigid 3D reconstruction from monocular
images, and show that it yields qualitative and quantitative
improvements over several baselines.

1. Introduction
Latent variable models have been widely used in a va-

riety of computer vision problems, such as image classifi-
cation [13, 32] and non-rigid pose estimation [24, 27, 20].
However, as effective as they are, they suffer from the fact
that they ignore prior knowledge that might be available for
the specific problem at hand. In particular, nothing prevents
commonly-employed latent variable models from generat-
ing configurations that violate known constraints.

In this paper we propose a novel non-linear latent vari-
able model whose output explicitly accounts for the inher-
ent constraints of the problem. To this end, we learn a non-
linear mapping from the latent space to the output space
such that the generated outputs comply with equality and in-
equality constraints expressed in terms of the problem vari-
ables. We make use of unlabeled examples to enforce the
constraints, while minimizing the prediction error of labeled
ones. To allow for kernel-based mappings, we introduce a
primal-dual optimization framework, where the mapping is
learned by sequential closed-form updates. Our approach
is completely generic and could be used in many different

∗This work was partially supported by the Swiss National Science
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Figure 1. Generating 3D points on a hemisphere. (Left) Pre-
dictions from random samples in the latent space using an uncon-
strained latent variable model. (Right) Predictions from the same
samples using our constrained latent variable model. Both models
were learned using only the black dots as labeled training samples.

contexts, such as image classification to impose separation
of the classes, and articulated tracking to constrain the space
of possible poses.

To illustrate the benefits of our model, we consider a toy
case where the output is a single 3D point constrained to
lie on a hemisphere. We learned a constrained latent vari-
able model and its unconstrained version using the black
dots close to the great circle of the hemisphere as labeled
training examples. Fig. 1 shows the predictions of the un-
constrained and constrained models from random samples
on the latent space. Note how much the predictions are im-
proved by learning a constrained model.

While this corresponds to an extreme case of poorly sam-
pled training points, a similar scenario could easily occur
locally on more complex output spaces. In particular, to
demonstrate the effectiveness of our approach on a chal-
lenging real-world problem, we consider the task of non-
rigid surface reconstruction from monocular inputs. This
is known to be a very ambiguous problem due to the fact
that any point on a line of sight reprojects at the same im-
age location, thus making depth estimation very ill-posed.
Furthermore, the partial lack of identifiable texture on the
surface makes the use of shape regularizers necessary to
produce reasonable reconstructions. Latent variable models
are commonly used for such regularization [3, 5, 19, 20, 9].
Our experimental evaluation shows that our constrained
latent variable model produces more accurate reconstruc-
tions than the standard linear subspace models and the in-
creasingly popular Gaussian Process Latent Variable Model
(GPLVM) [11], which corresponds to the unconstrained



version of our model. This evaluation was performed in a
variety of scenarios including real images of different mate-
rials captured with the Microsoft Kinect, providing ground-
truth 3D measurements. The code to reproduce our experi-
ments , our novel dataset and other supplementary materials
are publicly available1.

2. Related Work

In many computer vision problems, one would like a pa-
rameterization that models our prior knowledge of the task
at hand and satisfies known constraints in terms of the vari-
ables of the problem. While such parameterizations exist
for some specific problems, they are not generally available
for all tasks. Latent variable models have come as an al-
ternative to such parameterizations, where one tries to learn
the properties of the variables of interest from training data.

Latent variable models effectively provide a compact
representation of the problem at hand and improve robust-
ness to noise and other sources of ambiguities by regulariza-
tion. For instance, linear subspace models have been widely
applied to problems such as human pose estimation [24], or
non-rigid reconstruction [3]. More recently, non-linear la-
tent variable models, such as the GPLVM [11], have be-
come popular for computer vision applications [27, 20].
Unfortunately, these models only try to capture properties
of interest from training data and completely ignore our
knowledge of the problem at hand.

Several attempts at incorporating prior knowledge in la-
tent variable models have been made. However, most ap-
proaches are restricted to encoding this knowledge in the
latent space. For instance, sparse coding [13, 32] encour-
ages sparsity of the latent representation; the Gaussian Pro-
cess Dynamical Model (GPDM) [30, 28] allows to model
dynamics in the latent space, although the dynamics are
learned rather than explicitly encoded in the model; [29] in-
troduces topological constraints to the GPLVM, but once
more acting directly on the latent space; [1] imposes
physics-based constraints on the latent space in the form
of differential equations. However, imposing constraints on
the latent variables does not guarantee that equivalent ones
are satisfied in the output space. Therefore, these models
will still produce outputs that violate known constraints.

To the best of our knowledge, [21] represents the only at-
tempt to learn a predictor that implicitly satisfies constraints
on the output variables. However, the method is limited
to linear and quadratic equality constraints. Furthermore,
it suffers from ambiguities in the predicted output that can
only be overcome in specific scenarios.

In the context of non-rigid reconstruction, both linear
[3, 5, 4, 31, 25, 10, 12] and non-linear [19, 20, 9, 8] la-
tent variable models have been employed. However, since

1Publicly available at http://cvlab.epfl.ch/software/clvm/index.php

existing models are unable to make use of the known phys-
ical properties of the surface, they produce shapes that vio-
late important constraints, and therefore look unnatural. An
alternative approach is to directly encode the physical prop-
erties of the system. Physics-based approaches have made
use both of the Finite Element Method [17, 16, 15, 14, 26, 2]
and of more intuitive constraints, such as inextensibil-
ity [7, 23, 6, 18]. Unfortunately, while physics-based ap-
proaches have the advantage of explicitly encoding prior
knowledge, they involve solving high-dimensional opti-
mization problems. Furthermore, since constraints such as
inextensibility are only local, the resulting methods typi-
cally require the surface to be well-textured.

Attempts at coupling latent variable models and con-
straints for deformable shape recovery have been made [22].
However, these methods are limited to linear subspace mod-
els and to specific constraints. Furthermore, and more im-
portantly, they incorporate the constraints on top of a latent
variable model that still allows for invalid configurations. It
would seem more effective to exploit the constraints while
learning the model, thus yielding a latent variable model
that only generates physically-plausible deformations. This,
in essence, is what we propose in this paper.

3. Learning a Constrained LVM
In this section, we present our approach to learning a la-

tent variable model that incorporates constraints on the gen-
erated outputs. In particular, we focus on the problem of
learning the mapping from a given latent space to the out-
put space under equality and inequality constraints. Note
that the latent space itself can be obtained with any avail-
able technique, such as PCA, or Isomap. Our mapping can
thus be seen as a predictor from the latent space to the out-
put space. We learn this mapping by minimizing a predic-
tion error on labeled examples, for which the true output is
known, while simultaneously enforcing constraints on un-
labeled ones, for which the output is unknown. In the re-
mainder of this section, we first derive the primal form of
our learning problem. We then exploit duality to kernelize
our approach, and thus be able to make use of the nonlin-
ear kernels (e.g., RBF) that have been proven more effective
than linear ones for many computer vision tasks.

3.1. Primal Optimization Problem

LetX ⊆ Rm be a given latent space, and Y ⊆ RD be the
output space of interest, such as the space of non-rigid 3D
surfaces. Given a latent variable x ∈ X , our latent variable
model can be encoded as a mapping of the form

ŷ = Wφ(x) , (1)

such that ŷ ∈ Y . W ∈ RD×d is the parameter matrix that
defines the mapping, and φ(x) : Rm → Rd is the feature
map of the latent variable x.



Let L be the set of labeled training examples containing
N pairs {xi,yi} of latent variables xi and associated con-
tinuous multi-dimensional labels (outputs) yi. Furthermore,
let U = UE ∪ UI be the set of unlabeled training examples
x̄j subject to equality (UE) and inequality (UI ) constraints.
We formulate learning as a constrained optimization prob-
lem, where a loss function l is minimized on the labeled
training set L subject to constraints on the unlabeled set U .
This can be written as

min
W

∑
{xi,yi}∈L

l(W,xi,yi) + γR(W) (2)

s. t. C(W, x̄u) = 0 ∀x̄u ∈ UE
D(W, x̄v) ≤ 0 ∀x̄v ∈ UI ,

where R is the regularizer on W with weight γ, and
C(W, x̄u), resp. D(W, x̄v), is a vector function encoding
all NE equality constraints, resp. NI inequality constraints,
defined with respect to the prediction of the unlabeled data
x̄u, resp. x̄v .

The problem of Eq. 2 is very general, and different loss
functions, regularizers and constraints can be utilized. Here,
we consider the case of the square loss, Frobenius norm
regularizer, and arbitrary nonlinear constraints on the pre-
dictions. The optimization problem therefore becomes

min
W

1

2
‖Wφ(x)−Y‖2F +

γ

2
‖W‖2F (3)

s. t. C (Wφ(x̄u)) = 0 ∀x̄u ∈ UE
D (Wφ(x̄v)) ≤ 0 ∀x̄v ∈ UI ,

where φ(x) = [φ(x1) · · ·φ(xN )], and Y = [y1 · · ·yN ] is
the matrix of labeled training outputs.

If the constraints are non-convex, so is the optimization
problem in Eq. 3. We therefore transform it so that we
can solve it as a sequence of closed-form updates. First, we
rewrite the inequality constraints as equalities by introduc-
ing slack variables ε. This yields the optimization problem

min
W,ε

1

2
‖Wφ(x)−Y‖2F +

γ

2
‖W‖2F +

α

2
‖ε‖22 (4)

s. t. C (Wφ(x̄u)) = 0 ∀x̄u ∈ UE
D (Wφ(x̄v)) + ε(v) � ε(v) = 0 ∀x̄v ∈ UI ,

where � is the Hadamard (elementwise) product, ε(v) con-
tains the slack variables associated with example v, and
α
2 ‖ε‖

2
2 encodes potential additional knowledge about the

problem. This, for instance, is useful in conjunction with
the inequality constraints of [22], where only small devia-
tions from equalities are expected.

As a second step, we perform a first order Taylor ex-
pansion of the constraints. Given an initial solution for the
parameters W and ε, we iteratively linearize the constraints
around the current solution, and update the parameters by

solving the linearized problem. At each iteration t of this
procedure, the linearized problem can be written as

min
δW,δε

1

2
‖(Wt + δW)φ(x)−Y‖2F (5)

+
γ

2
‖Wt + δW‖2F +

α

2
‖ε + δε‖22

s. t. C
(u)
t + GuδWφ(x̄u) = 0 ∀x̄u ∈ UE ,

D
(v)
t +

1

2
ε
(v)
t � ε

(v)
t + QvδWφ(x̄v)

+ ε
(v)
t � δε(v) = 0 ∀x̄v ∈ UI ,

where Wt and εt are the current estimates of W and ε,
respectively. C

(u)
t is the value of the equality constraints

for unlabeled example u at the current prediction ŷu,t, and
Gu is the NE × D matrix containing the gradient of these
constraints with respect to ŷu,t. Similarly, D(v)

t and Qv

encode the value and gradient of the inequality constraints
for unlabeled example v at the current prediction ŷv,t. The
solution to the problem in Eq. 5 can be obtained in closed-
form by solving a linear system in δW and δε.

3.2. Kernel-based Mappings

The primal formulation of our latent variable model only
allows for linear mappings from the feature map of the la-
tent space to the output space. While some degree of non-
linearity can be encoded in the feature map, it results in
the rapid growth of the number of parameters to optimize.
This makes our primal formulation computationally expen-
sive and more prone to overfitting. Furthermore, for many
kernels (e.g., RBF), the feature maps cannot be explicitly
computed.

We therefore need to kernelize our approach to take ad-
vantage of such kernels. To this end, we exploit duality.
We start by first writing the Lagrangian of the minimization
problem in Eq. 5, and then make use of the Karush-Kuhn-
Tucker (KKT) conditions to derive a solution for the La-
grange multipliers. This yields an optimization method sim-
ilar to the one in Section 3.1, where we iteratively linearize
the constraints around the current prediction of the unla-
beled data, solve for the Lagrange multipliers of the dual
linearized problem, and update the prediction. Importantly,
we show that the Lagrange multipliers can be obtained in
closed-form, thus yielding a sequence of closed-form up-
dates similar to the one in the primal formulation.

More specifically, the Lagrangian of the minimization
problem in Eq. 5 can be expressed as

L=
1

2
‖(Wt + δW)φ(x)−Y‖2F +

γ

2
‖Wt + δW‖2F +

α

2
‖ε + δε‖22

+
∑
u

[
C

(u)
t + GuδWφ(x̄u)

]T
λE

u

+
∑
v

[
D

(v)
t +

1

2
ε
(v)
t � ε

(v)
t + QvδWφ(x̄v) + ε

(v)
t � δε

(v)

]T
λI

v ,



where λEu ∈ RNE and λIv ∈ RNI are the Lagrange multi-
pliers associated with the equality and inequality constraints
for unlabeled examples u and v, respectively.

To find an optimal solution to our problem, we first make
use of the KKT stationarity condition, which, in our case,
states that the solution for δW and δε must satisfy ∂L

∂δW =

0 and ∂L
∂δε = 0, respectively.

Claim 1 Solving the KKT stationarity conditions yields

δW = AZ−Wt,

δε(v) = −
(

1

α
λI

v + 1

)
� ε

(v)
t , ∀x̄v ∈ UI , (6)

respectively, where

A =

[
M−

∑
u

GT
uλ

E
uKu,: −

∑
v

QT
v λ

I
vKv,:

]
B−1, (7)

Z =
[
φ(x) · · · φ(x̄u′) · · · φ(x̄s) · · · φ(x̄v′) · · ·

]T
,

B = K:,LKL,: + γK:,: ,

M = YKL,: ,

with u′,s and v′ the indices of the unlabeled data in UE\UI ,
UE ∩ UI , and UI \ UE , respectively. The kernel K:,: is
defined as

K:,: = ZZT =

[
KL,L KL,U
KU,L KU,U

]
, (8)

and can be computed via any kernel function, e.g., RBF.
Proof: In supplementary material.

The KKT stationarity conditions define a solution for our
variables δW and δε in terms of the Lagrange multipliers
λEu and λIv . To find a solution for these Lagrange multipli-
ers, we make use of the KKT primal feasibility condition,
which states that the constraints should be satisfied at the
optimal value of the parameters.
Claim 2 The solution to the constraints encoded by the
KKT primal feasibility condition takes the form λ = S−1r,
where

λ =

[
λE

λI

]
, S =

[
SE,E SE,I

SI,E SI,I

]
, r =

[
rE

rI

]
,

and

SE,Eu,a = GuG
T
a (Ka,:B

−1K:,u) ,

SE,Iu,b = GuQ
T
b (Kb,:B

−1K:,u),

SI,Ev,a = QvG
T
a (Ka,:B

−1K:,v),

SI,Iv,b = QvQ
T
b (Kb,:B

−1K:,v) + δv,b diag

(
1

α
ε
(v)
t � ε

(v)
t

)
,

rEu = GuMB−1K:,u −Guŷu,t + C
(u)
t ,

rIv = QvMB−1K:,v −Qvŷv,t +D
(v)
t −

1

2
ε
(v)
t � ε

(v)
t ,

with δv,b the Kronecker delta.
Proof: In supplementary material.

In the two claims above, we have shown how to obtain in
closed-form the Lagrange multipliers that give the optimal
solution to the problem in Eq. 5. Note that this requires
having a prediction for the unlabeled examples ŷv,t at the
current iteration t. Furthermore, at inference, to make use
of our latent variable model, we need to be able to compute
the prediction for a new input. To address these points, we
now define the form of the prediction in our model.
Claim 3 Prediction for any input x∗ in our kernelized
model can be done in closed-form, and can be written as

ŷ∗ = AK:,∗ , (9)

where K:,∗ = Zφ(x∗) =
[
K∗,L K∗,U

]T
.

Proof: In supplementary material.
Since we follow the same linearization strategy as in Sec-

tion 3.1, learning still consists of a succession of updates
based on the current prediction for the unlabeled inputs.
Therefore, we can derive an algorithm that iteratively lin-
earizes the constraints around the current prediction, solves
for the Lagrange multipliers and refines the prediction. This
scheme is summarized in Algorithm 1. Note that each step
can be done in closed-form. Note also that, even though
Claim 1 defines the update δW in terms of the Lagrange
multipliers, W is never explicitly computed in our algo-
rithm, thus making it fully kernelized.

Algorithm 1 Learning a constrained latent variable model
Initialize ŷu,0 and ŷv,0 using an unconstrained predictor
Initialize ε0 to non-zero values
for t = 1 to #iters do

Compute Gu, C(u)
t , Qv , D(v)

t from ŷu,t−1, ŷv,t−1
Compute S from Claim 2
Compute r from Claim 2
Compute λEu and λIv using λ = S−1r
Compute A using Eq. 7
Compute ŷu,t and ŷv,t using Eq. 9
Compute εt using Eq. 6

end for

4. Experimental Evaluation
We demonstrate the effectiveness of our constrained la-

tent variable model at reconstructing deformable surfaces
from monocular images. We compare our results to those
obtained using a linear subspace model and an uncon-
strained version of our non-linear model, which corre-
sponds to a GPLVM. In all cases, reconstruction is ob-
tained by optimizing the latent variable so as to minimize an
image-based loss function. Errors are given in terms of both
the 3D reconstruction errors and the constraint violation.
Reconstruction errors are computed as the average point-
to-point distance between ground-truth and reconstructed
shapes. Constraint violation is taken to be the mean value



Reconstruction error [mm] Constraint violation [mm]
V = 20 V = 60 V = 100 V = 150 V = 20 V = 60 V = 100 V = 150

C
ar

db
oa

rd

E
qu

al
ity PCA 31.6±4.45 31.6±4.45 31.6±4.45 31.6±4.45 3.19±0.64 3.19±0.64 3.19±0.64 3.19±0.64

Unconstrained 4.64±0.29 4.64±0.29 4.64±0.29 4.64±0.29 0.98±0.05 0.98±0.05 0.98±0.05 0.98±0.05
Ours 4.48±0.31 4.28±0.33 4.30±0.36 4.27±0.39 0.81±0.02 0.63± 0.01 0.50±0.02 0.41±0.02

In
eq

. PCA 31.6±4.45 31.6±4.45 31.6±4.45 31.6±4.45 3.43±0.76 3.43±0.76 3.43±0.76 3.43±0.76
Unconstrained 4.64±0.29 4.64±0.29 4.64±0.29 4.64±0.29 0.94±0.04 0.94±0.04 0.94±0.04 0.94±0.04

Ours 4.52±0.31 4.34±0.30 4.25± 0.28 4.12±0.27 0.77±0.03 0.56±0.02 0.43±0.02 0.34±0.02

C
lo

th E
qu

al
ity PCA 16.2±2.19 16.2±2.19 16.2±2.19 16.2±2.19 3.05±0.26 3.05±0.26 3.05±0.26 3.05±0.26

Unconstrained 4.36±0.20 4.36±0.20 4.36±0.20 4.36±0.20 1.33±0.04 1.33±0.04 1.33±0.04 1.33±0.04
Ours 4.30±0.19 4.29±0.12 4.27±0.21 4.44±0.17 1.20±0.04 1.03± 0.04 0.88±0.02 0.75±0.02

In
eq

. PCA 16.2±2.19 16.2±2.19 16.2±2.19 16.2±2.19 3.43±0.29 3.43±0.29 3.43±0.29 3.43±0.29
Unconstrained 4.36±0.20 4.36±0.20 4.36±0.20 4.36±0.20 1.14±0.08 1.14±0.08 1.14±0.08 1.14±0.08

Ours 4.25±0.17 4.10±0.14 3.99± 0.17 3.95±0.16 1.02±0.09 0.87±0.06 0.73±0.03 0.63±0.02

Table 1. Predicting shapes from known latent variables. Reconstruction error and constraint violation as a function of the number of
unlabeled examples V for a fixed N = 50. Note that the constraint violation measure is different for inequalities and for equalities.

of C(x∗) for equalities and the mean value of D(x∗) for all
violated inequality constraints. All the quantitative results
are expressed in millimeters.

In the remainder of this section, we first describe our
learning setup and the different types of constraints used in
our experiments. We then present our results on synthetic
data and real images of surfaces made of different materials.
Our results include a quantitative evaluation of reconstruc-
tions obtained from real images captured with a Microsoft
Kinect, whose output depth we treat as ground-truth.

4.1. Learning Setup

To learn the models, we make use of two publicly avail-
able datasets obtained with a motion capture system2. The
first one consists of the 3D locations of markers placed as
a 9×9 grid on a piece of cardboard, thus forming a square
mesh of size 160×160mm with 208 edges. The second one
consists of similar measurements on a piece of cloth, repre-
sented by a 9×7 mesh of size 160×120mm with 158 edges.
The cardboard dataset exhibits simpler deformations than
the cloth one. To obtain latent spaces for each dataset inde-
pendently, we performed PCA on the 3D marker locations.
We used 12 and 30 latent variables for the cardboard and
cloth datasets, respectively, which covers more than 95% of
the variance of the data. In all the experiments, we used an
RBF kernel for our model and its unconstrained version. We
set both regularization weights γ and α in Eq. 5 to 0.001.

We investigated the use of length constraints as both
equalities and inequalities. Under the former, the length of
the edges connecting the mesh vertices must remain con-
stant. The latter allow these lengths to decrease to model
the fact that two vertices may come closer to each other
if folds appear between them, but cannot be further apart
than the geodesic distance along the surface. The equalities
have been shown to be appropriate for smoothly deforming
surfaces, and the inequalities for surfaces undergoing more
complex deformations [22]. To confirm this, we predicted
shapes given the true latent variables of 500 test examples.

2Publicly available at http://cvlab.epfl.ch/data/dsr/
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Figure 2. Training times. (Left) Training time as a function of the
number of validation samples when using all constraints. (Right)
Training times for different constraint selection strategies for a
fixed number of validation samples V = 140.

Table 1 depicts reconstruction and constraint errors aver-
aged over the test samples as a function of the number of
unlabeled examples V . Note that the constraint violation
measure is different for inequalities and equalities. For the
cardboard dataset, both constraint types perform well. For
the cloth dataset where sharper folds occur, inequality con-
straints are more appropriate; increasing V improves both
reconstruction and constraint satisfaction for inequalities,
whereas it only improves constraint satisfaction for equali-
ties. Note that our predictions are more accurate than those
of the baselines.

Our implementation can handle up to 60K constraints on
a standard PC. However, this still limits us in the number of
unlabeled examples that we can use. To increase this num-
ber, we implemented a different strategy to encode the con-
straints, which involves summing over individual ones. This
yields new constraints of the form C̃(x) =

∑
j Cj(x) = 0,

and reduces the number of constraints for each unlabeled
sample, which lets us use more of them. In practice, we
define these sums of constraints as the sums of all individ-
ual vertical or horizontal constraints on the rectangular grid,
which amounts to preserving the length of a complete hori-
zontal or vertical line as opposed to that of individual edges.

The constraints we use are sparse in nature, since each
one only depends on two mesh vertices. Thus, the lin-
ear system to obtain the Lagrange multipliers is sparse as
well, which allows for the use of efficient sparse solvers.
Fig. 2(left) depicts training time as a function of the num-
ber of unlabeled examples for the cardboard dataset. To im-
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(a) (b) (c) (d)
Figure 3. Reconstructing a piece of cardboard from synthetic data. (a,b) Reconstruction error and constraint violation as a function of
image noise for N = 50 and V = 100. (c,d) Similar errors for N = 50 and V = 150. Our model was trained using equality constraints.
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Figure 4. Reconstructing a piece of cloth from synthetic data. (a,b) Reconstruction error and constraint violation as a function of image
noise for N = 50 and V = 100. (c,d) Similar errors for N = 50 and V = 150. Our model was trained using inequality constraints.

prove efficiency, we can also rely on different strategies to
account for constraints. Summing constraints, as described
above, is one such strategy. Another one consists in adding
the most violated constraints to a set of active constraints
at each learning iteration. Training times for these differ-
ent strategies are given in Fig. 2(right). Note that summing
constraints decreases the training time dramatically since it
effectively reduces the number of constraints for the same
number of unlabeled samples. Iteratively adding constraints
to an active set also noticeably reduces training time.

4.2. Synthetic Data
We first used the two motion capture datasets to gener-

ate synthetic data. To this end, we sampled the barycentric
coordinates of the ground-truth meshes and projected the
resulting 3D points with a known camera, thus creating 2D
image measurements. We then added Gaussian noise with
standard deviation ranging between 0 and 10 to these mea-
surements. At test time, we optimized the latent variables,
as well as the global rotation and translation, so that the
predicted 3D shape minimizes the reprojection error with
respect to the noisy image measurements. For both datasets,
we learned the models with N = 50 labeled examples and
either V = 100 or V = 150 unlabeled ones, and tested them
on 300 samples. For each noise value, we used 5 different
train/test partitions. Figs. 3 and 4 depict errors as a func-
tion of the image noise standard deviation for the cardboard
and cloth datasets, respectively. Note that our constrained
model consistently outperforms PCA and the unconstrained
model for both reconstruction error and constraint violation.
Error bars on the plots represent±1 standard deviation over
the 5 different partitions. Note that the PCA model was
learned from all the data, and therefore does not depend on
the partition. This remains a valid comparison, since only
the baseline has access to more data. Fig. 5 depicts similar
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Figure 5. Reconstructing a piece of cardboard using different
constraint selection strategies. Reconstruction error and con-
straint violation as a function of noise forN = 100 and V = 100.
The curves for the single and most-violated strategies overlap.

errors for our different constraint selection strategies. Note
that, while being faster to train, summing constraints yields
less accurate reconstructions for a given V .

4.3. Real Images with Ground-truth

To evaluate our model’s accuracy in realistic conditions,
we performed experiments where the images were cap-
tured with a Microsoft Kinect, which also provides us with
ground-truth 3D information, only used for evaluation pur-
poses. We captured deformations of two different materials:
a piece of paper and a t-shirt. As before, we used repro-
jection error as image loss, but used SIFT to compute the
correspondences between a reference image in which the
3D shape is known and the other images of the sequence.
For both materials, we learned the models with N = 20 la-
beled and V = 50 unlabeled examples from the cardboard
dataset, and, as before, used 5 different training sets. Fig. 6
depicts images of both sequences with our reconstructions.
Tables 2 and 3 show errors averaged over the frames of
the sequence when using either equality, or inequality con-
straints. Here, reconstruction error was computed between
the predicted 3D locations of the feature points and their
ground-truth Kinect locations. As with synthetic data, our
model outperforms the baselines for both constraint types.



Figure 6. Real images with ground-truth. (Top) Images of a deforming piece of paper with reconstructed meshes seen from a different
viewpoint. (Bottom) Similar images for a deforming t-shirt. In both cases, we show our reconstructions reprojected on the images.

Equality Inequality
Reconstr. Constraint Reconstr. Constraint

Error [mm] Viol. [mm] Error [mm] Viol. [mm]
PCA 11.68± 0.00 1.71± 0.00 11.68± 0.00 2.09± 0.00

Unconstrained 9.35± 1.03 1.10± 0.23 9.35± 1.03 0.96± 0.09
Ours 7.23± 0.76 0.78± 0.03 8.03± 0.56 0.71± 0.13

Table 2. Reconstructing a piece of paper. Reconstruction error
was computed with respect to the Kinect ground-truth.

4.4. Real Images without Ground-truth
For qualitative evaluation, we also applied our model to

reconstructing two sequences of deforming cloth surfaces3.
In both cases, we used N = 500 labeled examples. Since
the deformations in the first sequence are relatively sim-
ple, we could use a small number of unlabeled examples
(V=150), and thus exploit all individual edge equality con-
straints when learning our model. For the second sequence,
which contains more complex deformations, we used sums
of constraints which let us employ more unlabeled exam-
ples (V=1500). In both experiments, the image-based loss
was taken as the normalized cross-correlation between the
texture under the optimized mesh and the texture in a ref-
erence image. In Fig. 7, we compare our results with those
obtained with the baselines for the first sequence. Note that
the shapes reconstructed with our model better correspond
to the ones in the images. Fig. 8 depicts our reconstructions
on the second sequence. For reasons of space, we do not in-
clude the baselines’ results for this sequence. However, we
encourage the reader to look at the full comparison in the
videos given as supplementary material. Since we have no
ground-truth for these sequences, we can only evaluate con-
straint violation. Fig. 9 depicts this error for all the frames
in the sequences. Note that our method clearly outperforms
the baselines in terms of constraint satisfaction.

5. Conclusion
In this paper, we have introduced a constrained latent

variable model that encodes prior knowledge about the de-
sired output in the form of equality and inequality con-
straints. We have shown that our approach can be kernel-
ized, thus allowing for the use of non-linear kernels that
have been proven effective in many computer vision tasks.
Using both synthetic and real data, we have demonstrated

3Publicly available at http://cvlab.epfl.ch/data/dsr/

Equality Inequality
Reconstr. Constraint Reconstr. Constraint

Error [mm] Viol. [mm] Error [mm] Viol. [mm]
PCA 18.44±0.00 0.97±0.00 18.44±0.00 0.84±0.00

Unconstrained 15.50±1.78 0.92±0.22 15.50±1.78 0.75±0.14
Ours 14.79± 0.84 0.73± 0.05 14.35±0.90 0.60±0.07

Table 3. Reconstructing a deforming t-shirt. Reconstruction er-
ror was computed with respect to the Kinect ground-truth.

that our model outperforms the commonly-employed ones
for the purpose of monocular 3D surface reconstruction,
which is such an ambiguous problem that using constraints
effectively is a requirement for success. Furthermore, our
formalism is extremely general. In future work, we there-
fore plan to extend our approach to different loss functions,
regularizers, and constraints, in order to apply our model to
a wide range of computer vision problems.
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