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Abstract

We address the problem of real-time 3D object detec-

tion from point clouds in the context of autonomous driv-

ing. Speed is critical as detection is a necessary compo-

nent for safety. Existing approaches are, however, expensive

in computation due to high dimensionality of point clouds.

We utilize the 3D data more efficiently by representing the

scene from the Bird’s Eye View (BEV), and propose PIXOR,

a proposal-free, single-stage detector that outputs oriented

3D object estimates decoded from pixel-wise neural net-

work predictions. The input representation, network archi-

tecture, and model optimization are specially designed to

balance high accuracy and real-time efficiency. We validate

PIXOR on two datasets: the KITTI BEV object detection

benchmark, and a large-scale 3D vehicle detection bench-

mark. In both datasets we show that the proposed detector

surpasses other state-of-the-art methods notably in terms of

Average Precision (AP), while still runs at 10 FPS.

1. Introduction

Over the last few years we have seen a plethora of meth-

ods that exploit Convolutional Neural Networks to produce

accurate 2D object detections, typically from a single image

[12, 11, 28, 4, 27, 23]. However, in robotics applications

such as autonomous driving we are interested in detecting

objects in 3D space. This is fundamental for motion plan-

ning in order to plan a safe route.

Recent approaches to 3D object detection exploit differ-

ent data sources. Camera based approaches utilize either

monocular [1] or stereo images [2]. However, accurate 3D

estimation from 2D images is difficult, particularly in long

ranges. With the popularity of inexpensive RGB-D sen-

sors such as Microsoft Kinect, Intel RealSense and Apple

PrimeSense, several approaches that utilize depth informa-

tion and fuse them with RGB images have been developed

[32, 33]. They have been shown to achieve significant per-

formance gains over monocular methods. In the context

of autonomous driving, high-end sensor like LIDAR (Light

Detection And Ranging) is more common because higher

accuracy is needed for safety. The major difficulty in deal-

ing with LIDAR data is that the sensor produces unstruc-

tured data in the form of a point cloud containing typically

around 105 3D points per 360-degree sweep. This poses a

large computational challenge for modern detectors.

Different forms of point cloud representation have been

explored in the context of 3D object detection. The main

idea is to form a structured representation where standard

convolution operation can be applied. Existing representa-

tions are mainly divided into two types: 3D voxel grids and

2D projections. A 3D voxel grid transforms the point cloud

into a regularly spaced 3D grid, where each voxel cell can

contain a scalar value (e.g., occupancy) or vector data (e.g.,

hand-crafted statistics computed from the points within that

voxel cell). 3D convolution is typically applied to extract

high-order representation from the voxel grid [6]. However,

since point clouds are sparse by nature, the voxel grid is

very sparse and therefore a large proportion of computation

is redundant and unnecessary. As a result, typical systems

[6, 37, 20] only run at 1-2 FPS.

An alternative is to project the point cloud onto a plane,

which is then discretized into a 2D image based representa-

tion where 2D convolutions are applied. During discretiza-

tion, hand-crafted features (or statistics) are computed as

pixel values of the 2D image [3]. Commonly used projec-

tions are range view (i.e., 360-degree panoramic view) and

bird’s eye view (i.e., top-down view). These 2D projection

based representations are more compact, but they bring in-

formation loss during projection and discretization. For ex-

ample, range-view projection will have distorted object size

and shape. To alleviate the information loss, MV3D [3] pro-

poses to fuse the 2D projections with the camera image to

bring additional information. However, the fused model has

nearly linear computation cost with respect to the number of

input modals, making real-time application infeasible.

In this paper, we propose an accurate real-time 3D object

detector, which we call PIXOR (ORiented 3D object de-

tection from PIXel-wise neural network predictions), that

operates on 3D point clouds. PIXOR is a single-stage,
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Figure 1. Overview of the proposed 3D object detector from Bird’s Eye View (BEV) of LIDAR point cloud.

proposal-free dense object detector that exploits the 2D

Bird’s Eye View (BEV) representation in an efficient way.

We choose the BEV representation as it is computationally

friendly compared with 3D voxel grids, and also preserves

the metric space which allows our model to explore priors

about the size and shape of the object categories. Our detec-

tor outputs accurate oriented bounding boxes in real-world

dimension in bird’s eye view. Note that these are 3D esti-

mates as we assume that the objects are on the ground. This

is a reasonable assumption in the autonomous driving sce-

nario as vehicles do not fly.

We demonstrate the effectiveness of our approach in two

datasets, the public KITTI benchmark [10] and a large-

scale 3D vehicle detection dataset (ATG4D). Specifically,

PIXOR achieves the highest Average Precision (AP) on

KITTI bird’s eye view object detection benchmark among

all previously published methods, while also runs the fastest

among them (over 10 FPS). We also provide in-depth abla-

tion studies on KITTI to investigate how much performance

gain each module contributes, and prove the scalability and

generalization ability of PIXOR by applying it to the large-

scale ATG4D dataset.

2. Related Work

We first review recent advances in applying Convolu-

tional Neural Networks to object detection, and then revisit

works in two related sub-fields, single-stage object detec-

tion and 3D object detection.

2.1. CNNbased Object Detection

Convolutional Neural Networks (CNN) have shown out-

standing performance in image classification [18]. When

applied to object detection, it is natural to utilize them by

running inference over cropped regions representing the ob-

ject candidates. Overfeat [30] slides a CNN on different

positions and scales and predicts a bounding box per class

at each time. Since the introduction of class-agnostic ob-

ject proposals [36, 26], proposal based approaches popu-

late, with Region-CNN (RCNN) [12] and its faster versions

[11, 4] being the most seminal work. RCNN first extracts

the whole-image feature map with an ImageNet [5] pre-

trained CNN and then predicts a confidence score as well

as box position per proposal via a RoI-pooling operation

on the whole-image feature map [13]. Faster-RCNN [28]

further proposes to learn to generate region proposals with

a CNN and share the feature representation with detection,

which leads to further gain in both performance and speed.

Proposal based object detectors achieve outstanding perfor-

mances in many public benchmarks [7, 29]. However, the

typical two-stage pipeline makes it unsuitable for real-time

applications.

2.2. Singlestage Object Detection

Different from the two-stage detection pipeline that first

predicts proposals and then refines them, single-stage detec-

tors directly predict the finals detections. YOLO [27] and

SSD [23] are the most representative works with real-time

speed. YOLO [27] divides the image into sparse grids and

makes multi-class and multi-scale predictions per grid cell.

SSD [23] additionally uses pre-defined object templates (or

anchors) to handle large variance in object size and shape.

For single-class object detection, DenseBox [17] and EAST

[38] show that single-stage detector also works well with-

out using manually designed anchors. They both adopt

the fully-convolutional network architecture [24] to make

dense predictions, where each pixel location corresponds to

one object candidate. Recently RetinaNet [22] shows that

single-stage detector can outperform two-stage detector if

class imbalance problem during training is resolved prop-

erly. Our proposed detector follows the idea of single-stage

dense object detector, while further extends these ideas to

real-time 3D object detection by re-designing the input rep-

resentation, network architecture, and output parameteriza-

tion. We also remove the hyper parameter of pre-defined

object anchors by re-defining the objective function of ob-

ject localization, which leads to a simpler detection frame-

work.
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2.3. 3D Object Detection from Point Clouds

Vote3D [37] uses sliding window on sparse volumes in

a 3D voxel grid to detect objects. Hand-crafted geometry

features are extracted on each volume and fed into an SVM

classifier [34]. Vote3Deep [6] also uses the voxel represen-

tation of point clouds, but extracts features for each volume

with 3D Convolutional Neural Networks [35]. The main is-

sue with voxel representations is efficiency, as the 3D voxel

grid usually has high dimensionality. In contrast, VeloFCN

[20] projects the 3D point cloud to front-view and gets a

2D depth map. Vehicles are then detected by applying a

2D CNN on the depth map. Recently MV3D [3] also uses

the projection representation. It combines CNN features ex-

tracted from multiple views (front view, bird’s eye view as

well as camera view) to do 3D object detection. However,

hand-crafted features are computed as the encoding of the

rasterized images. Our proposed detector, however, uses the

bird’s eye view representation alone for real-time 3D object

detection in the context of autonomous driving, where we

assume that all objects lie on the same ground.

3. PIXOR Detector

In this paper we propose an efficient 3D object detector

that is able to produce very accurate bounding boxes given

LIDAR point clouds. Our bounding box estimates not only

contain the location in 3D space, but also the heading an-

gle, since predicting this accurately is very important for

autonomous driving. We exploit a 2D representation of LI-

DAR point clouds, as it is more compact and thus amenable

to real-time inference compared with 3D voxel grid repre-

sentation. An overview of the proposed 3D object detector

is shown in Figure 1. In the following we introduce our

input representation, network architecture and discuss how

we encode the oriented bounding boxes. We also present

details about the learning and inference of the detector.

3.1. Input Representation

Standard convolutional neural networks perform discrete

convolutions and thus assume that the input lies on a grid.

3D point clouds are however unstructured, and thus stan-

dard convolutions cannot be directly applied. One option

is to use voxelization to form a 3D voxel grid, where each

voxel cell contains certain statistics of the points that lie

within that voxel. To extract feature representation from this

3D voxel grid, 3D convolution is often used. However, this

can be very expensive in computation as we have to slide the

3D convolution kernel along three dimensions. This is also

unnecessary because the LIDAR point cloud is so sparse

that most voxel cells are empty.

Instead, we can represent the scene from the bird’s eye

view (BEV) alone. By reducing the free degree from 3

to 2, we don’t lose information in point cloud as we can
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Figure 2. The network architecture of PIXOR.

still keep the height information as channels along the 3rd

dimension (like the RGB channels of 2D images). How-

ever, effectively we get a more compact representation since

we can apply 2D convolution to the BEV representation.

This dimension reduction is reasonable in the context of au-

tonomous driving as the objects of interest are on the same

ground. In addition to computation efficiency, BEV repre-

sentation also have other advantages. It eases the problem

of object detection as objects do not overlap with each other

(compared with front-view representation). It also keeps the

metric space, and thus the network can exploit priors about

the physical dimensions of objects.

Here we elaborate the projection and discretization pro-

cess of our BEV representation. We first define the 3D

physical dimension L × W × H of the scene that we are

interested to detect objects. The 3D points within this 3D

rectangular space are then discretized with a resolution of

dL × dW × dH per cell. The value for each cell is encoded

as occupancy (i.e., 1 if there exist points within this cell,

and 0 otherwise). After discretization, we get a 3D occu-

pancy tensor of shape L
dL

× W
dW

× H
dH

. We also encode the

reflectance (real value normalized to be within [0, 1]) of the

LIDAR point in a similar way. The only difference is that

for reflectance we set dH = H . Our final representation

is a combination of the 3D occupancy tensor and the 2D

reflectance image, whose shape is L
dL

× W
dW

× ( H
dH

+ 1).

3.2. Network Architecture

PIXOR uses a fully-convolutional neural network de-

signed for dense oriented 3D object detection. We do

not adopt the commonly used proposal generation branch

[11, 28, 4, 3]. Instead, the network outputs pixel-wise pre-

dictions at a single stage, with each prediction corresponds

to a 3D object estimate. As a result the recall rate of PIXOR

is 100% by definition. Thanks to the fully-convolutional

architecture, such dense predictions can be computed very
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efficiently. In terms of the encoding of the 3D object in

the network prediction, we use the direct encoding without

resorting to pre-defined object anchors [11, 28, 4], which

works pretty well in practice. All these designs make

PIXOR extremely simple and generalize well thanks to zero

hyper-parameter in network architecture. To be specific,

there is no need to design object anchors, nor to tune the

number of proposals passed from the first stage to the sec-

ond stage along with the corresponding Non-Maximum-

Suppression threshold.

We show the architecture of PIXOR in Figure 2. The

whole architecture can be divided into two sub-networks:

a backbone network and a header network. The backbone

network is used to extract general representation of the in-

put in the form of convolutional feature maps. It has high

representation capacity to learn robust feature representa-

tion. The header network is used to make task-specific pre-

dictions, and in our case it has a single-branch structure

with multi-task outputs: a score map representing the ob-

ject class probability, and the geometry maps encoding the

size and shape of the oriented 3D objects.

3.2.1 Backbone Network

Convolutional Neural Networks are typically composed of

convolutional layers and pooling layers. Convolutional lay-

ers are used to extract an over-complete representation of

the input feature, while pooling layers are used to down-

sample the feature map size to save computation and help

create more robust representation. The backbone networks

in many image based object detectors usually have a down-

sampling factor of 16 [28, 11, 4], and is typically designed

to have fewer layers in high-resolution and more layers in

low-resolution. It works well for images as objects are typi-

cally large in pixel size. However, this will cause a problem

in our case as objects can be very small. A typical vehicle

has size of 18× 40 pixels when using a discretization reso-

lution of 0.1m. After 16× down-sampling, it covers around

3 pixels only.

One direct solution is to use fewer pooling layers. How-

ever, this will decrease the size of the receptive field of each

pixel in the final feature map, which limits the representa-

tion capacity. Another solution is to use dilated convolu-

tions. However, this would lead to checkerboard artifacts

[25] in high-level feature maps. Our solution is simple, we

use 16× downsampling factor, but make two modifications.

First, we add more layers with small channel number in

lower levels to extract more fine-detail information. Sec-

ond, we adopt a top-down branch similar to FPN [21] that

combines high-resolution feature maps with low-resolution

ones so as to up-sample the final feature representation.

We show the backbone network architecture in Figure 2.

To be specific, we have in total five blocks of layers in the

backbone network. The first block consists of two convo-

θ

dx

dy

vehicle

heading

Figure 3. The geometry output parameterization for one

positive sample (the red pixel). The learning target is

{cos(θ), sin(θ), log(dx), log(dy), log(w), log(l)}, which is nor-

malized before-hand over the training set to have zero mean and

unit variance.

lutional layers with channel number 32 and stride 1. The

second to fifth blocks are composed of residual layers [15]

(with number of layers equals to 3, 6, 6, 4 respectively).

The first convolution of each residual block has a stride of 2
in order to down-sample the feature map. In total we have a

down-sampling factor of 16. To up-sample the feature map,

we add a top-down path that up-samples the feature map

by 2 each time. This is then combined with the bottom-up

feature maps at the corresponding resolution via pixel-wise

summation. Two up-sampling layers are used, which leads

to a final feature map with 4× down-sampling factor with

respect to the input.

3.2.2 Header Network

The header network is a multi-task network that handles

both object recognition and localization. It is designed to

be small and efficient. The classification branch outputs 1-

channel feature map followed with sigmoid activation func-

tion. The regression branch outputs 6-channel feature maps

without non-linearity. There exists a trade-off in how many

layers to share weights among the two branches. On the one

hand, we’d like the weights to be utilized more efficiently.

On the other hand, since they are different sub-tasks, we

want them to be more separate and more specialized. We

make an investigative experiment of this trade-off in next

chapter, and find that sharing weights of the two tasks leads

to slightly better performance.

We parameterize each object as an oriented bounding

box b as {θ, xc, yc, w, l}, with each element corresponds

to the heading angle (within range [−π, π]), the object’s

center position, and the object’s size. Compared with

cuboid based 3D object detection, we omit position and size

along the Z axis because in applications like autonomous

driving the objects of interest are constrained to the same

ground plane and therefore we only care about how to

localize it on that plane (this setting is also known as

3D localization in some literatures [3]). Given such pa-

rameterization, the representation of the regression branch

is {cos(θ), sin(θ), dx, dy, w, l} for each pixel at position

(px, py) (shown as the red point in Figure 3). Note that
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Method Time
AP0.7, val (%) APKITTI , val (%) APKITTI , test (%)

0-30 30-50 50-70 0-70 Easy Moderate Hard Easy Moderate Hard

VeloFCN [20] 1000 ms - - - - - - - 0.15 0.33 0.47

3D FCN [19] >5000 ms - - - - - - - 69.94 62.54 55.94

MV3D [3] 240 ms 80.53 53.68 1.36 66.32 86.18 77.32 76.33 85.82 77.00 68.94

MV3D+im [3] 360 ms 76.16 58.41 4.87 65.31 86.55 78.10 76.67 86.02 76.90 68.49

PIXOR 93 ms 87.68 60.05 21.62 75.74 86.79 80.75 76.60 81.70 77.05 72.95

Table 1. Evaluation of 3D object detectors that use LIDAR as input on KITTI bird’s eye view benchmark. MV3D+im uses image as

additional input. We use AP0.7 (AUC of PR Curve with 0.7 IoU thresholds on all cars) and APKITTI (official KITTI metric that computes

the AUC with 11 sampling points only, evaluated on three sub-sets) as evaluation metrics on val [3] and test set. We also show fine-grained

evaluation with regard to different ranges (distance in meters to the ego-car), which makes more sense in 3D detection.

the heading angle is factored into two correlated values

to enforce the angle range constraint. We decode the θ

as atan2(sin(θ), cos(θ)) during inference. (dx, dy) cor-

responds to the position offset from the the pixel position

to the object center. (w, l) corresponds to the object size.

It is worth notice that the values for the object position and

size are in real-world metric space. The learning target is

{cos(θ), sin(θ), log(dx), log(dy), log(w), log(l)}, which is

normalized before-hand over the training set to have zero

mean and unit variance. In next chapter we further find out

that decoding the oriented box at training time and comput-

ing regression loss directly on the coordinates of four box

corners can bring additional performance gain.

3.3. Learning and Inference

We adopt the commonly used multi-task loss [11] to train

the full network. Specifically, we use cross-entropy loss

on the classification output p and a smooth ℓ1 loss on the

regression output q. We sum the classification loss over all

locations on the output map, while the regression loss is

computed over positive locations only.

Ltotal = cross entropy(p, ycls) + smoothL1
(q − yreg) (1)

cross entropy(p, y) =

{

−log(p) if y = 1

−log(1− p) otherwise,
(2)

smoothL1
(x) =

{

0.5x2 if |x| < 1

|x| − 0.5 otherwise,
(3)

Note that we have severe class imbalance since a large

proportion of the scene belongs to background. To stabilize

the training process, we adopt the focal loss with the same

hyper-parameter as [22] to re-weight all the samples. In

the next chapter, we also propose a biased sampling strat-

egy for positive samples that leads to better convergence.

During inference, we feed the computed BEV representa-

tion from LIDAR point cloud to the network and get one

channel of confidence score and six channels of geome-

try information. We then decode the geometry information

into oriented bounding boxes only on positions whose con-

fidence scores are above certain threshold. Non-Maximum-

Suppression is used to get the final detections, where the

overlap is computed as the Intersection-Over-Union of two

oriented boxes.

4. Experiments

We conduct three types of experiments here. First, we

compare PIXOR with other state-of-the-art 3D object de-

tectors on the public KITTI bird’s eye view object detection

benchmark [10]. We show that PIXOR achieves best perfor-

mance both in accuracy and speed compared with all previ-

ously published methods. Second, we conduct an ablation

study of PIXOR in three aspects: optimization, network ar-

chitecture, and speed. Third, we verify the generalization

ability of PIXOR by applying it to a new large-scale vehicle

detection dataset for autonomous driving.

4.1. BEV Object Detection on KITTI

4.1.1 Implementation Details

We set the region of interest for the point cloud to [0, 70]×
[−40, 40] meters and do bird’s eye view projection with a

discretization resolution of 0.1 meter. We set the height

range to [−2.5, 1] meters in LIDAR coordinates and divide

all points into 35 slices with bin size of 0.1 meter. One re-

flectance channel is also computed. As a result, our input

representation has the dimension of 800 × 700 × 36. We

use data augmentation of rotation between [−5, 5] degrees

along the Z axis and random flip along X axis during train-

ing. Unlike other detectors [3] that initialize the network

weights from a pre-trained model, we train our network

from scratch without resorting to any pre-trained model.

4.1.2 Evaluation Metric

We use Average Precision (AP) computed at 0.7
Intersection-Over-Union (IoU) as our evaluation metric in

all experiments unless mentioned otherwise. We compute

the AP as Area Under Precision-Recall Curve (AUC) [8].

We evaluate on ‘Car‘ category and ignore ‘Van’, ‘Truck’,

‘Tram’ and ‘DontCare’ categories in KITTI during evalu-

ation, meaning that we don’t count True Positive (TP) or
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Figure 4. Evaluation of PIXOR and MV3D [3] on KITTI val set. For each approach, we plot 5 Precision-Recall curves corresponding

to 5 different IoU thresholds between 0.5 and 0.9, and report the averaged AP (%). We compare in three different ranges.

False Negative (FN) on them. Note that the metric we use

is different from what KITTI reports in the following two

aspects: (1) KITTI computes AP by sampling at 11 linearly

sampled recall rates (from 0% to 100%), which is a rough

approximation to real AUC. (2) KITTI divides labels into

three subsets with image-based definition (e.g, object height

in pixels, visibility in image), and reports AP on each sub-

set, which doesn’t suit pure LIDAR based object detection.

In contrast, we evaluate on all labels within the region of in-

terest, and do fine-grained evaluation with respect to ranges

(object distance to the ego-car).

4.1.3 Evaluation Result

We compare with 3D object detectors that use LIDAR

on KITTI benchmark: VeloFCN [20], 3D FCN [19] and

MV3D [3]. We show the evaluation results in Table 1. From

the table we see that PIXOR largely outperforms other ap-

proaches in AP at 0.7 IoU within 70 meters range, leading

the second best by over 9%. We also show evaluation results

with respect to ranges, and show that PIXOR outperforms

more in the long range. On KITTI’s test set, PIXOR out-

performs MV3D in moderate and hard settings. Note that

PIXOR has a lower AP in easy setting on the test set, which

is caused by the instability of the 11-point AP metric.

Since MV3D is the best approach among all state-of-the-

art methods, we’d like to make a more detailed compari-

son using the AUC based AP metric. We show fine-grained

Precision-Recall (PR) curves of both PIXOR and MV3D in

Figure 4. From the figure, we get the following observa-

tions: (1) PIXOR outperforms MV3D in all IoU thresholds,

especially at very high IoU like 0.8 and 0.9, showing that

even without using proposal, PIXOR can still get super-

accurate object localization, compared with the two-stage

proposal based detector MV3D. (2) PIXOR has similar pre-

cision with MV3D at low recall rates. However, when it

comes to higher recall rates, PIXOR shows huge advan-

tage. At the same precision rate of the end point of MV3D’s

Classification Regression AP0.7 AP avg

cross-entropy smooth L1 73.46% 55.25%

focal smooth L1 74.93% 55.89%

focal decoding 71.05% 53.05%

focal smooth L1 + decode (f.t.) 77.16% 58.31%

Table 2. Ablation study of different loss functions. smooth L1 +

decode (f.t.) means that the network is trained with smooth L1

loss first, and then fine-tuned by replacing the smooth L1 loss with

decoding loss.

Training Samples Data Aug. AP0.7 AP avg

all pixels none 71.10% 53.99%

ignore boundary pixels none 74.54% 55.79%

ignore boundary pixels rotate + flip 74.93% 55.89%

Table 3. Ablation study of different data sampling strategies.

curve, PIXOR generally has over 5% higher recall rate in

all ranges. This shows that dense detector like PIXOR does

have an advantage of higher recall rate, compared with two-

stage detectors. (3) In the more difficult long range part,

PIXOR still shows superiority over MV3D, which justifies

our input representation design that reserves the 3D infor-

mation well and our network architecture design that cap-

tures both fine details and regional context.

4.2. Ablation Study

We show an extensive ablation study of the proposed de-

tector in terms of optimization, network architecture, speed

and failure mode.

4.2.1 Experimental Setting

Since we also compare with other state-of-the-art methods

on the val set, it would be inappropriate to do the ablation

study on the same set. Therefore we resort to KITTI Raw

dataset [9] and randomly pick 3000 frames that are not over-

lapped with both train and val sets in KITTI object detec-

tion dataset, which we call val-dev set. We report ablation

study results on this set. We use AP at 0.7 IoU as well as
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Backbone Network AP avg

pvanet 51.28%

resnet-50 53.03%

vgg16-half 54.46%

resnet-lidar 55.07%

Table 4. Ablation study of different backbone networks.

3×3, 96
3×3, 96

3×3, 96
3×3, 96

3×3, 1 3×3, 6

Header net with

fully-shared weights

3×3, 96
3×3, 96

3×3, 64
3×3, 64

3×3, 1 3×3, 6

Header net with

partially-shared weights

3×3, 64
3×3, 64

3×3, 64
3×3, 64

3×3, 1 3×3, 6

Header net with

non-sharing weights

3×3, 64
3×3, 64

3×3, 64
3×3, 64

3×3, 64
3×3, 64

Figure 5. Three versions of header network architectures.

AP averaged from 0.5 to 0.95 IoUs (with a stride of 0.05)

as the evaluation metrics.

4.2.2 Optimization

We investigate into four topics here: the classification loss,

the regression loss, the sampling strategy, and data augmen-

tation.

Classification loss RetinaNet [22] proposes the focal loss

to re-weight samples for dense detector training. For sim-

plicity, we use their hyper-parameter setting. We show re-

sults in Table 2, and find that focal loss improves the AP 0.7

by more than 1%.

Regression loss For the box regression part, our default

choice is a smooth L1 loss [11] on every dimension of

the regression targets. We also propose the decoding loss,

where the output targets are first decoded into oriented

boxes and then smooth L1 loss is computed on the (x, y) co-

ordinates of four box corners directly with regard to ground-

truth. Since the decoding the oriented box from regression

targets is just a combination of some normal mathematic

operations, this decoding process is differentiable and gra-

dients can be back-propagated through this decoding pro-

cess. We believe that this decoding loss is more end-to-end

and implicitly balances different dimensions of the regres-

sion targets. In the results shown in Table 2, we show that

directly training with the decoding loss doesn’t work very

well. However, training with conventional loss first and then

fine-tune with the proposed decoding loss helps improve the

performance a lot.

Data sampling and augmentation When training dense

detectors, one issue is how to define positive and negative

samples. In proposal based approaches, this is defined by

the IoU between proposal and ground-truth. Since PIXOR

is a proposal-free method, we go for a more straight-

forward sampling strategy: all pixels inside the ground-

Header Network AP0.7 AP avg

non-sharing 74.93% 55.89%

partially-shared 74.66% 55.75%

fully-shared 75.13% 56.04%

Table 5. Ablation study of different header network architectures.

digitization network NMS total

time (ms) 17 66 10 93

Table 6. The detailed timing analysis of PIXOR.

truth are positive samples while outside pixels are negative

samples. This simple definition already gives decent perfor-

mance. However, one issue with this definition is that the

variance of regression targets could be large for pixels near

the object boundary. Therefore we propose to sub-sample

the pixels, i.e, to ignore pixels near object boundary during

training. Specifically, we zoom the ground-truth object box

twice with 0.3 and 1.2 zooming factors respectively, and ig-

nore all pixels that lie between these two zoomed boxes.

From the results shown in Table 3, we find that this sub-

sampling strategy is beneficial to stabilize training. We also

find that our data augmentation for KITTI helps a bit since

PIXOR is trained from scratch instead of from a pre-trained

model.

4.2.3 Network Architecture

Backbone network We first compare different backbone

networks: vgg16 with half channel number [31], pvanet

[16], resnet-50 [14], and resnet-lidar as presented in Figure

2. All of these backbone networks run below 100 millisec-

onds. All backbone networks except for vgg16-half uses

residual unit as building blocks. We find that vgg16-half

converges faster in train set and gets lower training loss than

all other residual variants, but the performance drops quite

a lot when evaluated on val set. This doesn’t happen to the

other three residual-based networks. We conjecture that this

is because vgg16-half is more prone to overfit without im-

plicit regularization imposed by residual connections.

Header network We also compare different structures

for the header network. We investigate into how much

we should share the parameters for the multi-task outputs.

Three versions of header network are proposed with differ-

ent extent of weight sharing in Figure 5 and compared in

Table 5. All these three versions have very close number of

parameters. We find that fully-shared structure works best

as it utilizes the parameters most efficiently.

4.2.4 Speed

We show detailed timing analysis of PIXOR in Table 6 for

one single frame. The computation of input representation

and final NMS are both processed on CPU in Python. The

network time is measured on a NVIDIA Titan Xp GPU and

averaged over 100 non-sequential frames in KITTI.
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Figure 6. Example detection results of PIXOR on KITTI Object val set. The detection is in red color, while the ground-truth is in blue

color. Gray area is out of the scope of camera view and therefore has no labels.

4.2.5 Failure Mode

We show some detection results of PIXOR in Figure 6, and

discover some failure modes. In general PIXOR will fail

when there’s no observed LIDAR points. In longer range

we have very few evidence of the object, and therefore ob-

ject localization becomes inaccurate, leading to false posi-

tives at higher IoU thresholds.

4.3. BEV Object Detection on Largescale Dataset

4.3.1 ATG4D Dataset

We also collect a large-scale 3D vehicle detection dataset

called ATG4D which has different sensor configuration

from KITTI and is collected in North-American cities.

There are in total 6500 sequences collected, with are di-

vided into 5000/500/1000 as train/val/test splits. The train-

ing sequences are sampled at 10 Hz into frames, while val-

idation and testing sequences are sampled at 0.5Hz. As a

result, there are over 1.2 million frames in training set, 5969

and 11969 frames in the val and test sets. All vehicles are

annotated with bird’s eye view bounding boxes labels.

4.3.2 Evaluation Result

We apply PIXOR to ATG4D with the “vgg-half” backbone

network because ATG4D has much more training data than

KITTI and therefore preventing over-fitting is not our main

concern. We train and test the detector at ranges up to 100

Method AP 0.7

Baseline [27] 69.4%

PIXOR 73.3%

Table 7. Evaluation of PIXOR on ATG4D.

meters, and increase the input discretization resolution to

0.2 meter. As a result, the detector still runs at > 10 Hz. In

comparison, we build a YOLO-like [27] baseline detector

with a customized backbone network on ATG4D, and add

object anchors and multi-scale feature fusion to further im-

prove the performance. The evaluation results are listed in

Table 7, where we show that PIXOR outperforms the base-

line by 3.9% in AP 0.7, proving that PIXOR is simple and

easy to generalize, with no hyper-parameter to tune.

5. Conclusion

In this paper we propose a real-time 3D object detec-

tor called PIXOR that operates on LIDAR point clouds.

PIXOR is a single-stage, proposal-free, dense object de-

tector that achieve extreme simplicity in the context of 3D

object localization for autonomous driving. PIXOR takes

bird’s eye view representation as input for efficiency in

computation. A novel decoding loss is proposed that suits

the 3D object localization task better. We evaluate PIXOR

on the challenging KITTI benchmark as well as a large-

scale vehicle detection dataset ATG4D, and show that it

outperforms the other methods by a large margin in terms

of Average Precision (AP), while still runs at 10 FPS.
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