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Abstract

In this paper, we propose a neural motion planner for
learning to drive autonomously in complex urban scenar-
ios that include traffic-light handling, yielding, and interac-
tions with multiple road-users. Towards this goal, we design
a holistic model that takes as input raw LIDAR data and a
HD map and produces interpretable intermediate represen-
tations in the form of 3D detections and their future trajec-
tories, as well as a cost volume defining the goodness of
each position that the self-driving car can take within the
planning horizon. We then sample a set of diverse physi-
cally possible trajectories and choose the one with the min-
imum learned cost. Importantly, our cost volume is able to
naturally capture multi-modality. We demonstrate the ef-
fectiveness of our approach in real-world driving data cap-
tured in several cities in North America. Our experiments
show that the learned cost volume can generate safer plan-
ning than all the baselines.

1. Introduction

Self-driving vehicles (SDVs) are going to revolutionize
the way we live. Building reliable SDVs at scale is, how-
ever, not a solved problem. As is the case in many appli-
cation domains, the field of autonomous driving has been
transformed in the past few years by the success of deep
learning. Existing approaches that leverage this technology
can be characterized into two main frameworks: end-to-end
driving and traditional engineering stacks.

End-to-end driving approaches [3, 24] take the output of
the sensors (e.g., LiDAR, images) and use it as input to a
neural net that outputs control signals, e.g., steering com-
mand and acceleration. The main benefit of this framework
is its simplicity as only a few lines of code can build a model
and labeled training data can be easily obtained automati-
cally by recording human driving under a SDV platform. In
practice, this approach suffers from the compounding error

∗denotes equal contribution.

due to the nature of self-driving control being a sequential
decision problem, and requires massive amounts of data to
generalize. Furthermore, interpretability is difficult to ob-
tain for analyzing the mistakes of the network. It is also
hard to incorporate sophisticated prior knowledge about the
scene, e.g. that vehicles should not collide.

In contrast, most self-driving car companies, utilize a
traditional engineering stack, where the problem is divided
into subtasks: perception, prediction, motion planning and
control. Perception is in charge of estimating all actors’ po-
sitions and motions, given the current and past evidences.
This involves solving tasks such as 3D object detection and
tracking. Prediction1, on the other hand, tackles the prob-
lem of estimating the future positions of all actors as well
as their intentions (e.g., changing lanes, parking). Finally,
motion planning takes the output from previous stacks and
generates a safe trajectory for the SDV to execute via a con-
trol system. This framework has interpretable intermediate
representations by construction, and prior knowledge can be
easily exploited, for example in the form of high definition
maps (HD maps).

However, solving each of these sub-tasks is not only
hard, but also may lead to a sub-optimal overall system
performance. Most self-driving companies have large en-
gineering teams working on each sub-problem in isolation,
and they train each sub-system with a task specific objec-
tive. As a consequence, an advance in one sub-system does
not easily translate to an overall system performance im-
provement. For instance, 3D detection tries to maximize
AP, where each actor has the same weight. However, in
a driving scenario, high-precision detections of near-range
actors who may influence the SDV motion, e.g. through in-
teractions (cutting in, sudden stopping), is more critical. In
addition, uncertainty estimations are difficult to propagate
and computation is not shared among different sub-systems.
This leads to longer reaction times of the SDV and make the
overall system less reliable.

In this paper we bridge the gap between these two frame-
works. Towards this goal, we propose the first end-to-

1We’ll use prediction and motion forecasting interchangeably.
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Figure 1. Our end-to-end interpretable neural motion planner. Backbone network takes LiDAR data and maps as inputs, and outputs
bounding boxes of other actors for future timesteps (perception), as well as a cost volume for planning with T filters. Next, for each
trajectory proposal from the sampler, its cost is indexed from different filters of the cost volume and summed together. The trajectory with
the minimal cost will be our final planning.

end learnable and interpretable motion planner. Our model
takes as input LiDAR point clouds and a HD map, and pro-
duces interpretable intermediate representations in the form
of 3D detections and their future trajectories. Our final out-
put representation is a space-time cost volume that repre-
sents the “goodness” of each location that the SDV can take
within a planning horizon. Our planner then samples a set
of diverse and feasible trajectories, and selects the one with
the minimum learned cost for execution. Importantly, the
non-parametric cost volume is able to capture the uncer-
tainty and multi-modality in possible SDV trajectories, e.g
changing lane v.s keeping lane.

We demonstrate the effectiveness of our approach in
real world driving data captured in several cities in North
America. Our experiments show that our model provides
good interpretable representations, and shows better perfor-
mance. Specifically for detection and motion forecasting,
our model outperforms recent neural architectures specif-
ically designed on these tasks. For motion planning, our
model generates safer planning compared to the baselines.

2. Related Work
Imitation Learning: Imitation learning (IL) uses expert

demonstrations to directly learn a policy that maps states to
actions. IL for self-driving vehicles was introduced in the
pioneering work of [24] where a direct mapping from the
sensor data to steering angle and acceleration is learned. [3]
follows the similar philosophy. In contrast, with the help of
a high-end driving simulator [9], Codevilla et al. [8] exploit
conditional models with additional high-level commands

such as continue, turn-left, turn-right. Muller et al. [21]
incorporate road segmentation as intermediate representa-
tions, which are then converted into steering commands. In
practice, IL approaches suffer from the compounding error
due to the nature of self-driving control being a sequential
decision problem. Furthermore, these approaches require
massive amount of data, and generalize poorly, e.g., to situ-
ations drifting out of lane.

RL & IRL: Reinforcement learning (RL) is a natural
fit for sequential decision problems as it considers the in-
teractions between the environment and the agent (a self-
driving car in this case). Following the success of Alpha
GO [29], RL has been applied to self-driving in [15, 23].
On the other hand, the inverse reinforcement learning (IRL)
looks at learning the reward function for a given task.
[31, 35] develop IRL algorithms to learn drivable region
for self-driving cars. [25] further infers possible trajec-
tories with a symmetrical cross-entropy loss. However,
all these approaches have only been tested on simulated
datasets or small real-world datasets, and it is unclear if RL
and IRL can scale to more realistic settings. Furthermore,
these methods do not produce interpretable representations,
which are desirable in safety critical applications.

Optimization Based Planners: Motion planning has
long been treated as an independent task that uses the out-
puts of perception and prediction modules to formulate an
optimization problem, usually by manually engineering a
cost function [4, 10, 20, 36]. The preferred trajectory is then
generated by minimizing this cost function. In practice,
to simplify the optimization problem, many approaches as-
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Figure 2. Trajectory Representation. We first sample a set of pa-
rameters of a Clothoid to determine the shape of a trajectory. We
then sample a velocity profile to determine how fast the SDV go
along this trajectory. Combining these two, we can get a space-
time trajectory.

sume the objective to be quadratic [7], decompose lateral
and longitudinal planning as two tasks [1, 10] or represent
the search space into speed and path [11, 14]. In [1] A* is
used to search the space of possible motion. Similarly, the
Baidu motion planner [10] uses dynamic programming to
find an approximate path and speed profile. In [36], the tra-
jectory planning problem is formulated as continuous op-
timization and used in practice to demonstrate 100km of
autonomous driving. In sampling-based approaches, a set
of trajectories is generated and evaluated against a prede-
fined cost, among which, the one with minimum cost is
chosen [27, 30]. Such approaches are attractive since they
are highly parallelizable [19]. The drawback of all these
hand-engineered approaches is that they are not robust to
real-world driving scenarios, thus requires tremendous en-
gineering efforts to fine-tune it.

Planning under uncertainty: Planning methods for ro-
bust and safe driving in the presence of uncertainty have
also been explored [2, 12, 33]. Uncertainty in the intention
of other actors is the main focus of [2, 33]. In [12], possible
future actions of other vehicles and collision probability are
used to account for the uncertainty in obstacles positions.
Compared to these approaches, our planner naturally han-
dles uncertainty by learning a non-parametric cost function.

Holistic Models: These models provide interpretabil-
ity. Chen et al. [6] propose to learn a mapping from the
sensor data to affordances, such as distance to left bound-
ary/leading vehicle. This is then fed into a controller that
generates steering command and acceleration. Sauer et al.
[26] further propose a variant conditioned on direction com-
mand. On the other hand, Luo et al. [18] propose a joint
model for perception and prediction from raw LiDAR data
and [5] extends it to predict each vehicle’s intention. All
the methods above are trained for tasks that provide inter-
pretable perception/prediction outputs to be used in motion
planning. However, no feed-back is back-propagated from
the motion planning module.

In this work, we take a holistic model approach and take
it one step further by designing a single neural network
that takes raw sensors and dynamic map data as input and
predicts the cost map for planning. Compared with imita-
tion learning approaches [3, 8, 24] that directly regress a
steer angle (from the raw data), our approach provides in-
terpretability and handles multimodality naturally. When
compared with traditional planners which use manually de-
signed cost functions built on top of perception and predic-
tion systems, our model has the advantage of being jointly
trained and thus learns representations that are optimal for
the end-task. Furthermore, our model can handle uncer-
tainty naturally (as this is represented in the cost) and does
not require costly parameter tuning.

3. Deep Structured Interpretable Planner
We propose an end-to-end learnable motion planner that

generates accurate space-time trajectories over a planning
horizon of a few seconds. Importantly, our model takes as
input LiDAR point clouds and a high definition map and
produces interpretable intermediate representations in the
form of 3D detections and their future motion forecasted
over the planning horizon. Our final output representation
is a space-time cost volume that represents the “goodness”
of each possible location that the SDV can take within the
planning horizon. Our planner then scores a series of trajec-
tory proposals using the learned cost volume and chooses
the one with the minimum cost.

We train our model end-to-end with a multi-task objec-
tive. Our planning loss encourages the minimum cost plan
to be similar to the trajectory performed by human demon-
strators. Note that this loss is sparse as a ground-truth tra-
jectory only occupies small portion of the space. As a con-
sequence, learning with this loss alone is slow and difficult.
To mitigate this problem, we introduce an another percep-
tion loss that encourages the intermediate representations
to produce accurate 3D detections and motion forecasting.
This ensures the interpretability of the intermediate repre-
sentations and enables much faster learning.

3.1. Deep Structured Planning

More formally, let s = {s0, s1, · · · , sT−1} be a trajec-
tory spanning over T timesteps into the future, with st the
location in bird’s eye view (BEV) at the timestep t. We
formulate the planning problem as a deep structured mini-
mization problem as follows

s∗ = argmin
s

∑
t

ct(st) (1)

where ct is our learned cost volume indexed at the timestep
t, which is a 2D tensor with the same size as our region of
interest. This minimization is approximated by sampling



a set of physically valid trajectories s, and picking the one
with minimum cost. Our model employs a convolutional
network backbone to compute this cost volume. It first ex-
tracts features from both LiDAR and maps, and then feeds
this feature map into two branches of convolution layers that
output 3D detection and motion forecasting as well as the
planning cost volume respectively. In this section we de-
scribe our input representation and network in details.

Input representation: Our approach takes raw point
clouds as inputs, captured by a LiDAR mounted on top of
the SDV. We employ T ′ = 10 consecutive sweeps as ob-
servations, in order to infer the motion of all actors. For
those sweeps, we correct for ego-motion and bring the point
clouds from the past 10 frames to the same coordinate sys-
tem centered at SDV’s current location. To make the in-
put data amenable to standard convolutions, we follow [5]
and rasterize the space into a 3D occupancy grid, where
each voxel has a binary value indicating whether it con-
tains a LiDAR point. This results in a 3D tensor of size
HxWx(ZT ′), whereZ,H,W represents the height and x-y
spatial dimensions respectively. Note that we have concate-
nated timesteps along the Z dimension, thus avoiding 3D
convolutions which are memory and computation intensive.

Access to a map is also a key for accurate motion plan-
ning, as we need to drive according to traffic rules (e.g., stop
at a red light, follow the lane, change lanes only when al-
lowed). Towards this goal, we exploit HD maps that contain
information about the semantics of the scene such as the
location of lanes, their boundary type (e.g., solid, dashed)
and the location of stop signs. Similar to [5], we rasterize
the map to form an M channels tensor, where each channel
represents a different map element, including road, inter-
sections, lanes, lane boundaries, traffic lights, etc. Our final
input tensor is thus of size HxWx(ZT ′ +M).

Backbone: Our backbone is adapted from the detection
network of [32] and consists of five blocks. Each block has
{2, 2, 3, 6, 5} Conv2D layers with filter number {32, 64,
128. 256, 256}, filter size 3x3 and stride 1. There are Max-
Pool layers after each of the first 3 blocks. A multi-scale
feature map is generated after the first 4 blocks as follows.
We resize the feature maps from each of the first 4 blocks to
1/4 of the input size and concatenate them together similar
to [34], in order to increase the effective receptive field [17].
These multi-scale features are then fed into the 5-th block.
The whole backbone has a downsampling rate of 4.

Perception Header: The perception header has two com-
ponents formed of convolution layers, one for classification
and one for regression. To reduce the variance of regression
targets, we follow SSD [16] and employ multiple prede-
fined anchor boxes aki,j at each feature map location, where
subscript i, j denotes the location on the feature map and k
indexes over the anchors. In total, there are 12 anchors at

each location, with different sizes, aspect ratios and orienta-
tions. The classification branch outputs a score pki,j for each
anchor indicating the probability of a vehicle at each an-
chor’s location. The regression branch also outputs regres-
sion targets for each anchor aki,j at different time-steps. This
includes localization offset ltx, l

t
y , size stw, s

t
h and heading

angle atsin, a
t
cos. The superscript t stands for time frame,

ranging from 0 (present) to T − 1 into the future. Regres-
sion is performed at every timesteps, thus producing motion
forecasting for each vehicle.

Cost Volume Head: The cost volume head consists of
several convolution and deconvolution layers. To produce a
cost volume c at the same resolution as our bird-eye-view
(BEV) input, we apply two deconvolution layers on the
backbone’s output with filter number {128, 64}, filter size
3x3 and stride 2. Each deconvolution layer is also followed
by a convolution layer with filter number {128, 64}, filter
size 3x3 and stride 1. We then apply a final convolution
layer with filter number T , which is our planning horizon.
Each filter generates a cost volume ct for a future timestep
t. This allows us to evaluate the cost of any trajectory s
by simply indexing in the cost volume c. In our experi-
ments, we also clip the cost volume value between -1000
to +1000 after the network. Applying such bounds prevents
the cost value shifting arbitrarily, and makes tuning hyper-
parameters easier. We next describe our output trajectory
parameterization.

3.2. Efficient Inference

Given the input LiDAR sweeps and the HD map, we can
compute the corresponding cost volume c by feedforward
convolutional operations as describe above. The final tra-
jectory can then be computed by minimizing Eq. (1). Note,
however, that this optimization is NP hard2. We thus rely on
sampling to obtain a low cost trajectory. Towards this goal,
we sample a wide variety of trajectories that can be exe-
cuted by the SDV and produce as final output the one with
minimal cost according to our learned cost volume. In this
section we describe how we efficiently sample physically
possible trajectories during inference. Since the cost of a
trajectory is computed by indexing from the cost volume,
our planner is fast enough for real-time inference.

Output Parameterization: A trajectory can be defined
by the combination of the spatial path (a curve in the 2D
plane) and the velocity profile (how fast we go along this
path). Sampling a trajectory as a set of points in (x, y) ∈ <2

space is not a good idea, as a vehicle cannot execute all pos-
sible set of points in the cartesian space. This is due for
example to the physical limits in speed, acceleration and

2We expect the output trajectory of our planner is physically feasible.
This introduces constraints on the solution set. Under these physical con-
straints, the optimization is NP hard.



turning angle. To consider these real-world constraints, we
impose that the vehicle should follow a dynamical model.
In this paper, we employ the bicycle model [22], which is
widely used for planning in self-driving cars. This model
implies that the curvature κ of the vehicle’s path is approx-
imately proportional to the steering angle φ (angle between
the front wheel and the vehicle): κ = 2tan(φ)/L ≈ 2φ/L,
where L is the distance between the front and rear axles of
the SDV. This is a good approximation as φ is usually small.

We then utilize a Clothoid curve, also known as Euler
spiral or Cornu spiral, to represent the 2D path of the SDV
[28]. We refer the reader to Fig. 2 for an illustration. The
curvature κ of a point on this curve is proportional to its
distance ξ alone the curve from the reference point, i.e.,
κ(ξ) = πξ. Considering the bicycle model, this linear cur-
vature characteristic corresponds to steering the front wheel
angle with constant angular velocity. The canonical form of
a Clothoid can be defined as

s(ξ) = s0 + a

[
C

(
ξ

a

)
T0 + S

(
ξ

a

)
N0

]
(2)

S(ξ) =

∫ ξ

0

sin

(
πu2

2

)
du (3)

C(ξ) =

∫ ξ

0

cos

(
πu2

2

)
du (4)

Here, s(ξ) defines a Clothoid curve on a 2D plane, indexed
by the distance ξ to reference point s0, a is a scaling factor,
T0 and N0 are the tangent and normal vector of this curve
at point s0. S(ξ) and C(ξ) are called the Fresnel integral,
and can be efficiently computed. In order to fully define a
trajectory, we also need a longitudinal velocity ξ̇ (velocity
profile) that specifies the SDV motion along the path s(ξ):
ξ̇(t) = ξ̈t + ξ̇0, where ξ̇0 is the initial velocity of the SDV
and ξ̈ is a constant forward acceleration. Combining this
and (2), we can obtain the trajectory points s in Eq. (1).

Sampling: Since we utilize Clothoid curves, sampling a
path corresponds to sampling the scaling factor a in Eq. (2).
Considering the city driving speed limit of 15m/s, we sam-
ple a uniformly from the range of 6 to 80m. Once a is sam-
pled, the shape of the curve is fixed.3 We then use the ini-
tial SDV’s steering angle (curvature) to find the correspond-
ing position on the curve. Note that Clothoid curves can-
not handle circle and straight line trajectories well, thus we
sample them separately. The probability of using straight-
line, circle and Clothoid curves are 0.5, 0.25, 0.25 respec-
tively. Also, we only use a single Clothoid segment to
specify the path of SDV which we think is enough for

3We also sample a binary random variable indicating it’s a canonical
Clothoid or a vertically flipped mirror. They correspond with turning left
or right respectively.

the short planning horizon. In addition, we sample con-
stant accelerations ξ̈ ranging from−5m/s2 to 5m/s2 which
specifies the SDV’s velocity profile. Combining sampled
curves and velocity profiles, we can project the trajecto-
ries to discrete timesteps and obtain the corresponding way-
points (See Fig 2) for which to evaluate the learned cost.

3.3. End-to-End Learning

Our ultimate goal is to plan a safe trajectory while fol-
lowing the rules of traffic. We want the model to understand
where obstacles are and where they will be in the future in
order to avoid collisions. Therefore, we use a multi-task
training with supervision from detection, motion forecast-
ing as well as human driven trajectories for the ego-car.
Note that we do not have supervision for cost volume. We
thus adopt max-margin loss to push the network to learn to
discriminate between good and bad trajectories. The overall
loss function is then:

L = Lperception + βLplanning. (5)

This multi-task loss not only directs the network to extract
useful features, but also make the network output inter-
pretable results. This is crucial for self-driving as it helps
understand failure cases and improves the system. In the
following, we describe each loss in more details.

Perception Loss: Our perception loss includes classifica-
tion loss, for distinguishing a vehicle from the background,
and regression loss, for generating precise object bounding
boxes. For each predefined anchor box, the network out-
puts a classification score as well as several regression tar-
gets. This classification score pki,j indicates the probability
of existence of a vehicle at this anchor. We employ a cross-
entropy loss for the classification defined as

Lcla =
∑
i,j,k

(
qki,j log p

k
i,j + (1− qki,j) log(1− pki,j)

)
, (6)

where qki,j is the class label for this anchor (i.e., qki,j = 1
for vehicle and 0 for background). The regression outputs
include information of position, shape and heading angle at
each time frame t, namely

lx =
xa − xl

wl
ly =

ya − yl

hl
,

sw = log
wa

wl
sh = log

ha

hl
,

asin = sin(θa − θl) acos = cos(θa − θl),
where superscript a means anchor and l means label. We
use a weighted smooth L1 loss over all these outputs. The
overall perception loss is

Lperception =
∑(

Lcla + α

T∑
t=0

Ltreg

)
. (7)



Method L2 (m) Collision Rate (%) Lane Violation (%)
1.0s 2.0s 3.0s 0.5s 1.0s 1.5s 2.0s 2.5s 3.0s 1.0s 2.0s 3.0s

Ego-motin 0.281 0.900 2.025 0.00 0.01 0.20 0.54 1.04 1.81 0.51 2.72 6.73
IL 0.231 0.839 1.923 0.00 0.01 0.19 0.55 1.04 1.72 0.44 2.63 5.38

Acc 0.403 1.335 2.797 0.05 0.12 0.27 0.53 1.18 2.39 0.24 0.46 0.64
Manual Cost 0.402 1.432 2.990 0.00 0.02 0.09 0.22 0.79 2.21 0.39 2.73 5.02

Ours(3s) 0.314 1.087 2.353 0.00 0.01 0.04 0.09 0.33 0.78 0.35 0.77 2.99
Table 1. Planning Metrics

Note that the regression loss is summed over all vehicle cor-
related anchors, from the current time frame to our predic-
tion horizon T . Thus it teaches the model to predict the
position of vehicles at every time frame.

To find the training label for each anchor, we associate
it to its neighboring ground-truth bounding box, similar
to [16, 18]. In particular, for each anchor, we find all
the ground-truth boxes with intersection over union (IoU)
higher than 0.4. We associate the highest one among them
to this anchor, and compute the class label and regression
targets accordingly. We also associate any non-assigned
ground-truth boxes with their nearest neighbor. The remain-
ing anchors are treated as background, and are not consid-
ered in the regression loss. Note that one ground-truth box
may associate to multiple anchors, but one anchor can at
most be associated with one ground-truth box. During train-
ing, we also apply hard negative mining to overcome imbal-
ance between positive and negative samples.

Planning Loss: Learning a reasonable cost volume is
challenging as we do not have ground-truth. To overcome
this difficulty, we minimize the max-margin loss where we
use the ground-truth trajectory as a positive example, and
randomly sampled trajectories as negative examples. The
intuition behind is to encourage the ground-truth trajectory
to have the minimal cost, and others to have higher costs.
More specifically, assume we have a ground-truth trajec-
tory {(xt, yt)} for the next T time steps, where (xt, yt) is
the position of our vehicle at the t time step. Define the cost
volume value at this point (xt, yt) as ĉt. Then, we sample
N negative trajectories, the ith among which is {(xti, yti)}
and the cost volume value at these points are cti. The sam-
pling procedure for negative trajectories is similar as we de-
scribed in Section. 3.2, except there is 0.8 probability that
the negative sample doesn’t obey SDV’s initial states, e.g.
we randomly sample a velocity to replace SDV’s initial ve-
locity. This will provide easier negative examples for the
model to start with. The overall max-margin loss is defined
as

Lplanning =
∑

{(xt,yt)}

(
max

1≤i≤N

(
T∑
t=1

[
ĉt − cti + dti + γti

]
+

))
(8)

The inner-most summation denotes the discrepancy be-
tween the ground-truth trajectory and one negative trajec-

tory sample, which is a sum of per-timestep loss. []+ rep-
resents a ReLU function. This is designed to be inside the
summation rather than outside, as it can prevent the cost
volume at one time-step from dominating the whole loss. dti
is the distance between negative trajectory and ground-truth
trajectory ||(xt, yt)−(xti, yti)||2, which is used to encourage
negative trajectories far from the ground-truth trajectory to
have much higher cost. γti is the traffic rule violation cost,
which is a constant if and only if the negative trajectory t vi-
olates traffic rules at time t, e.g. moving before red-lights,
colliding with other vehicles etc. This is used to determined
how ‘bad’ the negative samples are, as a result, it will penal-
ize those rule violated trajectories more severely and thus
avoid dangerous behaviors. After computing the discrep-
ancy between the ground-truth trajectory and each negative
sample, we only optimize the worst case by the max opera-
tion. This encourages the model to learn a cost volume that
discriminates good trajectories from bad ones.

4. Experiments

In this section, we evaluate our approach on a large scale
real-world driving dataset. The dataset was collected over
multiple cities across North America. It consists of 6,500
scenarios with about 1.4 million frames, the training set
consists of 5,000 scenarios, while validation and test have
500 and 1,000 scenarios respectively. Our dataset has anno-
tated 3D bounding boxes of vehicles for every 100ms. For
all experiments, we utilize the same spatial region, which
is centered at the SDV, with 70.4 meters both in front and
back, 40 meters to the left and right, and height from -2 me-
ters to 3.4 meters. This corresponds to a 704x400x27 tensor.
Our input sequence is 10 frames at 10Hz, while the output
is 7 frames at 2Hz, thus resulting in a planning horizon of 3
seconds.

In the following, we first show quantitative analysis on
planning on a wide variety of metrics measuring collision,
similarity to human trajectory and traffic rule violation.
Next we demonstrate the interpretability of our approach,
through quantitative analysis of detection and motion fore-
casting, as well as visualization of the learned cost volume.
Last, we provide an ablation study to show the effects of dif-
ferent loss functions and different temporal history lengths.



Method L2 along trajectory (m) L2 across trajectory (m) L1 (m) L2 (m)
0s 1s 2s 3s 0s 1s 2s 3s 0s 1s 2s 3s 0s 1s 2s 3s

FaF[18] 0.29 0.49 0.87 1.52 0.16 0.23 0.39 0.58 0.45 0.72 1.31 2.14 0.37 0.60 1.11 1.82
IntentNet[5] 0.23 0.42 0.79 1.27 0.16 0.21 0.32 0.48 0.39 0.61 1.09 1.79 0.32 0.51 0.93 1.52

Ours 0.21 0.37 0.69 1.15 0.12 0.16 0.25 0.37 0.34 0.54 0.94 1.52 0.28 0.45 0.80 1.31
Table 2. Motion Forecasting Metric

ID Loss Input Penalty mAP@IoU Prediction L2 (m) Collision Rate (%) Traffic Violation (%)
Det Plan 5 10 0.5 0.7 1s 2s 3s 1s 2s 3s 1s 2s 3s

1 X X 94.1 81.3 0.48 0.84 1.34 - - - - - -
2 X X - - - - - 0.01 0.23 1.42 0.37 1.06 3.85
3 X X X X 93.6 80.1 0.46 0.83 1.35 0.01 0.15 0.93 0.36 0.86 3.09
4 X X X 94.2 81.1 0.45 0.80 1.30 0.01 0.29 1.40 0.36 1.02 3.26
5 X X X X 94.2 81.1 0.45 0.80 1.31 0.01 0.09 0.78 0.35 0.77 2.99

Table 3. Ablation Study. We compare effects of different supervisions, different input horizons and different training losses. ID denotes
model id which we use for clarity and brevity.

4.1. Planning Results

We evaluate a wide variety of planning metrics. L2 Dis-
tance to Real Trajectory: This evaluates how far away the
planned trajectory is from the real executed trajectory. Note
that the real trajectory is just one of the many possible tra-
jectories that a human could do, and thus this metric is not
perfect. Future Potential Collision Rate: This is used to
see if the planned trajectory will overlap with other vehicles
in the future. For a given timestep t, we compute the per-
centage of occurrence of collisions up to time t, thus lower
number is preferred. Lane Violation: this metric counts the
percentage of planned trajectories crossing a solid yellow
line. Note that lower is better, and here crossing is defined
if the SDV touches the line.

We implement many baselines for comparison includ-
ing: Ego-motion forecasting (Ego-motion): Ego-motion
provides a strong cue of how the SDV would move in the
future. This baselines takes only SDV’s past position as
input and uses a 4-layer MLP to predict the future loca-
tions. Imitation Learning (IL): We follow the imitation
learning framework [3, 8, 24], and utilize a deep network to
extract features from raw LiDAR data and rasterized map.
For fair comparison, we use the same backbone described
(Sec. 3.1) and same input parameterization (Sec. 3.1) than
our approach. In addition, the same MLP from Ego-motion
forecasting baseline is used to extract features from ego-
motion. These two features are then concatenated and fed
into a 3 layer MLP to compute the final prediction. Adap-
tive Cruise Control (ACC): This baseline implements the
simple behavior of following the leading vehicle. The vehi-
cle follows the lane center-line, while adaptively adjusting
its speed to maintain a safe distance from the vehicle ahead.
When there is no lead vehicle, a safe speed limit is followed.
Traffic controls (traffic lights, stop signs) are observed as a
stationary obstacle, similar to a stopped lead vehicle. Plan
w/ Manual Cost (Manual): This baselines uses the same
trajectory parameterization and sampling procedure as our

approach. However it utilizes a manually designed cost us-
ing perception and motion forecasting outputs. In detail, we
rasterize all possible roads the SDV can take going forward
and set it to a low cost of 0; all detected objects’s bound-
ing box defines area of a high cost set to 255; cost of any
other area is set to a default value 100. This baseline is de-
signed to show the effectiveness of our learned cost volume
as it utilize the same sampling procedure as our approach
but just a different cost volume.

As shown in Tab. 1, our approach has lower future colli-
sion rate at all timesteps by a large margin. Note that Ego-
motion and IL baselines give lower L2 numbers as they op-
timize directly for this metric, however they are not good
from planning perspective as they have difficulty reasoning
about other actors and collide frequently with them. Com-
paring to the manual cost baseline and ACC, we achieve
both better regression numbers and better collision rates,
showing the advantage of our learned cost volume over
manual a designed cost. For lane violation, ACC is de-
signed to follow the lane, thus it has about 0 violation by
definition. Comparing to other baselines, we achieve much
smaller violation number, showing our model is able to rea-
son and learn from the map.

4.2. Interpretability

Interpretability is crucial for self-driving as it can help
understand failure cases. We showcase the interpretability
of our approach by showing quantitative results on 3D de-
tection and motion forecasting and visualization our learned
cost-map for all timesteps into the future.

Detection: We compare against several state-of-the-art
real-time detectors, validating that our holistic model under-
stand the environment. Our baselines include a MobileNet
adapted from [13], FaF[18], IntentNet[5] and Pixor[32],
which are specifically designed for LiDAR-based 3D ob-
ject detection. The metric is mAP with different IoU thresh-
olds, and vehicles without LiDAR points are not considered.



Figure 3. Cost Volume across Time We shown planned trajectory in red and ground-truth in blue. We overlay lower cost region for
different timesteps in the same figure, using different colors (indicated by legend). Detection and corresponding prediction results are in
cyan. (best view in color)

Method Detection mAP @ IoU (pts ≥ 1)
0.5 0.6 0.7 0.8 0.9

MobileNet[13] 86.1 78.3 60.4 27.5 1.1
FaF[18] 89.8 82.5 68.1 35.8 2.5

IntentNet[5] 94.4 89.4 75.4 43.5 3.9
Pixor[32] 93.4 89.4 78.8 52.2 7.6

Ours 94.2 90.8 81.1 53.7 7.1
Table 4. Detection mAP Result

As shown in Tab. 4, our model archives best results on 0.7
IoU threshold, which is the metric of choice for self-driving.
Qualitative results can also be found in Fig. 3.

Motion Forecasting: Tab. 2 shows quantitative motion
forecasting results, including L1 and L2 distance to ground-
truth locations. We also provides the L2 distance from our
predictions to the ground-truth position along and perpen-
dicular to the ground-truth trajectory. These help explain
if the error is due to wrong velocity or direction estima-
tion. We use baselines from [5, 18], which are designed for
motion forecasting with raw LiDAR data. Our model per-
forms better in all metric and all time steps. Note that In-
tentNet uses high-level intentions as additional information
for training. Qualitative results are shown in Fig.3.

Cost Map Visualization: In Fig. 3, we visualize a few
different driving scenarios. Each figure gives a top-down
view of the scene, showing the map, LiDAR point clouds,
detection, motion forecasting and planning results includ-
ing learned cost map. Each figure represents one example,
where we overlay the cost map from different timesteps. We
use different color to represent the lower cost region for dif-
ferent timesteps (indicated by color legend). As we can see,

our model learns to produce a time-dependent cost map.
In particular, the first column demonstrates multi-modality,
second column shows lane-following in heavy traffic and
the last column shows collision avoidance.

4.3. Ablation Study

We conduct ablation studies and report the results in Ta-
ble 3. Our best model is Model 5, comparing to Model 1
which is optimized only for detection and motion forecast-
ing, it achieves similar performance in terms of detection
and motion forecasting. Model 2 trains directly with plan-
ning loss only, without the supervision of object bounding
boxes and performs worse. Model 3 exploits different in-
put length, where longer input sequence gives better results.
Model 4 is trained without the traffic rule penalty γ in Eq. 8.
It performs worse on planning, as it has no prior knowledge
to avoid collision.

5. Conclusion

We have proposed a neural motion planner that learns to
drive safely while following traffic rules. We have designed
a holistic model that takes LiDAR data and an HD map and
produces interpretable intermediate representations in the
form of 3D detections and their future trajectories, as well
as a cost map defining the goodness of each position that
the self-driving car can take within the planning horizon.
Our planer then sample a set of physically possible trajec-
tories and chooses the one with the minimum learned cost.
We have demonstrated the effectiveness of our approach in
very complex real-world scenarios in several cities of North
America and show how we can learn to drive accurately.
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