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Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

@ 3648 Dimensions

> 64 rows by 57 columns
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Simple Model of Digit

Rotate a 'Prototype’
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo

demDigitsManifold([1 2], ’sixnine’)
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Low Dimensional Manifolds

Pure Rotation is too Simple
@ In practice the data may undergo several distortions.
» e.g. digits undergo ‘thinning’, translation and rotation.
@ For data with ‘structure’:

» we expect fewer distortions than dimensions;

» we therefore expect the data to live on a lower dimensional manifold.

@ Conclusion: deal with high dimensional data by looking for lower
dimensional non-linear embedding.
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Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.
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Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.
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Which Rotation?

@ We need the rotation that will minimise residual error.
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Which Rotation?

@ We need the rotation that will minimise residual error.
@ Retain features/directions with maximum variance.

@ Error is then given by the sum of residual variances.

E(X):% > ot

k=g+1
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Which Rotation?

We need the rotation that will minimise residual error.

Retain features/directions with maximum variance.

Error is then given by the sum of residual variances.

E(X):% > ot

k=g+1

Rotations of data matrix do not effect this analysis.

Rotate data so that largest variance directions are retained.
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Reminder: Principal Component Analysis

How do we find these directions?

Find directions in data with maximal variance.
» That's what PCA does!

PCA: rotate data to extract these directions.

PCA: work on the sample covariance matrix S = nlYTY.
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Principal Coordinates Analysis

@ The rotation which finds directions of maximum variance is the
eigenvectors of the covariance matrix.

@ The variance in each direction is given by the eigenvalues.

@ Problem: working directly with the sample covariance, S, may be
impossible.
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Equivalent Eigenvalue Problems

@ Principal Coordinate Analysis operates on YTY.

@ Two eigenvalue problems are equivalent. One solves for the rotation,
the other solves for the location of the rotated points.
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Equivalent Eigenvalue Problems

o Principal Coordinate Analysis operates on YTY.

@ Two eigenvalue problems are equivalent. One solves for the rotation,
the other solves for the location of the rotated points.

@ When p < n it is easier to solve for the rotation, R,. But when p > n
we solve for the embedding (principal coordinate analysis). from
distance matrix.

o Can we compute YYT instead?
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The Covariance Interpretation

o n1YTY is the data covariance.
o YY is a centred inner product matrix.

» Also has an interpretation as a covariance matrix (Gaussian processes).

> It expresses correlation and anti correlation between data points.

» Standard covariance expresses correlation and anti correlation between
data dimensions.
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Summary up to know on dimensionality reduction

Distributions can behave very non-intuitively in high dimensions.

Fortunately, most data is not really high dimensional.

@ Probabilistic PCA exploits linear low dimensional structure in the
data.

» Probabilistic interpretation brings with it many advantages:
extensibility, Bayesian approaches, missing data.

Didn't deal with the non-linearities highlighted by the six example!

Let's look at non linear dimensionality reduction.
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Spectral methods

o LLE (Roweis & Saul, 00) , ISOMAP (Tenenbaum et al. 00),
Laplacian Eigenmaps (Belkin &Niyogi, 01)

@ Based on local distance preservation
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Figure: LLE embeddings from densely sampled data
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Tangled String

@ Sometimes local distance
preservation in data space is
wrong.
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Tangled String

@ Sometimes local distance
preservation in data space is
wrong.

@ The pink and blue ball
should be separated.

@ But the assumption makes
the problem simpler (for
spectral methods it is
convex).
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Generative Models

@ Directly model the generating process.
@ Map from string to position in space.

@ How to model observation “generation”?
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Example of data generation

1 = fi(x)
A S
X y2 = h(x) ,
1

Figure: A string in two dimensions, formed by mapping from one dimension, x,
line to a two dimensional space, [y1, y»| using nonlinear functions fi(-) and f(-).
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Difficulty for Probabilistic Approaches

@ Propagate a probability distribution through a non-linear mapping.

@ Normalisation of distribution becomes intractable.

X2
=
I
<h
(ot
X
N—r

X1

Figure: A three dimensional manifold formed by mapping from a two dimensional
space to a three dimensional space.
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Difficulty for Probabilistic Approaches

@ Propagate a probability distribution through a non-linear mapping.
@ Normalisation of distribution becomes intractable.

y=f4(><g+6

p(x) p(y)

Figure: A Gaussian distribution propagated through a non-linear mapping.

yi = f(x;) + €i. € ~ N (0,0.22) and f(-) uses RBF basis, 100 centres between -4
and 4 and ¢ = 0.1. New distribution over y (right) is multimodal and difficult to
normalize.
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Mapping of Points

@ Mapping points to higher dimensions is easy.

© O OECO © 0 © %

Figure: One dimensional Gaussian mapped to two dimensions.
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Mapping of Points

@ Mapping points to higher dimensions is easy.
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Figure: Two dimensional Gaussian mapped to three dimensions.
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Linear Dimensionality Reduction

Linear Latent Variable Model
@ Represent data, Y, with a lower dimensional set of latent variables X.

@ Assume a linear relationship of the form
Yi: = WXi,: + €,

where

€i.~N (0,02I) )
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

p(YIX, W) = [T (yi,:IWx;.., 1)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

@ Standard Latent variable
approach:

n
» Define Gaussian prior p(YIX,W) = HN(Yi,:|Wxi,:70'2I)
over latent space, X. i=1

p(X) =[N (xi.]0.1)
i=1
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Linear Latent Variable Model

Probabilistic PCA

@ Define linear-Gaussian
relationship between
latent variables and data.

e Standard Latent variable

approach: p(YIX,W) =[N (yi,|Wx; ., 01)
i=1
» Define Gaussian prior

over latent space, X. n
» Integrate out latent p(X) = HN(X"*‘O’I)
. i
variables.

p(Y|W) = f[N (y,-,:\o,wa + azl)
i=1
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Linear Latent Variable Model |l

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p(YIW) = [T (31,10 WW + )

i=1
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Linear Latent Variable Model Il
Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p(YIW) =[N (yi./0.C), C=wWwW'+52
i=1

1
log p (Y|W) = —g log |C| — St (CleTY> + const.

If Uq are first g principal eigenvectors of n~1YTY and the corresponding
eigenvalues are A,

1
W =U,R", L= (A;—0°l)2
where R is an arbitrary rotation matrix.
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Linear Latent Variable Model I

Dual Probabilistic PCA

@ Define linear-Gaussian

relationship between
latent variables and data.

n
p(levw) = HN (Yi,:lwxi,:>02|)
i=1
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Dual Probabilistic PCA

@ Define linear-Gaussian
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@ Novel Latent variable °
approach:
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Linear Latent Variable Model I

Dual Probabilistic PCA
@ Define linear-Gaussian /@V)

relationship between

latent variables and data. 0
@ Novel Latent variable
approach:
» Define Gaussian prior p(YIX,W) = ]_ﬂ‘[./\f(y,-’;|Wx,-,:,a2l)
over parameters, W. i=1

P
p(W) =[NV (wi.]0.1)

i=1

Urtasun & Lawrence () GP tutorial June 16, 2012 24 / 35



Linear Latent Variable Model I

X
Dual Probabilistic PCA . /@I>

@ Define linear-Gaussian 0
relationship between
latent variables and data.

@ Novel Latent variable

approach: p(YIX, W) =[N (vi:[Wxi ., o)
. . . i=1
» Define Gaussian prior l
over parameters, W. P
» Integrate out p(W) = HN(W"JO’ )
parameters. =

P
p(YIX) = TV (v.410,XXT + o21)
j=1
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Linear Latent Variable Model 1V

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence 03, Lawrence 05)

/@)

P
p(YIX) =[NV (y:,j\o, xxT + 0'2|)
Jj=1
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Linear Latent Variable Model 1V

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence 03, Lawrence 05)

p(Y|X) = H/\/ JI0K),  K=XXT +0%

1
log p (Y|X) = 72 log |K| — Str (K‘lYYT) + const.

If U; are first g principal eigenvectors of p~1YY T and the corresponding eigenvalues are Ag,
1
X=U/LR", L= (A;—0c%)2

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model 1V

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p(YIW) =[N (vi:l0,€), C=wwT +52
i=1

1
log p(Y|W) = —g log |C| — Etr (C*IYTY) + const.

If Uq are first g principal eigenvectors of n~1YTY and the corresponding eigenvalues are Ag,

Nl

W =UGLR", L= (A;—0?l)

where R is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
@ Solution for Probabilistic PCA (solves for the mapping)

Y'YU,=U/A, W=U,LR"

@ Solution for Dual Probabilistic PCA (solves for the latent positions)

T T
YYTU,=U,A, X=U,LR

e Equivalence is from
_1
U, =Y U,A, 2
@ You have probably used this trick to compute PCA efficiently when
number of dimensions is much higher than number of points.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA
o Define linear-Gaussian

relationship between °
latent variables and data.
@ Novel Latent variable p (Y%, W) = [V (v Wxi.., o%1)
approach: i1
» Define Gaussian prior p
over parameteters, W. p(W) =[N (wi.[0,1)
» Integrate out =
parameters.

p
p(YX) = [TA (y.410,XXT + o21)
j=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

»

P
p(YIX) = TN (v.410,XXT + 02|)
j=1
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal

likelihood shows ...
» The covariance matrix
is a covariance °
function.

P
p(YIX) =[N (.40, K)

j=1

K=XXT + 52
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

» The covariance matrix 0
is a covariance
function. p

» We recognise it as the p(YIX) =[N (y.510.K)
‘linear kernel'. =

K=XXT + 452

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

@ Inspection of the marginal
likelihood shows ...

» The covariance matrix °
is a covariance
function. p

» We recognise it as the p(YIX) =[N (v.510,K)
‘linear kernel’. =t

» We call this the
Gaussian Process

Latent Variable model Replace linear kernel with non-linear
(GP-LVM).

K =?

kernel for non-linear model.
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Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

e The EQ covariance has the form k;; = k (x;.,x;.), where

|X',: _x',:H2
k (Xi,:,xj,:) = aexp (—% .
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Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

e The EQ covariance has the form k;; = k (x;.,x;.), where

%, — X; ||§
k(X x;.) = I~ Al )
(xi..7:) aexp( —

@ No longer possible to optimise wrt X via an eigenvalue problem.

e Instead find gradients with respect to X, o, ¢ and ¢ and optimise
using conjugate gradients.
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Stick Man

Generalization with less Data than Dimensions

@ Powerful uncertainly handling of GPs leads to surprising properties.
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dimensions without overfitting.
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Stick Man

Generalization with less Data than Dimensions
@ Powerful uncertainly handling of GPs leads to surprising properties.

@ Non-linear models can be used where there are fewer data points than
dimensions without overfitting.

o Example: Modelling a stick man in 102 dimensions with 55 data
points!
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Stick Man I

demStickl

-1 -0.5 0 0.5 1

Figure: The latent space for the stick man motion capture data.
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Let's look at some applications and extensions of the GPLVM
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p(YIW,p) =[N (y,-,;lu,wwT + a2|)
i=1

Gradient of log likelihood
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p (?|w) =TI~ (9,-,:\0,wa +01)

i=1

Gradient of log likelihood

d * _ _Ne— 19 o1
dWIogp<Y|W)——2C W >CYTYCw
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p (?|w) - 1‘{/\/(9,-,40, C), C=ww' 102
ph

Gradient of log likelihood
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p (?|w) - 1‘{/\/(9,-,40, ), c=ww' 152
pl

log p (?|W) = —g log |C| — %tr (C’I?T?) + const.

Gradient of log likelihood
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Optimization
Seek fixed points

1 nm
0= —gc—lw +sCTYTYC W
pre-multiply by 2C o
0=—-nW+Y'YC'W

%\?T?c—lw =W
Substitute W with singular value decomposition
W = ULR"T
which implies
C=WW' +°
=ULu" +42
Using matrix inversion lemma
C'W=UL(c>+L%) 'RT
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Solution given by
1
n
which is recognised as an eigenvalue problem.

Y'YU=U (0% +1?)

@ This implies that the columns of U are the eigenvectors of %?T? and
that 02 4 L? are the eigenvalues of %?T?
o /; = +\/\j — 02 where )\, is the ith eigenvalue of %?T?.

@ Further manipulation shows that if we constrain W € :P*9 then the
solution is given by the largest g eigenvalues.
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Probabilistic PCA Solution

o If U, are first g principal eigenvectors of n~1YTY and the
corresponding eigenvalues are A,

W =U,LR", L= (A;- azl)%

where R is an arbitrary rotation matrix.

@ Some further work shows that the principal eigenvectors need to be
retained.

@ The maximum likelihood value for o2 is given by the average of the
discarded eigenvalues.

Urtasun & Lawrence () GP tutorial June 16, 2012 35 /35



	Appendix

