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Motivation for Non-Linear Dimensionality Reduction

USPS Data Set Handwritten Digit

3648 Dimensions

I 64 rows by 57 columns
I Space contains more

than just this digit.

I Even if we sample
every nanosecond from
now until the end of
the universe, you won’t
see the original six!
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Simple Model of Digit

Rotate a ’Prototype’
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MATLAB Demo

demDigitsManifold([1 2], ’all’)
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MATLAB Demo

demDigitsManifold([1 2], ’sixnine’)

−0.1 −0.05 0 0.05 0.1
−0.1

−0.05

0

0.05

0.1

PC no 1

P
C

 n
o
 2

Urtasun & Lawrence () GP tutorial June 16, 2012 4 / 35



Low Dimensional Manifolds

Pure Rotation is too Simple

In practice the data may undergo several distortions.

I e.g. digits undergo ‘thinning’, translation and rotation.

For data with ‘structure’:

I we expect fewer distortions than dimensions;
I we therefore expect the data to live on a lower dimensional manifold.

Conclusion: deal with high dimensional data by looking for lower
dimensional non-linear embedding.
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Feature Selection

Figure: demRotationDist. Feature selection via distance preservation.
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Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances.
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Feature Extraction

Figure: demRotationDist. Rotation preserves interpoint distances. Residuals are
much reduced.
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Which Rotation?

We need the rotation that will minimise residual error.

Retain features/directions with maximum variance.

Error is then given by the sum of residual variances.

E (X) =
2

p

p∑
k=q+1

σ2
k .

Rotations of data matrix do not effect this analysis.

Rotate data so that largest variance directions are retained.
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Reminder: Principal Component Analysis

How do we find these directions?

Find directions in data with maximal variance.

I That’s what PCA does!

PCA: rotate data to extract these directions.

PCA: work on the sample covariance matrix S = n−1Ŷ>Ŷ.
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Principal Coordinates Analysis

The rotation which finds directions of maximum variance is the
eigenvectors of the covariance matrix.

The variance in each direction is given by the eigenvalues.

Problem: working directly with the sample covariance, S, may be
impossible.
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Equivalent Eigenvalue Problems

Principal Coordinate Analysis operates on ŶT Ŷ.

Two eigenvalue problems are equivalent. One solves for the rotation,
the other solves for the location of the rotated points.

When p < n it is easier to solve for the rotation, Rq. But when p > n
we solve for the embedding (principal coordinate analysis). from
distance matrix.

Can we compute ŶŶ> instead?
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The Covariance Interpretation

n−1Ŷ>Ŷ is the data covariance.

ŶŶ> is a centred inner product matrix.

I Also has an interpretation as a covariance matrix (Gaussian processes).
I It expresses correlation and anti correlation between data points.
I Standard covariance expresses correlation and anti correlation between

data dimensions.
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Summary up to know on dimensionality reduction

Distributions can behave very non-intuitively in high dimensions.

Fortunately, most data is not really high dimensional.

Probabilistic PCA exploits linear low dimensional structure in the
data.

I Probabilistic interpretation brings with it many advantages:
extensibility, Bayesian approaches, missing data.

Didn’t deal with the non-linearities highlighted by the six example!

Let’s look at non linear dimensionality reduction.
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Spectral methods

LLE (Roweis & Saul, 00) , ISOMAP (Tenenbaum et al. 00),
Laplacian Eigenmaps (Belkin &Niyogi, 01)

Based on local distance preservation

Figure: LLE embeddings from densely sampled data
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Tangled String

Sometimes local distance
preservation in data space is
wrong.

The pink and blue ball
should be separated.

But the assumption makes
the problem simpler (for
spectral methods it is
convex).

Urtasun & Lawrence () GP tutorial June 16, 2012 15 / 35



Tangled String

Sometimes local distance
preservation in data space is
wrong.

The pink and blue ball
should be separated.

But the assumption makes
the problem simpler (for
spectral methods it is
convex).

Urtasun & Lawrence () GP tutorial June 16, 2012 15 / 35



Tangled String

Sometimes local distance
preservation in data space is
wrong.

The pink and blue ball
should be separated.

But the assumption makes
the problem simpler (for
spectral methods it is
convex).

Urtasun & Lawrence () GP tutorial June 16, 2012 15 / 35



Generative Models

Directly model the generating process.

Map from string to position in space.

How to model observation “generation”?
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Example of data generation

y 2

y1

x

y1 = f1(x)

−→
y2 = f2(x)

Figure: A string in two dimensions, formed by mapping from one dimension, x ,
line to a two dimensional space, [y1, y2] using nonlinear functions f1(·) and f2(·).
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Difficulty for Probabilistic Approaches

Propagate a probability distribution through a non-linear mapping.

Normalisation of distribution becomes intractable.
x 2

x1

yj = fj(x)−→

Figure: A three dimensional manifold formed by mapping from a two dimensional
space to a three dimensional space.
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Difficulty for Probabilistic Approaches
Propagate a probability distribution through a non-linear mapping.
Normalisation of distribution becomes intractable.

p(y)p(x)

y = f (x) + ε−→

Figure: A Gaussian distribution propagated through a non-linear mapping.
yi = f (xi ) + εi . ε ∼ N

(
0, 0.22

)
and f (·) uses RBF basis, 100 centres between -4

and 4 and ` = 0.1. New distribution over y (right) is multimodal and difficult to
normalize.
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Mapping of Points

Mapping points to higher dimensions is easy.

Figure: One dimensional Gaussian mapped to two dimensions.
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Mapping of Points

Mapping points to higher dimensions is easy.

Figure: Two dimensional Gaussian mapped to three dimensions.
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Linear Dimensionality Reduction

Linear Latent Variable Model

Represent data, Y, with a lower dimensional set of latent variables X.

Assume a linear relationship of the form

yi ,: = Wxi ,: + εi ,:,

where
εi ,: ∼ N

(
0, σ2I

)
.
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Linear Latent Variable Model

Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Standard Latent variable
approach:

I Define Gaussian prior
over latent space, X.

I Integrate out latent
variables.

X W

Y

p (Y|X,W) =
n∏

i=1

N
(
yi,:|Wxi,:, σ

2I
)
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Linear Latent Variable Model II

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

X W

Y

p (Y|W) =
n∏

i=1

N
(

yi ,:|0,WW> + σ2I
)
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Linear Latent Variable Model II
Probabilistic PCA Max. Likelihood Soln (Tipping 99)

p (Y|W) =
n∏

i=1

N (yi ,:|0,C) , C = WW> + σ2I

log p (Y|W) = −n

2
log |C| − 1

2
tr
(

C−1Y>Y
)

+ const.

If Uq are first q principal eigenvectors of n−1Y>Y and the corresponding
eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.
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Linear Latent Variable Model III

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

I Define Gaussian prior
over parameters, W.

I Integrate out
parameters.

X W

Y

p (Y|X,W) =
n∏

i=1

N
(
yi,:|Wxi,:, σ

2I
)
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence 03, Lawrence 05)

X W

Y

p (Y|X) =

p∏
j=1

N
(

y:,j |0,XX> + σ2I
)
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Linear Latent Variable Model IV

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence 03, Lawrence 05)

p (Y|X) =

p∏
j=1

N
(
y:,j |0,K

)
, K = XX> + σ2I

log p (Y|X) = −
p

2
log |K| −

1

2
tr
(

K−1YY>
)

+ const.

If U′q are first q principal eigenvectors of p−1YY> and the corresponding eigenvalues are Λq ,

X = U′qLR>, L =
(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.
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Equivalence of Formulations

The Eigenvalue Problems are equivalent
Solution for Probabilistic PCA (solves for the mapping)

Y>YUq = UqΛq W = UqLR>

Solution for Dual Probabilistic PCA (solves for the latent positions)

YY>U′q = U′qΛq X = U′qLR>

Equivalence is from

Uq = Y>U′qΛ
− 1

2
q

You have probably used this trick to compute PCA efficiently when
number of dimensions is much higher than number of points.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Define linear-Gaussian
relationship between
latent variables and data.

Novel Latent variable
approach:

I Define Gaussian prior
over parameteters, W.

I Integrate out
parameters.

X W

Y

p (Y|X,W) =
n∏

i=1

N
(
yi,:|Wxi,:, σ

2I
)

p (W) =

p∏
i=1

N
(
wi,:|0, I

)

p (Y|X) =

p∏
j=1

N
(

y:,j |0,XX> + σ2I
)
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

X W

Y

p (Y|X) =

p∏
j=1

N
(

y:,j |0,XX> + σ2I
)
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

X W

Y

p (Y|X) =

p∏
j=1

N
(
y:,j |0,K

)

K = XX> + σ2I

This is a product of Gaussian processes

with linear kernels.
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Non-Linear Latent Variable Model

Dual Probabilistic PCA

Inspection of the marginal
likelihood shows ...

I The covariance matrix
is a covariance
function.

I We recognise it as the
‘linear kernel’.

I We call this the
Gaussian Process
Latent Variable model
(GP-LVM).

X W

Y

p (Y|X) =

p∏
j=1

N
(
y:,j |0,K

)
K =?

Replace linear kernel with non-linear

kernel for non-linear model.
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Non-linear Latent Variable Models

Exponentiated Quadratic (EQ) Covariance

The EQ covariance has the form ki ,j = k (xi ,:, xj ,:) , where

k (xi ,:, xj ,:) = α exp

(
−
‖xi ,: − xj ,:‖2

2

2`2

)
.

No longer possible to optimise wrt X via an eigenvalue problem.

Instead find gradients with respect to X, α, ` and σ2 and optimise
using conjugate gradients.
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Stick Man

Generalization with less Data than Dimensions

Powerful uncertainly handling of GPs leads to surprising properties.

Non-linear models can be used where there are fewer data points than
dimensions without overfitting.

Example: Modelling a stick man in 102 dimensions with 55 data
points!
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Stick Man II

demStick1

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

1.5

Figure: The latent space for the stick man motion capture data.
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Let’s look at some applications and extensions of the GPLVM
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

X W

Y

p (Y|W,µ) =
n∏

i=1

N
(

yi,:|µ,WW> + σ2I
)

Gradient of log likelihood
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

X W

Y

p
(

Ŷ|W
)

=
n∏

i=1

N
(

ŷi,:|0,WW> + σ2I
)

Gradient of log likelihood

d

dW
log p

(
Ŷ|W

)
= −n

2
C−1W +

1

2
C−1Ŷ>ŶC−1W
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Maximum Likelihood Solution

Probabilistic PCA Max. Likelihood Soln (Tipping 99)

X W

Y

p
(

Ŷ|W
)

=
n∏

i=1

N
(
ŷi,:|0,C

)
, C = WW> + σ2I

log p
(

Ŷ|W
)

= −
n

2
log |C| −

1

2
tr
(

C−1Ŷ>Ŷ
)

+ const.

Gradient of log likelihood
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Optimization
Seek fixed points

0 = −n

2
C−1W +

1

2
C−1Ŷ>ŶC−1W

pre-multiply by 2C
0 = −nW + Ŷ>ŶC−1W

1

n
Ŷ>ŶC−1W = W

Substitute W with singular value decomposition

W = ULR>

which implies

C = WW> + σ2I

= UL2U> + σ2I

Using matrix inversion lemma

C−1W = UL
(
σ2 + L2

)−1
R>
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Solution given by

1

n
Ŷ>ŶU = U

(
σ2 + L2

)
which is recognised as an eigenvalue problem.

This implies that the columns of U are the eigenvectors of 1
n Ŷ>Ŷ and

that σ2 + L2 are the eigenvalues of 1
n Ŷ>Ŷ.

li =
√
λi − σ2 where λi is the ith eigenvalue of 1

n Ŷ>Ŷ.

Further manipulation shows that if we constrain W ∈ <p×q then the
solution is given by the largest q eigenvalues.
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Probabilistic PCA Solution

If Uq are first q principal eigenvectors of n−1Ŷ>Ŷ and the
corresponding eigenvalues are Λq,

W = UqLR>, L =
(
Λq − σ2I

) 1
2

where R is an arbitrary rotation matrix.

Some further work shows that the principal eigenvectors need to be
retained.

The maximum likelihood value for σ2 is given by the average of the
discarded eigenvalues.

Return
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